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ABSTRACT Soft robots grew to prominence in large part because they promised a new and exciting means
for engineers to develop robots that are both highly adaptable and safe for direct human interaction. However,
despite showing substantial promise in this area, soft robots have not yet seen widespread adoption. Two
major factors that have prevented the development of soft robots are the fundamental challenges of both
the modeling and control of soft structures. While traditional robots enjoy a myriad of theoretical and
computational tools for modeling and control, the options for soft robots are far more limited. In this work,
we introduce a physics-based finite element simulation platform, Kraken, that can be used to accurately
model the dynamic and oscillatorymotions of soft robots. After a brief theoretical introduction to hyperelastic
modeling and the finite element method, we show the utility of our approach by simulating the oscillations
of a 1D hyperelastic actuator, the dynamics of a 2D hyperelastic pendulum, and a 3D spherical hyperelastic
pendulum. We then demonstrate the accuracy of our approach by presenting the agreement of the simulated
results with those obtained via physical experiments for threematerials with different hyperelastic properties,
with percent errors as low as 1%. Taken together, these results demonstrate that the aforementioned
simulation platform is a critical step towards the fast and accurate simulation, prototyping, and control of
soft robots.

INDEX TERMS Dynamical systems, finite element analysis, open-source software, soft robotics.

I. INTRODUCTION
Soft robots composed of highly deformable elastomers and
rubbers have gained popularity as a safe, low cost, and simple
alternative to more traditional robots. As researchers develop
newmaterials and the processes to work with them, it is likely
that soft robots will continue to find new and exciting uses.

In contrast to soft robots, traditional robots are made of
relatively rigid, non-deformable materials. This approach
provides several advantages such as straightforward compu-
tation of forward and inverse kinematics, predictable motions
under load, and a relatively small number of degrees of
freedom. These factors are all highly beneficial when com-
pleting simple tasks in structured environments, such as in
manufacturing or pick and place operations [1], [2]. However,
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these qualities become disadvantageous when facing unpre-
dictable, unstructured, or dynamic environments.

Robots made of rigid materials are readily modeled using
rigid body assumptions as well as design and simulation
software tools [3], [4]. While such tools are excellent for tra-
ditional robots, they are often largely ineffective for modeling
the compliant nature of the materials found in soft robots.
Therefore, onemajor challenge impacting the development of
soft robots is the lack of accurate and widely accessible sim-
ulation and modeling software. In addition to having highly
non-linear stress-strain behaviors, hyperelastic materials also
undergo large deformations and change shape. Furthermore,
soft robots are often underdamped and can exhibit substantial
oscillatory behavior. The combination of these factors make
hyperelastic materials difficult to simulate and slows down
the design, testing and optimization of soft robots.

In this work, we will introduce a new open-source finite
element method (FEM) package, Kraken, which is able to
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simulate the complex dynamics of soft robots. This is a
critical contribution to the field of soft robotics as this
open-source platform will allow researchers to simulate and
predict the dynamic behaviors of soft robots with arbitrary
geometries. The work is novel because the software package
we have developed is open-source and tailored to simulate
soft robots, unlike other existing FEM software.

The remainder of the paper will examine the following top-
ics: Section II will review other similar works, and highlight
the unique advantages of our approach. Section III will inves-
tigate the theoretical foundations underpinning this work,
as well as implementation details for our package. Section IV
will examine the first validation case, an actuator oscillating
in one dimension. Section V increases the complexity of the
simulation by considering two dimensional oscillations. The
final test case of three dimensional oscillations is demon-
strated in Section VI. Section VII concludes the paper by
highlighting the key results of this work, as well as additional
improvements we plan to make to Kraken in the future.
The code and raw data used for this project can

be found in the latest version of Kraken on github:
https://github.com/Z-Laboratory/Kraken

