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ABSTRACT We derive the waiting time in a queueing scheme, in which an arriving job can be denied service
with probability relative to the queue size. Such scheme is a generalization of the tail-drop queue, in which
the job is denied service when the buffer (waiting room) is full, and can be found in computer networking, call
centers and other everyday life applications of queueing systems. To make the model very general, we use
an arrival process which enables shaping arbitrary the job interarrival time distribution and interarrival time
autocorrelation, as well as general distribution of the service time and job rejection probabilities. For such
model, we prove theorems on the waiting time in the transient case, i.e. as a function of time, as well as in
the stationary case. Theoretical results are illustrated via numerical examples, in which the dependence of
the behaviour of the system on various parameters is depicted. Among other things, it is demonstrated that
the assumed job rejection mechanism may induce rather unexpected waiting times if combined with strong
autocorrelation of the arrival process.

INDEX TERMS Active queue management, waiting time, workload, transient characteristic.

I. INTRODUCTION
We analyze a queue, in which every arriving job (customer)
can be rejected, i.e. denied access to the queue and service.
Such a job leaves the system unserved and never returns.
What is more, the decision whether a job is allowed to the
system or not, is probabilistic, and probability of rejection
depends on the queue size upon this job arrival.

The most important area of application of such systems
is networking. Algorithms in which the packets arriving to
a router’s buffer are deleted with probability growing with
the queue size have been known and studied via simulations
for a long time (see e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9]).
Recently, these algorithmswere implemented in a networking
device and studied in a real network of a university, [10].
The main reason why these algorithms are postulated is the
necessity to eliminate high buffer occupancies (bufferbloat),
typical in contemporary networks, [11], [12].

Networking is not necessarily the only area of application
of the queueing model with rejection probability based on
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the queue size. For instance, it can be used for modelling a
call center, which exploits an answering machine to inform a
new caller about the number of callers waiting for the service
before him (quite common nowadays). It can be conjectured
that probability that a new caller leaves the queue immedi-
ately, without service, is a function of the size of the queue
ahead of him. In fact, the same reasoning can be applied to
any everyday life queue, if only a customer can see the size
of the queue upon arrival.

The queueing scheme described above can be perceived as
a generalization of the tail-drop queueing scheme, which is
well known and used inmany computer or electronic systems.
In the tail-drop scheme, a buffer of a limited capacity, N ,
is used to store jobs/tasks/packets before service. When the
buffer becomes full, a newly arriving job is rejected. It is
easy to see that the tail-drop scheme is a special case of the
scheme described above – the rejection probability is 0 when
the queue size is below N , and 1, when the queue size is N .

To make the model considered herein general, we assume
that the job arrival process can have correlated interarrival
times. Such autocorrelation is typical in networking, [13],
[14], but can be also found in other applications of queueing
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systems, including everyday life queues. For instance, a cafe
next to a train station may experience an autocorrelated
traffic, caused by train arrivals or departures. When the auto-
correlation is present in a real system, it is absolutely crucial
to take it into account in its model. It has been demon-
strated that performance predictions based on the model with
omitted autocorrelation can be wrong by several orders of
magnitude, even if all other parameters of the model are
accurate.

When characterizing any queueing system, one of the most
important characteristic is the mean waiting time, i.e. the
mean time spent in a queue by a job, before entering service.

Therefore, we derive herein the mean waiting time in the
model described above. Both the transient and the stationary
case are solved. Namely, we first derive the time-dependent
characteristic, i.e. the mean waiting time assuming that a
hypothetical job arrives at arbitrary time t (Theorem 1). Then,
letting t → ∞, we derive the mean waiting time in the
stationary regime (Theorem 2). Pay attention, that having
the solution for an arbitrary t , we may use small values of
t to study the evolution of the system just after it has been
activated, i.e. study the influence of its initial state on the
short-time operation of the system.

