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ABSTRACT In this research, the optimal placement and capacity of battery energy storage systems
(BESS) in distribution networks integrated with photovoltaics (PV) and electric vehicles (EVs) have been
proposed. The main objective function is to minimize the system costs including installation, replacement,
and operation and maintenance costs of the BESS. The replacement cost has been considered over 20 years
while the operation andmaintenance costs are the costs incurred by transmission line loss, voltage regulation,
and peak demand. To solve the problem, three metaheuristic algorithms, namely particle swarm optimization
(PSO), african vultures optimization algorithm (AVOA), and salp swarm algorithm (SSA), are employed. The
proposed approach is evaluated on the IEEE 33- and 69-bus distribution systems integrated with PV and EVs.
The results provided by the considered algorithms are compared in terms of the objective function, system
efficiency enhancement, payback period, and statistical analysis. The simulation results show that after the
BESS installation, the voltage profile can be improved, transmission loss is reduced, and peak demand is
decreased where PSO provides the best objective values and AVOA achieves the fastest payback periods in
both systems.

INDEX TERMS Battery energy storage systems, photovoltaics, electric vehicles, metaheuristic algorithms,
particle swarm optimization, African vultures optimization algorithm, salp swarm algorithm.

I. INTRODUCTION
At present, energy consumption tends to continuously
increase because of economic growth and advanced industrial
development technology making electric power an important
factor in driving the economy and the quality of life of people
in many countries [1], [2], [3]. Moreover, electric vehicle
(EV) and solar power generation industries, which signifi-
cantly impact the economy and electricity generation, have
been continuously growing [4], [5], [6]. The increasing num-
ber of EVs needs a greater number of EV charging stations
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affecting distribution systems to be vulnerable. Photovoltaic
(PV) is becoming commonplace in our daily lives and has
been integrated into electric power distribution systems sup-
porting distribution systems to supply loads and improve
voltage profile and harmonic distortion (THD), etc. [7], [8].
So that, to support the increase of electricity consumption
from EVs and load growth, the efficiency of the distribution
systems integrated with PV is aimed to be enhanced by using
an energy storage system (ESS) for storing energy from PV
and grid when demand is low and supply it back to the grid
during high demand period.

The technology of ESS for installation in distribution sys-
tems is chosen depending on several factors such as energy
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capacity, efficiency, cost, advantages, disadvantages, and
credibility of the ESS [9]. In addition, the ESS selected to
be installed in the distribution systems should take a mod-
erate amount of time to discharge (minutes-hours), because
this discharging time can respond to daily loads in a timely
manner [10].

By installing BESSs in distribution systems, the efficiency
of the distribution systems can be improved depending on
the placement and capacity of the BESS. Finding the best
appropriate placement and capacity of the BESS is thus
an important task that must be studied and considered to
improve distribution system performance and reliability of
power generation and also minimize system costs. Several
works have studied many methods to determine the best
appropriate placement and capacity of the BESS. In [11],
Boonluk et al. presented the optimal placement and capac-
ity of the BESS together with renewable energy sources
(RESs) by using genetic algorithm (GA) and particle swarm
optimization (PSO) to determine the lowest system costs
in the IEEE 33-bus distribution network, and it was found
that PSO is more effective than GA. In [12], Fathy. pro-
posed a novel artificial hummingbird algorithm (AHA) to
determine the optimal locations and sizes of biomass-based
distributed generators (DGs) in radial distribution networks
in order to minimize active power loss and voltage deviation.
It was found that the proposed algorithm could significantly
enhance network performance in terms of power loss and
voltage deviation reductions. In [13] Tolba et al. introduced an
effective optimizationmethod calledmodified forensic-based
investigation (mFBI) optimizer to determine the optimal loca-
tion and capacity of DGs in the IEEE 118-bus system and real
distribution system in Delta-Egypt. The optimization process
was based on a multi-objective function aiming to minimize
power losses, overall node voltage deviation and total annual
operational costs, and maximize voltage stability margin.
The results demonstrate that the mFBI optimizer outperforms
other existing techniques, providing superior outcomes in
terms of the specified objectives. Jayasekara et al. introduced
the optimal installation of the BESS together with PVs and
winds turbines (WTs) by using the interior point method for
controlling operation together with data management system
(DMS) and energy management system (EMS) in the IEEE
33-bus distribution system to minimize distribution system
costs and battery cycling cost [14]. The results showed that
the BESS can improve the efficiency of the distribution sys-
tem evaluated by examining voltage regulation enhancement,
decreasing loss, and decreasing peak demand. Mazza et al.
considered finding the optimal placement and capacity of
the BESS connected with EVs and DGs by using GA and
greedy algorithm to minimize investment and operation and
maintenance (O&M) costs in a rural 22-bus distribution sys-
tem which is a low voltage grid [15]. In [16], Ahmadian
presented the optimal BESS installation by using a fuzzy
model to predict the uncertainty of load profile, and tabu
search (TS) and simulated annealing (SA) algorithms were

applied to find the power of DGs, the number of battery
units, power rating of BESS, and capacity and locating of the
BESS in the multi-objective problems where the objectives
included costs of electrical energy purchased by distribution
utility and power loss in the distribution network. In [17],
Khalid et al. introduced the optimal placement and capacity
of DGs and BESS in a stand-alone microgrid 17-bus system
connected with residential and EV loads by using teaching
learning-based optimization (TLBO). The results showed that
losses in the system could be decreased, and voltage quality is
improved. Zheng et al. indicated the optimal number, place-
ment, and sizes of the BESSs in radial distribution systems
to control voltage regulation and minimize life cycle costs by
using a hierarchical planning model and natural aggregation
algorithm (NAA) [18]. Thus, several methods have been used
to determine the optimal placement and capacity of the BESS
in the distribution systems in order to reduce system costs
such as installation, replacement, transmission loss, voltage
regulation, and peak demand costs. However, most of them
have only considered some of the system costs although all
the system costs are important, and traditional algorithms
have been used to solve the problems in most studies.