II. RELATED WORKS
As a result of insufficient simulation tools, many researchers
have chosen to model the dynamics of soft robots using
analytic approaches such as piecewise constant curva-
ture [5], [6], [7], piecewise constant strain [8], Euler-
Bernoulli or Cosserat beam theory [9], [10], modified rigid
body approximations [11], [12], machine learning meth-
ods [8], [13], or other analytic approaches [14], [15], [16].
Occasionally, these methods also use linearly elastic finite
element simulations [17] but usually only operate on a
low number of discrete states representing the robot. These
approaches have the substantial advantage of being efficiently
computed, and lend themselves to the design of controllers
for soft robots. However, the primary disadvantage of these
approaches is that they are often unable to compensate for
complexities like external forces, contact with the environ-
ment, or hyperelastic deformations. Therefore, in order to
deploy soft robots in more complex and dynamic environ-
ments, more robust methods of simulation must be employed.

In order to resolve these challenges, many researchers
have turned to the finite element method (FEM) to simulate
soft robots. Commercial FEM packages such as COMSOL,
ABAQUS, and ANSYS have all demonstrated the capabil-
ity to model soft robots [18], [19], [20], [21]. In recent
years, these tools have been used to optimize the designs of
pneumatic actuators [22], model and control tendon driven
actuators [23], and model more esoteric actuation methods
such as magnetic actuation [24]. However, these software
packages are closed-source, opaque to the users, and dif-
ficult or impossible to extend or customize. Many of the
open-source developments in the soft robotics community
have focused on hardware that can be easily fabricated

using desktop prototyping technologies [25]. However, there
is an open-source tool that can be used to simulate soft
robots, SOFA. SOFA is able to perform simulations of soft
materials via its soft robotics plugin, but lacks support for
non-tetrahedral hyperelastic meshes, makes limited use of
hyperelasticity in other situations, and is designed to run
high speed interactive simulations rather than high accuracy
offline ones [26], [27], [28], [29], [30].

Due to the lack of an open-source FEM simulaiton
platform designed specifically to simulate soft robots,
we have developed our own multiphysics simulation plat-
form, Kraken, built on top of Idaho National Laboratory’s
(INL)Multiphysics Object Oriented Simulation Environment
(MOOSE) framework [31]. We demonstrated its capability
of simulating the static configuration of a soft actuator [32],
as well as the ability to efficiently model contact mechan-
ics [33]. In this paper, we will build on our previous work
with Kraken by extending the platform’s capability to sim-
ulate the dynamic motion of soft robots using FEM. This
result represents a step towards developing more sophisti-
cated control and simulation platforms for soft robots based
on FEM data, rather than reduced dimensional analytic
methods. After establishing a theoretical framework for our
approach, we built physical actuators out of three different
soft materials and used an Optitrack motion capture system
(MCS) to record the actuators undergoing different types
of motions. After extracting damping parameters from the
physical experiments, we run simulations in our new frame-
work using the same parameters. We then demonstrated the
agreement between the two results to ensure the accuracy of
our approach.

III. THEORETICAL FOUNDATIONS
Previously we have developed a MOOSE application Kraken
that can simulate the static displacements of hyperelastic
materials in response to external loads [32]. MOOSE was
originally designed for multiphysics simulation of complex
systems, namely nuclear reactors. However, it contains much
of the basemachinery required to simulate a soft robot includ-
ing support for statics, dynamics, and contact mechanics.
Additionally, MOOSE is modular and open-source, making it
possible to modify and customize the framework as needed.
In our previous work, we have implemented a neo-Hookean
model to accurately describe the nonlinear stress-strain rela-
tionship present in hyperelastic materials [32]. To simulate
the dynamic motion of soft robots, several additions needed
to be made to the existing framework. First, the internal
stresses on the material need to be calculated as a func-
tion of the inertial, damping, spring, and external forces,
rather than directly from the displacements. Second, amethod
for adding damping to the system must be implemented
and validated. Third, numerical integration scheme must be
employed. Lastly, we need to establish a means of reliably
comparing experimental and simulated data to validate our
approach.
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FIGURE 1. Photo and schematic diagram of the experimental setup. A: Photo of one of the soft actuators used in the experimental tests, featuring
retro-reflective infrared markers and a 100 g mass attached to the bottom. The top end of the actuator is fixed in place with an air inlet. B: Schematic
diagram of the full experimental setup, featuring the soft actuator, infrared markers, and a 4-camera Optitrack motion capture system recording data
at 240 Hz.