To illustrate theoretical results, we present numerical
examples with diversified parameters, including different
autocorrelations of the arrival process, job rejection probabil-
ities and initial states of the system. In these examples we can
see how the mentioned parameters influence the operation of
the queue.

As the model of the arrival process we use the
Markov-modulated Poisson process, [15]. It combines superb
modelling capabilities with moderate analytical difficulties.
In particular, using this process we can mimic accurately
any practically useful shape of the autocorrelation function,
together with any practically useful shape of the interarrival
time distribution (see, e.g. [16]).

Finally, both the distribution of the service time and the
function assigning rejection probabilities are general and can
have arbitrary forms. These make the model as general as
possible.

Mathematical approach herein exploits regeneration points
in the evolution of the system. They enable to formulate
a system of integral equations using the total probability
law. This method can be used not only to derive the classic
performance parameters, e.g. the mean queue size and wait-
ing time, but also some less frequently used characteristics,
like the duration of the overflow period, or the burst ratio
(see [17], [18]).

The remaining part of the article is organized as follows.
Section II outlines the related work. In Section III, the model
of the queue is specified, together with themodel of the arrival
process and its main characteristics. Then, the main results of
the paper are shown in Section IV. Firstly, the time-dependent
mean waiting time is derived and presented in Theorem 1.
Then, as a corollary, the stationary mean waiting time is
obtained in Theorem 2. In Section V, numerical examples

are gathered. Three parameterizations of MMPP are used
with different rejection probabilities and initial conditions to
illustrate the waiting time evolution. Finally, conclusions are
presented in Section VI.

II. RELATED WORK
As far as the author knows, the results of this article are new.

Queueing systems with job rejection probability based on
the queue size have been studied mathematically since the
beginning of the century. The great majority of work has
been devoted to models with simple Poisson arrivals, [19],
[20], [21], [22], [23], [24], [25], [26]. Under such assump-
tion, various characteristics were obtained, including the
distribution of the queue size, [19], [20], [21], [23], [24],
response time, [25], time between two accepted jobs, [20],
busy period, [26] and other. Most papers were devoted to
stationary analysis, but some dealt with the transient charac-
teristics as well, [22], [26], [27]. There were very few papers
published with different than Poisson arrival process models
(see [27], [28], where the renewal process is used).

Now, it should be stressed that none of papers [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28] takes into account
autocorrelation of the arrival process. As already mentioned,
autocorrelation is important for several reasons and ignoring
it may produce optimistically erroneous predictions, with an
error of several orders of magnitude.

Finally, autocorrelation of traffic in a queue with proba-
bilistic rejections was taken into account in [29] and [30].
However, these papers were devoted to different queueing
characteristics, namely the queue size distribution, [29], and
the burst ratio, [30].

III. MODEL OF THE SYSTEM
The following queueing model is analyzed herein. Jobs arrive
to the service station according to the Markov-modulated
Poisson process, which is defined below. At the service
station, they are being served in the arrival order. The dis-
tribution of the service time is general with distribution
function F(t).

An arriving job, if allowed, joins the queue of jobs waiting
for service. A job is allowed to join the queue with probability
d(n), where n is the number of jobs present in the system upon
the new job arrival. That is, with probability 1−d(n), the new
job is rejected - it leaves the system unserved, immediately
after arrival.

The capacity of the system is finite and equal toN . Namely,
if upon a job arrival there are N jobs in the system, the new
job is rejected with probability 1.

By X (t) the system occupancy (queue size) at the time t
will be denoted. The service position is included in the queue
size, X (t), if occupied. ByM we denote the mean duration of
the service time, while the system load is:

ρ = λM , (1)

where λ is the rate of theMarkov-modulated Poisson process,
given below in (5).
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We assume that a new service begins at t = 0 if X (0) > 0,
what makes the time origin to be the service completion time.
This is a technical assumption, which does not cause any loss
of generality of the model.