So, several works presented the optimal placement and
capacity of the BESS for distribution systems by considering
all of the system costs, and some new efficient optimization
algorithms were employed. In [19], Khunkitti et al. proposed
the optimal placement and sizing of the BESS for distribution
networks connected with DGs by using GA, PSO, and SSA
algorithms to minimize system costs including transmission
loss, voltage regulation, and peak demand costs in the IEEE
33- and 69-bus distribution systems. The results presented the
BESS could mitigate the system costs, improve the voltage
profile, decrease power losses, and decrease peak demand.
However, this research only considered the price of oper-
ation and maintenance of distribution systems, which did
not include the costs of battery installation and replacement.
In addition, Janamala et al. proposed an approach to optimally
integrate interline-PV (I-PV) systems under different EV load
penetration levels by aiming at real power loss reduction and
voltage profile enhancement [20]. The coyote optimization
algorithm (COA), PSO, and grey wolf optimizer (GWO)
were used to determine the optimal solutions. The simula-
tion results presented that I-PV could be used to improve
the voltage profile, decrease transmission loss, and adapt to
real-world situations; however, this paper only considered
I-PV installations where PV and BESS were installed at the
same placement, and the BESS installation costs were not
included. In [21], Sadeghi presented the optimal installation
of BESS together with DGs and EVs by using multi-objective
PSO (MOPSO) and Monte Carlo simulation (MCS) to find
optimal life cycle costs (LCCs) consisting of initial cost (IC),
maintenance cost (MC), and replacement cost (RC), and the
results showed that the LCC could be decreased.

Although various works have studied the optimal place-
ment and capacity of the BESS installation, most of them
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have not considered battery installation and replacement costs
as in [19] and [20], and some of them used traditional
optimization algorithms [21]. Thus, this work presents the
optimal placement and capacity of the BESS in distribution
networks connected with PV and EVs by considering sys-
tem costs as the objective function. A traditional efficient
optimization algorithm which is PSO [22] and new efficient
algorithms which are AVOA [23] and SSA [24] are employed
to determine the optimal solutions.

This work’s primary contributions can be summarized as:
1) The study aims to determine the optimal placement and

capacity of the BESS in the IEEE 33- and 69-bus distri-
bution systems connected with PV and EV penetrations by
considering overall system costs, which include investment,
replacement, operation, and maintenance costs as the objec-
tive function to be minimized.

2) The efficiency of the distribution systems is enhanced by
decreasing transmission line loss, decreasing peak demand,
and improving voltage profile after the BESS installation.

3) Three mentioned optimization algorithms are utilized
to find solutions to the problems, and their efficiency is
evaluated through a comparative analysis.

4) The break-even point for investing in the BESS installa-
tion is calculated for investment decisions, and the statistical
analysis is considered to validate the performance of each
algorithm. The content has been arranged in topical order
as follows: Section II presents the ESS installation in a dis-
tribution system. In Section III, the problem is defined and
described. The outlines of the metaheuristic algorithms and
their implementation are explained in Section IV. Section V
depicts the results and discussions. The work is finally con-
cluded in Section VI.

II. ENERGY STORAGE SYSTEMS IN A DISTRIBUTION
SYSTEM
ESS are terms used to describe systems or equipment
installed in a system in order to convert electrical energy
into other energy types such as electrochemical, mechanical,
chemical, thermochemical, and thermal energies that can be
stored and converted back into electrical energy again when
needed [10], [25], [26], [27]. In this research, BESS which,
applies the energy conversion between electrical energy and
electrochemical energy, is used to be installed in the distribu-
tion systems because of its suitable discharging time that can
respond to daily loads in a timely manner. The BESS and its
simulation are described in the following subsection.

A. BATTERY ENERGY STORAGE SYSTEMS (BESSs)
The BESSs take a moderate amount of time to discharge
(about minutes to hours) with a ratio between 1 and 10,
meaning that there is a capacity of 1–10 kWh for a system
with a power of 1 kW. Examples of the BESSs are lead
acid batteries (LA), lithium-ion batteries (Li-ion), redox flow
batteries (RFB), and sodium sulphur batteries (NaS). The
Li-ion battery has been chosen in this study because of its
several advantages such as high efficiency of more than 90%,

high energy density (90-190 Wh/kg), up to 10,000 cycle
times, and suitable cost.

There are several factors affecting the service life of the
Li-ion batteries in the BESS, which should be considered,
including temperature, the operation cycle numbers of the
BESS, and depth of discharge (DOD) [11]. The BESS life
can be increased by carefully controlling heat dissipation at
the optimal temperature which is around 15–35 degrees Cel-
sius, avoiding charging and discharging frequently. Frequent
charging and discharging should be avoided. The DOD of the
Li-ion is recommended at 80% of the total capacity. The rates
of charge and discharge should not be too high because it will
cause high temperatures to the BESS, which will result in a
shorter service life [28], [29].

B. BATTERY ENERGY STORAGE SYSTEM SIMULATION
The simulation of the BESS considers the charging
and discharging of the BESS at equal intervals within
24 hours [11], [14], [19]. The period is divided equally into
1 hour 30 minutes or 15 minutes, so BESS can support the
battery charging and discharging rate at a value of 24, 48,
or 96 respectively. The charging and discharging rates in any
period are CiT , which can be determined according to the
following equation:

CiT =

EB(1)...

EB(m)

 (1)

whereEB(t) represents the energy in the BESS (MWh) at time
t = 1, 2, 3, . . . , m.

The Fourier series is used to find the energy in the BESS
by using the Fourier coefficient vector (CiF ) provided by the
optimization process. The Fourier series is adopted in this
work because it can be utilized to find the energy in the BESS
expressed in finely dispersed periodic patterns. By using the
Fourier series, the periodic pattern can be divided into a
group of sinusoidal components in the time domain enabling
a thorough analysis of the energy of the BESS [30]. The
method is to start at randomwith 16 Fourier coefficient values
and use the Fourier transform to predict the BESS’s electrical
energy (EB) every hour. The Fourier series is then used to
represent the state of energy (SOE) over the entire considered
period. The energy in the BESS is determined by using the
presented equations [14], [30].