The first task was to implement a solver that would account
for the variety of forces present in our system. In all MOOSE
based mechanics simulations, the displacement is calculated
such that the divergence of the stress is minimized [31]. Thus,
solutions for the displacements can be directly computed
from stress according to

∇xσ (x) = 0 (1)

where x is the vector of deformation on a material ele-
ment, and σ is the stress on that element. In the case of a
neo-Hookean hyperelastic material σ can be easily computed
as seen in [34]

σ = 2D1(J − 1)I + 2C1B (2)

where D1 is a Lagrange multiplier used to enforce incom-
pressibility, J is a normalized measure of the volume of an
element, C1 is a material constant proportional to the shear
modulus of the material, and B is the left Cauchy-Green
deformation tensor, a measure of the local deformation.

However, when the system is in motion, the stresses can no
longer be directly computed from the displacements. In the
dynamic case, we have

Mẍ + Cẋ + σ (x) = Fext(x) (3)

whereM is themassmatrix,C is the dampingmatrix, andFext
is total external force. This means that in order to determine
σ and solve Eq. (1), the other terms of Eq. (3) must be
computed.

Using Moose’s ‘‘Inertial Force’’ and ‘‘Dynamic Stress
Divergence’’ Kernels, we can determine the first (mass) and
third (stress) terms of the left side of Eq. (3). The external
forces on the right can be supplied by a boundary condition

constraint. This leaves only the damping term on the left side
of the equation. To avoid having to compute the damping
matrix, we can use a simplified form of Rayleigh damping
and assume the value of the damping C is proportional to the
stiffness K .

C = ζK (4)

Furthermore, from this equation one can readily compute the
damping ratio to be

ξ =
ζ

2
ω (5)

This type of damping can be implemented and reduces the
number of parameters a user needs to tune when compared to
standard Raleigh damping that requires an additional constant
to relate the relationship between the damping and the mass.

With a way to solve for all the variables, MOOSE can
now iteratively solve for the displacements that minimize
the gradient of the stress, while also respecting the other
constraints on the problem imposed by Eq. (3).

Moose has already implemented the Hilber-Hughes-Taylor
(HHT) integration scheme [35], [36], so we use it to com-
pute the velocity and acceleration terms in our dynamical
equation. In the scheme, α = −0.25 is used for linear interpo-
lation between the current and previous time step, β = 0.4 is
used in numerically computing velocity and γ = 0.75 is used
in numerically computing the acceleration. These constants
were chosen to make the system stable and second order
accurate [37]. This gave us the following equations Eq. (6) for
the balance of forces, Eq. (7) for the acceleration, and Eq. (8)
for the velocity:

Mẍ(t + δt) + C[(1 + α)ẋ(t + δt)ẋ − αẋ(t)]
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+ (1 + α)σ (x(t + δt)) − ασ (x(t)) = Fext(t + (1 + α)δt)

(6)

ẍ(t + δt) =
x(t + δt) − x(t)

βδt2
−
ẋ(t)
βδt

+
β − 0.5

β
ẍ(t) (7)

ẋ(t + δt) = ẋ + (1 − γ )δt ẍ(t) + γ t ẍ(t + δt) (8)

Implementing the HHT time integration scheme now
allows us to solve for all of the terms in Eq. (3), and move for-
ward in time. This means that we can now simulate dynamic
systems accurately.

The last task to be completed prior to running our simu-
lations was to determine a validation process. One difficulty
in comparing experimental and simulated data is that ensuing
that the simulated and experimental tests have identical initial
conditions is quite challenging. Thus, exact comparisons of
time-series trajectories would not be useful for quantitatively
assessing the accuracy of the simulation. Instead, we decided
to compare the resonant frequencies and damping ratios of
the simulated and experimental datasets. The frequencies
could be identified by computing the Fourier transform of the
datasets. From the frequency domain data we identified the
resonant frequency by picking the peak frequency. After this,
we were able to choose between several methods for comput-
ing the damping ratio from the raw data. In this work we saw
that the damping ratio could be computed from the quality
factor, Q, using the half power bandwidth method [38].