It is clear that the presented model generalizes the tail-drop
queueing scheme. In the tail-drop model we have simply
d(n) = 0 if n < N and d(n) = 1 if n = N . In the model
analyzed here, function d(n) may have an arbitrary form.
Now, the Markov-modulated Poisson process (MMPP),

[15], is defined using an auxiliary modulating process, i.e.
a continuous-time Markov chain. The modulating process
has m states {1, . . . ,m}. Its rate matrix is denoted by Q,
while the modulating state at time t by J (t). The arrivals
in an MMPP happen according to the time-inhomogeneous
Poisson process, such that the temporary arrival rate at time t
is λJ (t). Hence, to parameterize an MMPP, we need m arrival
rates, λ1, . . . ,λm, in addition tomatrixQ. In calculations, it is
often convenient to use these rates in the form of a square
matrix:

3 = diag[λ1, . . . ,λm]. (2)

The main characteristic of an MMPP is its total rate (inten-
sity), denoted by λ. To calculate λ, the stationary distribution
of the modulating chain, π , is needed. It can be computed
using the set of linear equations:{

πQ = [0, . . . , 0],
π · 1 = 1,

(3)

where

1 = [1, . . . , 1]T . (4)

Then, the rate of an MMPP is:

λ = π31. (5)

The interarrival time density in an MMPP is expressed by
matrix exponential. Namely, we have:

g(t) =
[
gi,j(t)

]
i,j=1,...,m = De−DtD−13, (6)

where

gi,j(t) = P{τk+1 − τk ∈ dt, J (τk+1) = j|J (τk ) = i}, (7)

D = 3 − Q, (8)

P denotes probability and τk is the k-th arrival time. The
variance, V , of the interarrival time in an MMPP equals:

V =
2
λ

π3D−331 −
1
λ2 . (9)

In this paper, an important role is played by the autocor-
relation function. The k-lag autocorrelation of an MMPP is
equal to:

R(k) =
1

λV
π3D−23

(
(D−13)k−1

− 1π3/λ
)
D−231.

(10)

MMPP enables fitting both the interarrival time distri-
bution and the autocorrelation function to observed arrival
process. Several methods for fitting matrices Q and 3 were
proposed, see e.g. [16], [31], [32], [33], and [34].

IV. WAITING TIME
Let Wn,i(t) be the mean time that a job that arrived hypo-
thetically to the system at time t , and was allowed to join
the queue, would spend in the system before service, under
assumptions X (0) = n and J (0) = i. It is easy to see
that Wn,i(t) is equal to the amount of unfinished work in the
system at time t .
Wn,i(t) depends on the initial system occupancy, n, and the

initial modulating state, i, for every t . Thus it is a transient,
time-dependent characteristic.

Define the following Laplace transform:

wn,i(s) =

∫
∞

0
e−stWn(t)dt. (11)

Both Wn,i(t) na wn,i(s) will be also used in vector forms:

Wn,i(t) =
[
Wn,1(t), . . . ,Wn,m(t)

]T
, (12)

wn,i(s) =
[
wn,1(t), . . . ,wn,m(s)

]T
. (13)

Denote by An,k,i,j(v) the probability that in a system with
suspended service, k jobs were allowed to join the queue in
time interval (0, v) and it was J (v) = j, under assumptions
X (0) = n and J (0) = i. (It will be shown later, how An,k,i,j(v)
can be computed).

Let us assume now that the system is initially non-empty,
X (0) = n > 0. Conditioning on the end of the first service
time, v, we obtain the following system of integral equations
for Wn,i(t):