CiF =

 a1, b1...

an, bn

 (2)

EB(t) = a0 + a1 cos
(
2π t
T

)
+ b1 sin

(
2π t
T

)
+ · · ·

+ an cos
(
2πnt
T

)
+ bn sin

(
2πnt
T

)
(3)

where CiF , a0, an, bn, n, t , and T are the Fourier coefficient
vector, constant Fourier coefficient, Fourier cosine coeffi-
cient, Fourier sine coefficient, number of Fourier coefficients
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which is set to 8, time, and period, respectively. The Fourier
cosine and sine coefficients are the optimization variables for
the problem.

The energy in the BESS, EB(t) is obtained by substituting
CiF from (2) into (3). From (3), a0 is not required because the
constant a0 has no impact on the charging and discharging
of the BESS and has no impact on the daily energy cost
coefficient. So, it can be set after an optimization process to
ensure that the BESS power curve is not below the minimum
value required to perform the DOD requirements.

The energies’ variation in the BESS at two consecutive
times is computed by (4) in order to find the power of the
BESS as in (5) and (6). The power of the BESS can then be
used to indicate the state of the BESS. When the BESS is
in a charging state, the BESS power is positive, indicating
the energy being added to the BESS. Conversely, when the
BESS is in a discharging state, the BESS power is negative,
indicating the energy being released from the BESS.

1EB = EB(t) − EB(t − 1) (4)

PB(t) = 1EB/ (1t × ηc) ,PB(t) > 0 (5)

PB(t) = (1EB × ηd ) /1t,PB(t) < 0 (6)

where 1EB is the energies’ variation in the BESS at two
consecutive times, ηc = ηd =

√
ηbat , ηbat = 0.9 is the

BESS efficiency in a cycle, and ηc, ηd , PB, and 1t are
the BESS charging efficiency, BESS discharging efficiency,
BESS power, and sampling interval time, respectively.

C. OPTIMAL CAPACITY OF THE BESS
To find the optimal capacity of the BESS, the power capacity
and energy capacity should be considered to decrease the total
costs and maintain the quality and reliability of distribution
systems. Moreover, the number of cycles and the SOC should
also be considered because they are two main factors that
affect the BESS life [9]. By improving the BESS’s charg-
ing and discharging cycles, the daily SOC swings can be
decreased, which helps increase the efficiency of the BESS’s
life cycle. The size of the BESS can be calculated by the
difference between the maximum andminimum energy in the
BESS divided by the maximum DOD as shown below.

Battery size(kWh) =

∣∣Emax
B − Emin

B

∣∣
DODmax

(7)

where DODmax = 0.8, Emax
B and Emin

B are the maximum and
minimum values of energy in the BESS, respectively.

The BESS daily cycle and service life cycle can be esti-
mated from (8) and (9), respectively.

Cycles =
1
2

(∑T
t=1 EB(t) − EB(t − 1)

DODmax × Battery size

)
(8)

Q(years) =
CyclesLife
Cycles× D

(9)

where Cycles, D = 285 days [14], Cycle Life = 3,000 cycles
[14], and Q are the number of daily BESS cycles, number of

BESS operating days, number of cycles in the nominal cycle
life of Li-ion battery, and actual service life cycle in years,
respectively.

III. PROBLEM FORMULATION
To determine the optimal placement and capacity of the BESS
in distribution networks connected with PV and EV charging
stations, the costs of installation, replacement, transmission
loss, voltage regulation, and peak demand in the distribution
systems are considered as the objective function to be mini-
mized while the constraints are the voltages of all buses and
BESS power and energy.

A. OBJECTIVE FUNCTION
The objective function of this research is to decrease the
total costs of BESS installation (Csystem) including invest-
ment cost (CIC ), replacement cost (CRC ), and operation and
maintenance costs (CMC ) [17], [18], [19]. The size of the
BESS will affect the investment cost while the replacement
cost varies depending on the size and life cycle time of the
BESS. Moreover, the operation and maintenance costs of the
distribution systems include voltage regulation cost (CCVR),
transmission loss cost (Closs), and peak demand cost (Cp).
Equation (10) represents the objective function of this work,
which can be obtained from (11) – (17).

f (CiF ) = min
(
Csystem

)
(10)

Csystem = CIC + CMC + CRC (11)

CIC = Nbat × γIC (12)

CMC = CCVR + Closs + Cp (13)

CCVR =

(∑T

t=1

∑N

i=1

∣∣Vi − Vref
∣∣)× γVR (14)

Closs =

(∑T

t=1

∑M

i=1
|Lineloss|

)
× γloss (15)

Cp = Pmax × 1t × γp (16)

CRC = Nbat × γIC ×
tyear
Cycles

(17)

where Nbat , N , T , Vi, Vref , M , Lineloss, Pmax, γVR, γloss,
γp, γIC , and tyear are the BESS size (kWh), total number of
buses, period, voltage at bus i (p.u.), reference voltage which
is 1 p.u., total number of branches, actual power loss in each
line, maximum power demand, rate of voltage regulator cost
(γVR = 0.142 $/p.u. [14], [19]), rate of transmission loss cost
(γloss = 0.284 $/kWh [14], [19]), rate of maximum energy
demand cost (γp = 200 $/kWh/year [14], [19]), rate of BESS
installation cost (γIC = 100 $/kWh [31]), and duration of this
study (tyear = 20 years), respectively.

B. CONSTRAINTS
1) INEQUALITY CONSTRAINTS
Voltage conditions of each bus must be within the range of
±10% of the reference voltage as follows:

Vmin ≤ V t
i ≤ Vmax (18)
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where Vmin and Vmax are the minimum and maximum volt-
ages of each bus, respectively, and V t

i is the voltage at bus i
at each time t .

In addition, the power and capacity of the BESS are limited
to prevent the BESS from being harmed during charging
and discharging, which can be expressed by the following
equations.

PBmin ≤ Ptcha,P
t
dis ≤ PBmax (19)

EBmin ≤ EBt ≤ EBmax (20)

where PBmin and PBmax represent the minimum and maxi-
mum powers of the BESS, respectively. Recent charging and
discharging powers of the BESS at time t are represented by
Ptcha and P

t
dis, respectively, and the minimum and maximum

capacities of the BESS are EBmin and EBmax, respectively.