ξ =
1
2Q

(9)

Q =
ωpeak

half power bandwidth
(10)

The half power bandwidth can be computed by identifying
the bandwidth of the Fourier transform of the data 3 dB below
the maximum.

With this approach we could reliably perform quanti-
tative comparisons of various simulated and experimental
displacement datasets.

IV. 1D OSCILLATIONS OF A HYPERELASTIC ACTUATOR
First, we simulated the elongation process of a soft actuator
under gravity. We selected this test as it was a good represen-
tation of the motion of an actuator in free space without any
additional external forces acting on it. A trio of soft actuators
were fabricated out of different silicone rubbers produced by
Smooth-On: Ecoflex 00-50 (EF 00-50) with a Shore 00 hard-
ness of 50, Dragonskin 20 (DS 20) with a Shore A hardness
of 20, and Dragonskin 30 (DS 30) with a Shore A hardness of
30. To induce oscillations, a 100 gram mass was attached to
the end of each actuator. 3D printed parts were attached to the
tops and bottoms of the actuators, allowing the tops to be fixed
to a rigid scaffold and for retro reflective infrared markers for
the motion capture system to be attached to the bottom as
seen in Figure 1A. The actuator compressed to its minimum
length, and the input sealed, resulting in a soft vacuum on the
inside of the actuator. The seal was then opened, allowing the
internal pressure to equalise. The result was that the actuator

experienced a step input in terms of pressure. The location of
3D printed part fixed to the bottom of the actuator was then
recorded at 240 Hz using a 4-camera motion capture system
from Optitrack, as shown in Figure 1B.

FIGURE 2. Collection of results relating to the 1D oscillations of a
hyperelastic actuator. A: Plot of simulated and experimental
displacements as a function of time for the actuator composed of DS 20.
B: Plot of the discrete Fourier transform of the same data, with both the
magnitude and frequency being plotted in logarithmic scales.

From this data, we were able to compute the damping
ratios and oscillation frequencies of all three actuators as
seen in Table 1. With the damping ratios calculated, we were
able to prepare our simulations of these same actuators. All
three of the actuators were modeled as being composed of
homogeneous neo-Hookean materials. The material parame-
ters were obtained from best fit parameters of a database of
soft material uniaxial tension tests [39]. From the database
we modeled EF 00-50 with C1 = 0.0224 MPa, DS 20 with
C1 = 0.116 MPa, and DS 30 with C1 = 0.1916 MPa. Addi-
tionally for all three actuators the parameter D1 was selected
to be two orders of magnitude larger than C1. This was found
to ensure near incompressibility while still retaining attrac-
tive model convergence properties. To decrease computation
time, radial symmetry was employed and only one quarter
of the actuator was simulated. The simulation was run with
maximum time steps of dt = .01 seconds on a coarse mesh of
1743 elements. Each timestep was required to reach an abso-
lute error of 1×10−13 prior to convergence. Newton’s method
was used in conjunction with a PETSC preconditioner and
linear solver to generate a solution to the stem at each
timestep. Each simulation took an average of approximately
1800 seconds to simulate approximately 500 timesteps using
4 threads on an Intel Core i7 105100 CPU. At the end of
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TABLE 1. 1D Oscillations of hyperelastic actuator comparison.

each timestep, the position of the bottom of the weight was
recorded. For reference, results of the DS 20 simulation and
experiment in both the time and frequency domains can be
seen in Figure 2.