Wn,i(t) =

m∑
j=1

N−n∑
k=0

∫ t

0
An,k,i,j(v)Wn+k−1,j(t − v)dF(v)

+

m∑
j=1

N−n∑
k=0

An,k,i,j(t)
∫

∞

t

(
M (n+k−1)+v−t

)
dF(v),

(14)

where n = 1, . . . ,N , i = 1, . . . ,m. Indeed, if the end of
the first service time happens before t , than with probability
An,k,i,j(v) there are n + k − 1 jobs in the queue at time v
and the modulating state at time v is j. Counting from time
v, the new, conditional value of the mean waiting time is
Wn+k−1,j(t−v). Therefore, summing up by all possible values
of j, k and v, we obtain the first summand of (14). If the end
of the first service time happens after t , than with probability∑m

j=1 An,k,i,j(t) there are n+k jobs in the queue at time t , and
one of these jobs is under service with the residual service
time of v − t . Hence, to calculate the mean waiting time,
we need to sum up n + k − 1 complete service times, and
one incomplete service time of length v− t . Again, summing
up by all possible values of k and v we arrive at the second
summand of (14).
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Integration by parts in (14) gives:

Wn,i(t) =

m∑
j=1

N−n∑
k=0

∫ t

0
An,k,i,j(v)Wn+k−1,j(t − v)dF(v)

+M
m∑
j=1

N−n∑
k=0

An,k,i,j(t)(n+ k − 1)(1 − F(t))

+

m∑
j=1

N−n∑
k=0

An,k,i,j(t)g(t), (15)

with

g(t) =

∫
∞

0
(1 − F(v+ t))dv. (16)

Administering the Laplace transform to both sides of (15)
yields:

wn,i(s) =

m∑
j=1

N−n∑
k=0

cn,k,i,j(s)wn+k−1,j(s)

+M
m∑
j=1

N−n∑
k=0

(n+ k − 1)rn,k,i,j(s)

+

m∑
j=1

N−n∑
k=0

hn,k,i,j(s), n = 1, . . . ,N , i = 1, . . . ,m.

(17)

where

cn,k,i,j(s) =

∫
∞

0
e−svAn,k,i,j(v)dF(v), (18)

rn,k,i,j(s) =

∫
∞

0
e−svAn,k,i,j(v)(1 − F(v))dv, (19)

hn,k,i,j(s) =

∫
∞

0
e−svAn,k,i,j(v)g(v)dv, (20)

Then, (17) can be simplified to:

wn(s) =

N−n∑
k=0

Cn,k (s)wn+k−1(s) +M
N−n∑
k=0

(n+ k − 1)Rn,k (s)1

+

N−n∑
k=0

Hn,k (s)1, n = 1, . . . ,N , (21)

where

Cn,k (s) =
[
cn,k,i,j(s)

]
i,j=1,...,m, (22)

Rn,k (s) =
[
rn,k,i,j(s)

]
i,j=1,...,m, (23)

Hn,k (s) =
[
hn,k,i,j(s)

]
i,j=1,...,m. (24)

Now we can analyze the situation, where the queue is
empty at the time origin. Conditioning on the time of the
first event in the arrival process, v, which can be either an
arrival of a job, or a change of the modulating state, we have

the equation:

W0,i(t) =

m∑
j=1

∫ t

0
pi,j(λi − Qi,i)e−(λi−Qi,i)vW0,j(t − v)dv

+
(
1 − d(0)

) m∑
j=1

∫ t

0
3i,je−(λi−Qi,i)vW1,j(t − v)dv

+ d(0)
m∑
j=1

∫ t

0
3i,je−(λi−Qi,i)vW0,j(t − v)dv, (25)

for i = 1, . . . ,m, where:

pi,j =

{
Qi,j/(λi − Qi,i), if i ̸= j,
0, if i = j.

(26)

Indeed, with intensity pi,j(λi − Qi,i)e−(λi−Qi,i)v, the modu-
lating state changes at time v from i to j, without an arrival
of a job. If it happens before t , then the new, conditional
value of the mean waiting time is W0,j(t − v). This gives the
first summand of (25). With intensity 3i,je−(λi−Qi,i)v, a new
job arrives at v. If it happens before t and the new job is
accepted, then the conditional value of the mean waiting time
is W1,j(t − v). This gives the second summand of (25). If the
arriving job is rejected, then the conditional value of the mean
waiting time isW0,j(t−v), which gives the third summand of
(25). We do not have to take into account the situation, when
the first job arrives after t , because the mean waiting time
at t is then 0.
Administering the Laplace transform to both sides of (25)

yields:

w0,i(s) =

m∑
j=1

(1 − d(0))3i,j

λi − Qi,i + s
w1,j(s)