2) EQUALITY CONSTRAINT
For the equality constraint, the power balance is controlled
in each bus of a distribution system as shown in the equation
below [20].

Pgrid (t) = PD(t) − Ppv(t) ± PB(t) − PL(t) (21)

where Pgrid , PD, Ppv, PB, and PL are grid power, load demand
power, PV power, BESS power, and transmission line power
loss, respectively.

IV. METAHEURISTIC ALGORITHMS AND
IMPLEMENTATION
In this research, to determine the optimal placement and
capacity of the BESS in distribution systems connected with
PV and EVs, three metaheuristic algorithms including PSO,
AVOA, and SSA are adopted. The effectiveness of these
algorithms is compared in terms of voltage deviation index
(VDI), power losses, and peak demand enhancement. The
implementation of the whole process is explained in the
following subsections.

A. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is one of the most widely used techniques for solving
optimization problems because of its simplicity and high
efficiency in searching for solutions. Although PSO is a
traditional method, it could overcome newly proposed opti-
mization algorithms in some works [19], [32], [33]. So, it is
possible that PSO can be better thanmodern algorithms in this
work. PSO was proposed by Kennedy and Eberhart inspired
by the social behavior of a group of fishes or birds looking
for food [22]. In the PSO simulation, firstly, the position and
speed of each particle are randomly initialized. Each particle
i then keeps the best answer in each iteration called personal
best (pbest). All particles share their best answer obtained so
far, such that a single particle has access to the most effective
solution among all particles called global best (gbest) in order
to adjust its position and speed to the best solution. The
velocity and position of the ith particle are updated by the

following equations.

vk+1
i = wki × vki + c1r1(pkbest,i − xki ) + c2r2(gkbest − xki )

(22)

xk+1
i = xki + vk+1

i (23)

where the velocities of the ith particle at iterations k + 1 and
k are denoted by vk+1

i and vki , respectively. x
k+1
i and xki

represent the positions of the ith particle at iterations k +

1 and k , respectively, c1 and c2 are both positive acceleration
coefficients set to 2. r1 and r2 are two uniformly randomly
produced numbers between [0,1]. pkbest,i is the personal best
position of the ith particle at iteration k , gkbest refers to the
global best position of all particles during the k th iteration,
and w is the inertia weight at the k th iteration calculated by
the equation below.

w = wmax − (
wmax − wmin

itermax
× iter) (24)

where wmax is set to 0.9, wmin is set to 0.4, iter is the cur-
rent iteration number, and itermax is the maximum iteration
number.

B. AFICANS VULTURES OPTIMIZATION ALGORITHM
(AVOA)
AVOA is a meta-heuristic algorithm inspired by African
vultures that migrate in flocks to locate food and cohabit
where the food location indicates the best solution. The
AVOA begins with a random sampling of the vultures’ initial
positions in the problem area, and the best two vultures are
evaluated by the following equation.

R(i) =

{
BestVulture1if pi = L1
BestVulture2if pi = L2

(25)

pi =
Fi∑n
i=1 Fi

(26)

where R(i) is one of the best vultures selected, pi is the
probability of choosing the best solution, n is the number of
group’s vulture, L1 and L2 are the indicators calculated before
the searching process, with the values in the range of 0 and 1,
and the sum of them is equal to 1. The rates of starvation of
both vultures are then calculated by the following equations.

F = (2 × rand1 + 1) × z×

(
1 −

iter
itermax

)
+ t (27)

t=h×

(
sinw

(
π

2
×

iter
itermax

)
+cos

(
π

2
×

iter
itermax

)
− 1

)
(28)

where F indicates the rate of starvation, rand1 has a random
value that varies between 0 and 1, iter is the current iteration,
itermax is the maximum number of iterations, z is a randomly
generated number in the range of [-1,1] regenerating in each
iteration, t is adopted to improve the search process by avoid-
ing the local optima, h is a number randomly chosen between
-2 and 2, w is a parameter used to balance the exploration and
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exploitation phases [23]. When z falls below zero in the range
of [-1,0), the vulture is starved, and when it rises in the range
of [0,1], the vultures are satiated.

If the vultures have a value of F ≥ 1, then the vultures are
satiated. Vultures will explore in search of food at random
distances from one of the two groups and update the position
by using the presented equations.

D(i) = |X × R(i) − P(i)| (29)

P(i+ 1) = R(i) − D(i) × F (30)

P(i+ 1) = R(i) − F + rand2 × ((ub− lb) × rand3lb)

(31)

where D(i) is a parameter used to update the position of the
best vultures in two groups, X is the vultures move randomly
to prevent food from others, P(i) is the vulture position vector
in iteration i, P(i+1) is the vulture position vector in iteration
i+1, rand2 and rand3 are random number generated between
[0,1], and lb and ub illustrate the lower and upper limits of the
variables.

Vultures are quite full and very active if 0.5≤ F<1. As a
result, there will be violent disputes between vultures, with
aggressive vultures refusing to share their meal. Weak vul-
tures receive food scraps from stronger vultures by updating
the position of the vulture by using the given equations.

d(t) = R(i) − P(i) (32)

P(i+ 1) = D(i) × (F + rand4) − d(t) (33)

S1 = R(i) ×

(
rand5 × P(i)

2π

)
× cos(P(i)) (34)

S2 = R(i) ×

(
rand6 × P(i)

2π

)
× sin(P(i)) (35)

P(i+ 1) = R(i) − (S1 + S2) (36)

where d(t) is the distance between the vulture and one of
the best vultures from the two groups, S1 and S2 are a spi-
ral equation generated between all vultures and one of the
two best vultures, and rand4, rand5, and rand6 are random
numbers in the range of [0,1].

When the vulture’s hunger level is F < 0.5, it assumes a
situation in which the number of vultures is more than the
number of foods resulting in conflicts between vultures. The
food is usually in one place, and all the vultures tend to fly
there. Different equations are applied to update the vulture
position, and the best foraging response is then produced as
shown in the equations below.