Given that the system is oscillatory in nature, we deter-
mined that measuring the average error in the position
between the simulated and physical experiment would be
dominated by the small frequency error, and would not be a
useful measure of the system’s accuracy. Instead, we elected
to measure the peak frequencies and damping ratios of
the simulated and physical actuators. The excellent agree-
ment between the simulated and experimental data sets
demonstrates that our approach is an appropriate method
of simulating the dynamics of soft actuators. In the case
of the EF 00-50, an overall elongation of over 150% was
accurately modeled. DS 20 and DS 30 also were mod-
eled accurately, although the stiffer materials experienced
lower overall strains. The small differences between the
experimental and simulated data likely arise from unmod-
eled factors such as, imperfections in the physical actuators,
errors in the material constants, the materials not being
perfectly described by the neo-Hookean model, and the
small amount of the experimental actuator that is unable
to stretch due to being clamped in the 3D printed fixture.
However, despite these potential sources of discrepancies,
our approach is able to produce excellent agreement with the
experiment.

V. DYNAMICS OF 2D HYPERELASTIC PENDULUM
After demonstrating that we could accurately model the 1D
oscillatory dynamics of a soft actuator, we moved onto the
more complex case of the 2D oscillations of a hyperelastic
pendulum. The ability to model this system is especially valu-
able because similar oscillations often occur in soft robots,
when two non-parallel forces are acting on the same body. For
example, such behavior could emerge if a linear soft actuator
is actuated in a direction other than vertical. In this case, the
force of gravity and the force of the actuator are not aligned,
and these two-dimensional oscillations will occur. Similar
two-dimensional oscillation scenarios arise with actuators
that are designed to bend, or if an actuator collides with
an obstacle. In this test, the actuator is both stretching and
rotating, so the system is similar to the elastic pendulum [40]
but more complicated because of the hyperelastic materials
the soft actuator is made of. This system is nonlinear and
exhibits chaotic behavior.

We used the same physical actuators as in the case of
the simple one-dimensional dynamic tests. However, rather

FIGURE 3. Collection of results relating to the 2D hyperelastic pendulum.
A: Plot of simulated and experimental trajectories for an actuator
composed of DS 20. B: Plot of the discrete Fourier transformation of the
magnitude of the displacement data.

than simply displacing the actuator in the vertical direction,
a horizontal component was added to the displacement as
well. After release, the actuator was allowed to oscillate for
several seconds while the position of the markers fixed to the
bottom of the actuator was recorded. In the vertical oscillator
case, extracting the vertical displacement was trivial as it
was easy to align the z-axis of the motion capture system
with the direction of motion. However, when performing the
hyperelastic pendulum test, it was not possible to ensure that
the direction of the horizontal motion alighted perfectly with
the y-axis of the motion capture system. To resolve this prob-
lem, a best-fit plane for the displacement data was computed,
subject to the constraint that the plane had to be parallel to
the motion capture system’s z-axis. Next, all the data was
projected onto this plane. This forced the displacement data
to only have 2 dimensions, making it easier to replicate in
simulation. After running these experiments, we were able to
obtain the frequencies and damping ratios for all 3 actuators
in both the vertical and horizontal directions. These results
can be found in Table 2. Additionally, the results of the DS
20 simulation and experiment in both the time and frequency
domains can be seen in Figure 3.

In a manner similar to the vertical oscillator, the damping
parameters were extracted and passed to the simulation. The
simulations were then run with the same parameters as the
vertical simulation. However, the newly extracted damping
parameters were applied to damp the motion in the vertical
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TABLE 2. 2D Hyperelastic pendulum comparison.

and horizontal directions independently. Another notable dif-
ference was that because the actuator was now moving in
two directions, the quarter actuator was no longer valid.
Instead, we modeled half of an actuator with a coarse mesh
that had 3670 elements. This increased computation time of
approximately 600 timesteps to 5000 seconds.

It should also be noted that while there is still strong agree-
ment between simulated and experimental frequencies, the
agreement between the damping ratios is somewhat weaker.
This is likely because in the case of the 2D oscillator in
the horizontal case most of the damping comes from air
resistance, whereas in the vertical case, most of the energy
is dissipated by the stretching of the material. In the 1D case
these effects were combined and their total impact on the
system was easily measured. In the 2D case, these factors are
no longer operating along the same axis, which may give rise
to additional error. To better model these effects, it may be
useful to implement a damping scheme that contains a term
proportional to the total deformation or strain rate, in addition
to a term proportional to the velocity. However, despite these
factors, our approach is still able to accurately model the
deformations, frequencies, and damping of these actuators
undergoing 2D oscillations.