+

m∑
j=1

(λi − Qi,i)pi,j + d(0)3i,j

λi − Qi,i + s
w0,j(s). (27)

Denoting:

Un(s) =

[
(λi − Qi,i)pi,j + d(n)3i,j

λi − Qi,i + s

]
i,j=1,...,m

, (28)

Vn(s) =

[
(1 − d(n))3i,j

λi − Qi,i + s

]
i,j=1,...,m

, (29)

from (27) we get:

w0(s) = V0(s)w1(s) + U0(s)w0(s). (30)

As we can see, (21) and (30) constitute a system of linear
equations with respect to wn(s), n = 0, . . . ,N . After some
easy algebra, its solution can be presented in the following
explicite form.
Theorem 1: The transform of the mean waiting time at

time t in a queue fed by MMPP and with rejection proba-
bilities d(n) equals:

w(s) = (B(s) − I )−1y(s), (31)

66538 VOLUME 11, 2023



A. Chydzinski: Waiting Time in a General Active Queue Management Scheme

where:

w(s) = [w0(s), . . . ,wN (s)], y(s) =

y0(s)...

yN (s)

 , (32)

y0(s) = [0, . . . , 0]T , (33)

yi(s) =−M
N−i∑
k=0

(i+k−1)Ri,k (s)1−

N−i∑
k=0

Hi,k (s)1, i=1, . . . ,N ,

(34)

B(s) = [Bi,j(s)]i,j=0,...,N ,

Bi,j(s) =


Ci,j+1−i(s), if i = 1, . . . ,N , j=i−1, . . . ,N−1,
U0(s), if i = j = 0,
V0(s), if i = 0, j = 1,
0, otherwise,

(35)

and 0 is an m× m matrix of zeros.
Note that matrices U0(s) and V0(s), occurring in the the-

orem above, are easy to compute directly from parameters
of the model. On the other hand, matrices Ci,j(s), Ri,j(s)
and Hi,j(s) depend on probabilities An,k,i,j(v), defined at the
beginning of this section. Fortunately, these probabilities can
be calculated using a result of [29] (see Theorem 1, page 107).
Namely, it was proven that:

An,0(s) = En(s), (36)

An,k (s) = Gn(s)Gn+1(s) . . .Gn+k−1(s)En+k (s), k ≥ 1,
(37)

where

An,k (v) =

[∫
∞

0
e−stAn,k,i,j(v)dv

]
i,j=1,...,m

, (38)

Gk (s) = (I − Uk (s))−1Vk (s), (39)

Ek (s) = (I − Uk (s))−1Z (s), (40)

Z (s) = diag
[

1
λ1 − Q1,1 + s

, . . . ,
1

λm − Qm,m + s

]
.

(41)

Finally, derivation of the stationary mean waiting time
from Theorem 1 poses no problem. In particular, it is known
that the limit of a function f (t) as t → ∞ is the same as the
limit of sf (s) as s → 0+, where f (s) is the Laplace transform
of f (t). Therefore, we get the following result.
Theorem 2: The stationary mean waiting time in a queue

fed by MMPP and with rejection probabilities d(n) equals:

W = W0,1(∞) = lim
s→0+

[(B(s) − I )−1y(s)]1, (42)

where y(s) and B(s) are given in (34) and (35), respectively,
while [·]1 is the first entry of a column vector.
Note that the stationary W does not depend on the initial

queue size and the initial state of the modulating chain.
Therefore, any other n and i could have been taken instead
of 0 and 1 in (42).

To use Theorem 1 in practice, the Laplace transform should
be inverted. All the numerical examples presented herein

were obtained using the inversion method of [35], which is
fast and accurate. Theorem 2 can be used directly, without
inversion.