A1 = BestVulture1(i) −
BestVulture1(i) × P(i)
BestVulture1(i) − P(i)2

× F

(37)

A2 = BestVulture2(i) −
BestVulture2(i) × P(i)
BestVulture2(i) − P(i)2

× F

(38)

P(i+ 1) =
A1 + A2

2
(39)

P(i+ 1) = R(i) − |d(t)| × F × Levy(d) (40)

where A1 and A2 are great deals of competition for food
that may accumulate various species of vultures on one food
source, BestVulture1(i) is the best vulture of the first group
in iteration i, BestVulture2(i) is the best vulture of the sec-
ond group in iteration i, Levy(d) is a Levy flight used to
increase the randomness of the AVOA computed by the given
equation.

Levy(d)=001 ×
u× σ

|v|
1
β

, σ =

(
0(1+β) × sin(πβ

2 )

0(1+2β) × β × 2(β−1
2 )

) 1
β

(41)

where u and v are random numbers in the range of [0,1], and
β is equal to 1.5.

C. SALP SWARM ALGORITHM (SSA)
SSA is ametaheuristic algorithm inspired by the chainmotion
of the salps in the deep ocean. By classifying salps into two
groups, leaders and followers, the leaders are at the front of
the chain and the rest of the salps are followers. The leader
guides them to approach the food source, represented by the
variable F in the n-dimensional search area, which is the
number of variables in each problem. To update the position
of the leader, the following equation is applied.

x1j =

{
Fj + c1((ubj − lbj)c2 + lbj), c3 ≥ 0
Fj − c1((ubj − lbj)c2 + lbj), c3 < 0

(42)

where x1j represents the leader’s position of the swarm in
the jth dimension, Fj represents the food source in the jth

dimension, ubj is the upper bound of the jth dimension, lbj
is the lower bound of the jth dimension, and c2, and c3 are
randomly generated numbers.

The parameter c1 is an important parameter in SSA used
to balance the exploration and exploitation phases which can
be calculated by the given equation.

c1 = 2e−( 4iter
itermax

)2 (43)

where iter is the current iteration and itermax is the maximum
iteration number.

The parameters c2 and c3 are random numbers uniformly
randomly generated in the range of [0,1] that determine the
next position of the salp swarm.

To update the location of the follower group, Newton’s
laws of motion are applied where the time in optimization is
the iteration, and the discrepancy between iterations is equal
to 1 as expressed in the following equation.

x ij =
1
2
(x ij + x i−1

j ), i ≥ 2 (44)

where i ≥2, x ij is the position of the ith follower in the jth

dimension, x i−1
j is the position of the followers in the jth

dimension.
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D. DISTRIBUTION SYSTEM EFFICIENCY EVALUATION
In this research, distribution system efficiency is investigated
after the BESS installation. The efficiency is investigated in
terms of transmission loss, VDI, and peak demand, which are
described in the following subsections.

1) VOLTAGE DEVIATION INDEX (VDI)
VDI is used to indicate the efficiency of the distribution
system evaluated by examining voltage profile enhancement
when installing the BESS. The VDI can be calculated by the
percentage of the difference between the reference voltage
and the actual voltage for the period as presented in the
following equation.

%VDIi = max
T

∣∣Vref − Vi
∣∣

Vref
× 100,

%VDI =

Nbus∑
i=1

%VDIi (45)

where %VDIi is the maximum percentage of VDI at bus i for
the period time T , Vref is the reference bus voltage, Vi is the
voltage at bus i, %VDI is the total percentage of VDI of the
distribution system, and Nbus is the total number of buses.

2) TRANSMISSION LOSSES
The transmission losses consist of active power, reactive
power, and apparent power losses, which are used to com-
pare the efficiency of the system after the BESS installation
calculated by the following equations.

Ploss =

T∑
t=1

Nl∑
l

Ptl ,

Qloss =

T∑
t=1

Nl∑
l

Qtl ,

Sloss =

√
P2loss + Q2

loss (46)

where Ploss, Qloss, and Sloss are the active power, reactive
power, and apparent power losses for the period time T ,
respectively, Ptl , Q

t
l are the active and reactive power losses

of line l for the period time T .

3) PEAK DEMAND
Peak demand represents the maximum active power demand
during the considered time interval which is 24 hours in
this study. To further evaluate the efficiency enhancement
of the distribution systems, the peak demand enhancement
indicated by the peak shaving is investigated after the BESS
installation.

E. IMPLEMENTATION
To determine the optimal solution, three metaheuristic algo-
rithms consisting of PSO, SSA, and AVOA are employed to
find the optimal placement and capacity of the BESS in distri-
bution systems connected with PV and EV charging stations.

FIGURE 1. Implementation of the proposed method.

The implementation of the proposed method is depicted as a
flowchart in Fig. 1, and the tested systems and EV modeling
are described in the following subsections.
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FIGURE 2. Single-line diagram of the IEEE 33-bus distribution system [34].

FIGURE 3. Single-line diagram of the IEEE 69-bus distribution system [35].

TABLE 1. Hourly load profile and PV generation profile in a typical
day [20].

1) SYSTEM MODELING
The IEEE 33-bus and IEEE 69-bus distribution systems are
adopted to determine the optimal placement and capacity
of the BESS. The single-line diagrams of these systems are
shown in Fig. 2 and Fig. 3, respectively [34], [35]. The base
power is 10 MVA and the base voltage is 12.66 kV for both
systems. The PVwhich is 5000 kW in this work was installed
on the 6th bus which is the best bus for the PV installation
as presented in [20]. The maximum load demand for the
IEEE 33-bus and 69-bus systems are 3,715 kW and 3,802 kW

FIGURE 4. Load Demand and PV load profile of the considered
distribution systems [20].

respectively. The load demands are presented as the 24 hours
in p.u. of the base power at 2,070.86 kW as in Table 1. Fig. 4
presents the relationship between time and the amount of
the original load demand, and the solar power generation
capacity within a day of the IEEE 33-bus and IEEE 69-bus
distribution systems.

2) MODELLING OF CHARGING STATIONS FOR EVs
To model the charging stations for EVs, EV load demand
on all buses is assumed to be increased by using an AC/DC
converter or charging port since the BESS and grid are used
to supply power to the EVs by the penetration load [20], [36].
Equations (47) and (48) specify additional real and reactive
power loads of EVs, respectively.