VI. DYNAMICS OF 3D SPHERICAL HYPERELASTIC
PENDULUM
As a final demonstration of Kraken we decided to consider
the case of a full 3D hyperelastic spherical pendulum. This
case minimcs the behavior of an actuator that is subjected to
several external forces that are not parallel. In this test we used
the same test setup as the 2D case, with one major change.
In the spherical hyperelastic pendulum test, the actuator was
given an initial velocity orthogonal to the plane that the
hyperelastic pendulum moved in. The data was not projected
onto a best-fit plane and instead the entire 3D trajectory was
recorded. These types of complex motions often occur in
soft robots where there may be multiple actuators working
together, resulting in coupled 3D motions. As before, the
Fourier transformations of the displacements in all 3 dimen-
sions were computed and used to identify the resonant
frequencies and damping ratios. Then, using the computed
damping parameters, the same motion was simulated. In this

FIGURE 4. Collection of results relating to the 3D spherical hyperelastic
pendulum. A: Plot of simulated and experimental trajectories for an
actuator composed of DS 20. B: Plot of the discrete Fourier
transformation of the magnitude of the displacement data.

case there was no easily identifiable planes of symmetry that
could be used to simplify the mesh. As a result, the entire
mesh needed to be simulated with 4178 elements. For these
simulations, approximately 200 timesteps were run, which
took about 2200 seconds.

After running each of the simulations, the relevant param-
eters were computed and then recorded in Table 3. These
results were slightly less accurate with the simulations over-
estimating the resonant frequencies and damping ratios by
an average of between 10% and 30%. These discrepancies
likely further arose from the differences between the actual
material properties and those taken from best fit lines. Further
error could have emerged from self contact and the simplified
damping scheme. Nevertheless, these results demonstrate that
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TABLE 3. Hyperelastic spherical pendulum system information.

Kraken is able to predict the complex 3D motions of real
world systems.

VII. CONCLUSION
In this paper we presented the development, implementation
and testing of a novel open-source FEM application, Kraken,
which enables researchers to accurately simulate the complex
dynamics of soft robotic systems. This work is novel as this
is the first open-source FEM tool that has been explicitly
designed to simulate the complex hyperelastic behaviors of
soft robots. We began by laying out the theoretical founda-
tions that are needed to implement the dynamic simulations.
Then we demonstrated the accuracy of the approach by
accurately modeling soft actuators composed of 3 different
materials undergoing one dimensional vertical oscillations
due to gravity. We compared the frequency and damping ratio
as a quantitative way to compare the simulation and experi-
ment. In the case of the 1D oscillator, excellent agreement
was achieved in both the resonant frequencies and damping
ratios. We then moved on to the more complicated case of
weakly coupled 2D hyperelastic pendulum. In that case the
experimental and simulated resonant frequencies were quite
close, but there was some error in the damping ratios. Lastly,
we demonstrated the accuracy of the approach by show-
ing agreement between experimental and simulated bending
angle results for a 3D spherical hyperelastic pendulum. Given
the several loading conditions and materials present in the
systems studied here, we can conclude that the methodology
presented here is a valid way to simulate realistic dynamics
of soft robots using a physics-based approach. The released
application will enable soft robotic researchers, to accurately
simulate the time-dependent deformations of soft robotic
systems.

In the future we plan to further improve this work via
two different directions. First, we plan to add fluid modeling
capabilities to Kraken. This will allow for greater realism
in our simulations of soft robotic arms as we can simulate
the motion of fluids within and around the actuator to better

model the damping and actuation of the system. Another
future direction is to incorporate uncertainty quantification
(QU) into our framework as ameans of predicting the impacts
that defects and imperfections will have on the behaviors of
actuators.
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