P0ev(n) = λev × P0L(n) (47)

Q0
ev(n) = P0ev(n) × tan(ϕn(c)) (48)

where P0ev(n) and Q
0
ev(n) are active and reactive powers of the

additional load due to the integration of EVs at the nth bus, λev
is a scale factor representing the amount of EV load compared
to the actual power load at the considered placement, P0L(n)
is the actual nominal power of the load at the nth bus, P0ev(n)
is the added EV load of the nth bus, and ϕn(c) is the AC/DC
converter’s power factor.

The summation of the real and reactive load powers after
considering the EV penetration at different placements can be
presented by the expressed equations.

Ptd(n) = P0L(n) ×

(
V t
(n)

V 0
(n)

)α

+

{
P0ev(n) ×

(
V t
(n)

V 0
(n)

)αev
}

(49)

Qtd(n) = Q0
L(n) ×

(
V t
(n)

V 0
(n)

)β

+

Q0
ev(n) ×

(
V t
(n)

V 0
(n)

)βev
 (50)

where Ptd(n) and Q
t
d(n) are the active and reactive load powers

at the nth bus after consideration in conjunction with the EV
load, respectively, Q0

L(n) is the reactive nominal power of the
load at the nth bus, respectively,V 0

(n) andV
t
(n) are the initial and
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FIGURE 5. Load demand, PV profile, and EV penetration at 20% of the
IEEE 33-bus distribution system [20].

FIGURE 6. Load demand, PV profile, and EV penetration at 20% of the
IEEE 69-bus distribution system [35].

time nominal voltages, respectively, α = 0 and β = 0 are
the real and reactive power exponents of the load demand,
respectively, and αev = 2.59 and βev = 4.06 are the real and
reactive vehicle load exponents, respectively [36]. Fig. 5 and
Fig. 6 show the load demand when the EV penetration is at
20%.

V. SIMULATION RESULTS AND DISCUSSION
The optimal placement and capacity of the BESS were
simulated in the IEEE 33- and 69-bus distribution systems
connected with PV and EVs in order to find the minimum
costs of installation, replacement, transmission loss, voltage
regulation, and peak demand. MATLAB and MATPOWER
were utilized to run the simulation to simulate the power flow.
The computational complexity of the proposed techniques
depends on the Fourier series applied to predict the energy
of the BESS in a distribution system. The Fourier series then
primarily depends on the number of Fourier coefficients con-
sidered in the series. The more number of Fourier coefficients
provides more accuracy of the generated solutions but also
requires higher computational effort. Moreover, to compare
distribution system efficiency enhancement before and after
the BESS installation, three metaheuristic algorithms, includ-
ing PSO, AVOA, and SSAwere employed. The number of the

TABLE 2. The best fourier coefficients provided by each algorithm in the
IEEE 33-bus distribution system.

populations and maximum iterations of algorithm operation
were imposed to 60 and 250, respectively. The simulation
results are presented as follows:

A. IEEE 33-BUS DISTRIBUTION SYSTEM
The optimal placement and capacity of the BESS were first
determined to install in the IEEE 33-bus distribution system.
The load data of this system was obtained from Table 1, and
the loads on all buses were increased according to EV pene-
tration by using (46)-(49). The efficiency of each algorithm
is investigated after the BESS installation in terms of the
minimum system costs which include the investment cost,
replacement cost, and operation and maintenance costs of
installing the BESS.Moreover, the efficiency enhancement of
the distribution system provided by all considered algorithms
was compared in terms of the VDI, transmission line loss, and
maximum peak demand after the BESS installation.

1) OPTIMAL PLACEMENT AND CAPACITY OF THE BESS
The optimal placement and capacity of the BESS were eval-
uated in the IEEE 33-bus distribution system in order to
minimize system costs which comprise investment, replace-
ment, and operating costs by applying PSO, AVOA, and
SSA. The optimized values of the decision variables, Fourier
coefficients, calculated by three considered algorithms are
provided in Table 2. The best Fourier coefficients obtained
by each algorithm were used to determine the SOE of the
BESS within 24 hours as presented in Fig. 7. The optimal
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FIGURE 7. Stage of Energy (SOE) of the BESS provided by each algorithm
for the IEEE 33-bus distribution system.

TABLE 3. Optimal placement and capacity of the BESS in the IEEE 33-bus
distribution system.

placement and capacity of the BESS together with the power
of the BESS, lifetime of the BESS, and system cost were
then found by all considered algorithms as shown in Table 3.
It was noticed that the best placements of the BESS pro-
vided by all algorithms were at bus 6 where PSO required
the largest BESS size of 5.3342 MWh, followed by SSA at
5.2113 MWh, and AVOA requires the smallest size of the
BESS at 4.4386 MWh, respectively. In term of the objective
function, which is the system costs, PSO generated the best
objective value followed by SSA and AVOA, respectively.

2) ALGORITHM EFFICIENCY COMPARISON
The efficiency enhancement of the IEEE 33-bus distribution
system was evaluated by examining the VDI, transmission
line loss, and maximum peak demand before and after
the BESS installation by using PSO, AVOA, and SSA as
presented in Table 4. It was found that after the BESS
was installed in the system, all three algorithms achieved
decreases in the VDI, transmission losses, and peak demand,
which improved the system efficiency. PSO provided the
best VDI value, followed by SSA, and AVOA, respectively.
For the transmission line losses, PSO obtained the largest
decrease of loss followed by AVOA and SSA, respectively.
The maximum peak demands after the BESS installation
were decreased with the largest reduction by PSO followed
by SSA and AVOA, respectively.

FIGURE 8. Voltage profile comparison of the 18th bus for the IEEE 33-bus
system.

TABLE 4. Efficiency comparison of the BESS installation in the IEEE
33-bus distribution system.

The enhancement of the 24-hour voltage profile at the
18th bus, which is the weakest bus before and after the
BESS installation by each algorithm is shown in Fig. 8. It is
observed that the voltage was lower than the lower voltage
constraint from 7:00 p.m. to 8:00 p.m. in the base case and
could be increased to be within the constraints after installing
the BESS by all considered algorithms. Fig. 9 presents the
voltage profile of all buses in the system at 8:00 p.m., which
was the time when the peak demand was required in a day.
It can be seen that the voltage was the lowest in the 18th bus
because it was the farthest bus from the reference bus, and
after installing the BESS, it can be seen that the voltage in
the 18th bus was improved to be within the constraints.
To investigate the transmission loss at each hour after

installing the BESS by all algorithms, real power loss with
a day in this system is plotted in Fig. 10. The loss slightly
decreased when compared to the base case from 1:00 a.m.
to 8:00 a.m. and increased more than the base case from
8:00 a.m. to 6:00 p.m. because the BESS was in the charging
state to reserve power for peak times. The loss was signifi-
cantly reduced from 6:00 p.m. to 0:00 a.m. because the BESS
discharged power to supply the load demand together with
the grid. So, the overall 24-hour transmission line loss of the
distribution system was decreased after the BESS installation
compared to the base case.

68388 VOLUME 11, 2023



N. Pompern et al.: Optimal Placement and Capacity of BESS in Distribution Networks

FIGURE 9. Voltage profile comparison of all buses at 8.00 p.m. for the
IEEE 33-bus.

FIGURE 10. Real power loss comparison for the IEEE 33-bus system.

Fig. 11 expresses the comparison of peak demand for the
IEEE 33-bus distribution system to evaluate the peak demand
enhancement after the BESS installation. Peak demand for
the base case was at its highest at 8:00 p.m., as well as from
1 a.m. to 8:00 a.m. and from 6:00 p.m. to 0:00 a.m. It can
be seen that the peak demand after installing the BESS by all
considered algorithms was improved to be less than the base
case because the BESS was supplied together with the power
from the grid. From 8:00 a.m. to 6:00 p.m., the peak demand
was higher than the base case because BESS was in the
charging state to store power for supply during the peak time.

3) COMPARISONS OF ALGORITHM PERFORMANCE
To further investigate and validate the efficiency after the
optimal placement and capacity of the BESS installation
obtained from the algorithms, the statistical analysis, oper-
ation times convergence curves of the minimum costs and
payback period are presented. The statistical results including

FIGURE 11. Peak demand comparison for the IEEE 33-bus system.

best value, worst value, mean, median and standard deviation
of the objective values generated by each algorithm together
with operation times are expressed in Table 5. It is noticed that
PSO gave the best values in all aspects except for standard
deviation while AVOA generated the best standard deviation.
However, SSA consumed the shortest operation time fol-
lowed by PSO and AVOA. The comparison results of system
costs converging for 250 iterations of the considered algo-
rithms are shown in Fig. 12. When the BESS was installed
on the 6th bus, PSO generated the most effective system
costs, followed by SSA and AVOA, respectively, and PSO
was also the fastest one to converge to the minimum objec-
tive value. After that, the obtained information was used to
calculate the break-even point for investment consideration.
The break-even point was calculated by the installation costs
of the BESS divided by the difference between the O&M
costs of the system before and after the BESS installation.
The results are presented in Table 6, where BESS installed by
using AVOA showed the fastest payback period, followed by
SSA and PSO, respectively, because AVOA has the smallest
size of the BESS compared to the other algorithms according
to Table 3, resulting in BESS installation using a lower
budget.

B. IEEE 69-BUS DISTRIBUTION SYSTEM
To confirm the efficiency of the proposed method in a larger
system, the IEEE-69 bus distribution system was tested to
determine the optimal placement and capacity of the BESS
in the distribution system. The load data of this system is
provided in Table 1. The simulation results of this system are
presented in the subsequent sections.

1) OPTIMAL PLACEMENT AND CAPACITY OF THE BESS
To determine the optimal capacity and placement of the BESS
with minimum system costs in the IEEE 69-bus system,
the optimized values of the decision variables, which are
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TABLE 5. Statistical results of each algorithm in the IEEE 33-bus
distribution system.

TABLE 6. System cost and payback period comparison of the IEEE 33-bus
distribution system.

FIGURE 12. Convergence curves of the system costs of each algorithm for
the IEEE 33-bus system.

the Fourier coefficients, generated by three considered algo-
rithms are found as shown in Table 7. The battery energy in
the 24-hour period was then calculated by using the Fourier
coefficients, and the states of energy provided by each con-
sidered algorithm were plotted as in Fig. 13. The placement
of the BESS installation provided by PSO was at the 54th bus
and at the 55th bus for both AVOA and SSA. The placement,
capacity, power, lifetime, and system costs of the BESS pro-
vided by each algorithm are presented in Table 8. It was found
that PSO required the largest BESS size of 3.7692 MWh,

TABLE 7. The best Fourier coefficients provided by each algorithm in the
IEEE 69-bus distribution system.

FIGURE 13. SOE of the BESS provided by each algorithm for the IEEE
69-bus distribution system.

followed by SSA at 3.5166MWh and AVOA at 3.2089MWh,
respectively. For the system costs, PSO obtained the best
costs followed by AVOA and SSA, respectively.

C. ALGORITHM EFFICIENCY COMPARISON
The efficiency of all algorithms in the ieee 69-bus distribu-
tion system is evaluated by examining the vdi, transmission
losses, and maximum peak demand before and after the
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FIGURE 14. Voltage profile comparison of the 65th bus for the IEEE
69-bus system.

TABLE 8. Optimal placement and capacity of the BESS in the IEEE 69-bus
distribution system.

TABLE 9. Efficiency comparison of the bess installation in the IEEE
69-bus distribution system.

installation of the bess as presented in Table 9. By evaluating
the comparison of the vdi, it was observed that when bess
was installed in the distribution system, all three algorithms
resulted in a vdi reduction, which was advantageous to the
distribution system. The best vdi was obtained by ssa fol-
lowed by avoa, and pso, respectively. It was observed that
the bess installation cannot decrease transmission losses in
the ieee 69-bus distribution systems. This is because, during
the period between 1:00 A.M. to 6:00 A.M. and 8:00 A.M.
to 6:00 P.M., The bess was charging to reserve power to
decrease peak demand during the peak demand period from
6:00 P.M. to 0:00 A.M. In term of peak demand reduction
comparison, the highest reduction of peak demand was pro-
vided by pso, followed by ssa and avoa, respectively.

FIGURE 15. Voltage profile comparison of all buses at 8.00 p.m. for the
IEEE 69-bus system.

TABLE 10. Statistical results of each algorithm in the IEEE 69-bus
distribution system.

The voltage profile of the weakest bus, which is the 65th

bus over 24 hours, is displayed in Fig. 14 to illustrate the
enhancement in the voltage profile after the bess installation
by all considered algorithms. It is noticeable that between
7:00 P.M. and 8:00 P.M., The voltage for a base case was
lower than the lower voltage constraint; however, it can be
improved within the constraints once bess was installed.
Fig. 15 presents the voltage profile of all buses to observe the
overall voltage enhancement of the system when the majority
of a load demand was required at 8:00 P.M. it is noticed that
the 65th bus had the lowest voltage which was below the
voltage constraint because it was the farthest bus from the
reference bus. However, after installing the bess in the optimal
placement, the voltage profile at the 65th bus increased more
than the base case and within the constraints.

The transmission real power loss in the IEEE 69-bus dis-
tribution system is shown in Fig. 16 to notice the line loss at
each hour. It is noticed that from 1:00 a.m. to 6:00 a.m. and
8:00 a.m. to 6:00 p.m., the transmission line loss increased
more than the base case since the BESS was in the charging
state to reserve power for the peak demand period. However,
the loss was significantly reduced from 6:00 p.m. to 0:00 a.m.
because the BESS discharged power to help supply the sys-
tem together with the grid. As a result, the overall 24-hour
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TABLE 11. System cost and payback period comparison of the IEEE
69-bus distribution system.

FIGURE 16. Real power loss comparison for the IEEE 69-bus system.

FIGURE 17. Peak demand comparison for the IEEE 69-bus system.

transmission line loss of the distribution system was not
decreased compared with that of the base case.

Peak demands for the IEEE 69-bus distribution system
before and after the BESS installation by the considered
algorithms are compared in Fig. 17. It is seen that the base
case had the highest peak demand at 8:00 p.m. It can be
observed that from 1:00 a.m. to 6:00 a.m. and 8:00 a.m.

FIGURE 18. Convergence curves of the system costs of each algorithm for
the IEEE 69-bus system.

to 6:00 p.m., peak demand after the BESS installation was
higher than that of the base case because BESS charged
backup power to decrease peak demand during the peak load.
So, peak demand when installing the BESS was significantly
improved from that of the base case between 6:00 p.m.
to 0:00 a.m. and slightly enhanced from the base case between
6:00 to 8:00 a.m. Consequently, the overall 24-hour peak
demand after installing the BESS by all algorithms could be
decreased.

1) COMPARISONS OF ALGORITHM PERFORMANCE
To compare the efficiency of the considered algorithms to
determine the optimal placement and capacity of the BESS in
the IEEE 69-bus system, the statistical results and operation
times of all algorithms are presented in Table 10, the con-
vergence curves presenting the minimum system costs over
20 years of each algorithm are shown in Fig. 18, and the
payback period is also compared. From the statistical results
in Table 10, PSO generated the best values in best, worst,
mean, and median values followed by AVOA and SSA while
AVOA obtained the best standard deviation value followed by
PSO and SSA. SSA used the fastest operation time followed
by PSO while AVOA consumed the longest time. For the
convergence curves in Fig. 18, it is seen that PSO was the
first algorithm to converge to the optimal solution followed
by AVOA and SSA, respectively. The break-even point for
investment consideration was investigated as presented in
Table 11, where BESS installed using AVOA showed the
fastest payback period, followed by SSA and PSO, respec-
tively, because AVOA has the smallest size of the BESS
compared to the other algorithms according to Table 8. As a
result, PSO provided the best costs in terms of technical price
and AVOA gave the best cost in terms of economic price.

VI. CONCLUSION
This study presents an approach for determining the opti-
mal placement and capacity of the BESS to minimize the
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system costs and improve the efficiency of the distribution
systems integrated with PV and EVs. The main objective
function is to minimize system costs, including installation,
replacement, transmission loss, voltage regulation, and peak
demand costs while ensuring optimal control by considering
the voltage of all buses, battery power, and energy battery
as constraints. Three metaheuristic algorithms comprising
PSO, AVOA, and SSA are used to solve the optimization
problem, and the IEEE 33- and 69-bus distribution systems
are tested. In the IEEE 33-bus system, the results show that
PSO could obtain the optimal placement and capacity of the
BESSwith the best system costs followed byAVOAand SSA,
respectively. PSO also provided the best VDI, decreasing of
transmission loss, and decreasing of peak demand after the
BESS installation followed by AVOA and SSA in term of
loss reduction and SSA and AVOA in term of peak demand
reduction while AVOA achieved the fastest payback period
followed by SSA and PSO. The statistical results of PSO are
the best compared to the other algorithms except for standard
deviation which AVOA provided the best while SSA used
the fastest operation time. It is also found that installing the
BESS by all considered algorithms could move the voltage
of all buses from the base case to be within the constraints.
The simulation results of the IEEE 69-bus system express that
PSO provided the best system costs for giving the optimal
placement and capacity of the BESS followed by AVOA
and SSA, respectively. The efficiency comparison in this
system found that SSA obtained the least VDI followed by
AVOA and PSO while PSO achieved the best maximum peak
demand reduction followed by SSA and AVOA, and AVOA
provided the fastest payback period followed by SSA and
PSO. PSO also generated the best values in all aspects of the
statistical results except for standard deviation while AVOA
generated the best standard deviation and SSA consumed
the shortest operation time. The out-of-range bus voltages of
the base case could also move to be within the constraints
after the BESS installation by each algorithm. However, the
overall transmission line losses after the BESS installation
provided by all considered algorithms were close to those
of the base because the IEEE 69-bus system is too large
for only one installation BESS. The results show that it is
not always necessary to install BESS on the same bus as
the PV when the distribution system is larger. In future
work, the optimal placement and capacity of more than one
BESSs will be considered for installation in distribution sys-
tems to evaluate system efficiency enhancement and system
costs.
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