V. NUMERICAL EXAMPLES
If not stated otherwise, the following MMPP will be used in
this section:

Q =

 −0.04751 0.02823 0.01928
0.02101 −0.04231 0.02130
0.03952 0.03219 −0.07171

 , (43)

3 =

 0.04906 0 0
0 0.29804 0
0 0 3.88622

 , (44)

of rate λ = 1.
The justification for choosing this parametrization of

MMPP is that it produces a positive autocorrelation of traffic,
which can be expected in networking. The autocorrelation
provided bymatrices (43) and (44) is moderate. It will be used
as default. However, it can be easily strengthen or weakened
multiplying Q by a positive number, if needed. This will be
done in Section V-C, where in addition to parameterization
(43) and (44), two other parameterizations will be considered,
of much stronger and weaker autocorrelations, respectively.

If not stated otherwise, the following rejection probability
function will be used:

d(n) =


0, if n < 16,
n
16 − 1, if 16 ≤ n < 32,
1, if n ≥ 32.

(45)

This will be altered in Section V-B, where five other, non-
linear rejection probability functions will be used in addition
to (45).

Finally, the distribution of the service time will be hyperex-
ponential with parameters: (0.25, 0.75), (4.0, 0.8). It can be
verified easily that this distribution has the mean of M = 1
and a moderate standard deviation of 1.17. Therefore, the
system will be fully saturated: ρ = λM = 1.

A. IMPACT OF THE INITIAL STATE OF THE QUEUE
In Fig. 1, the mean waiting time is depicted as a function
of time. The initial modulating state is 1 in every case, but
different initial queue sizes are used, from 0 to 32.

As we could expect, the transient evolution of the system
depends strongly on the initial size of the queue. However,
after about 80s, the waiting time reaches the stationary value.

For comparison, in Fig. 2 the same initial queue sizes are
used, but with the initial modulating state of 3. As we can see,
different modulating state made the transient evolution quite
different. However, the time of convergence to the stationary
value is more or less the same in Figs. 1 and 2.

The impact of the initial modulating state on the evolution
of the system can be studied further in Figs. 3 and 4. Namely,
in Fig. 3 the mean waiting time is depicted as a function of
time for all threemodulating states, but unaltered initial queue
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FIGURE 1. The mean waiting time for different initial queue sizes and
i = 1.

FIGURE 2. The mean waiting time for different initial queue sizes and
i = 3.

FIGURE 3. The mean waiting time for different initial modulating states
and n = 16.

size of 16. Similarly, in Fig. 4, the initial queue size of 32 is
used in combination with different modulating states.

As we can observe in Figs. 1-4, the influence of initial
modulating state on the transient evolution is stronger when
the initial queue size is small or moderate, and weaker, when
the initial queue size is high.

Finally, it is worth mentioning, that in many cases the
transient evolution of the waiting time is non-monotonic. See,
for instance, the curves for n = 8 and n = 16 in Fig. 1, almost

FIGURE 4. The mean waiting time for different initial modulating states
and n = 32.

FIGURE 5. The mean waiting time for different rejection probability
functions and n = 0, i = 1.

all curves in Fig. 2, and all curves in Fig. 3. Moreover, both a
local minimum or a local maximum can occur (Fig. 3).

B. IMPACT OF DROP PROBABILITIES
In the section above, the rejection probability function was
not altered and had always the form of (45). In this section,
we will use the following function instead:

dx(n) = (d(n))x , (46)

where x > 0 is a parameter and d(n) is given in (45).
Parameter x has an easy interpretation – the smaller x, the
quicker the system will start rejecting jobs and the more of
them will be rejected. An vice versa – a large x is equivalent
to small rejection probabilities.

In Figs. 5, 6 and 7, the mean waiting time is depicted for six
different rejection probability functions, namely d0.25, d0.5,
d1, d2, d4 and d8. The difference between Figs. 5, 6 and 7 is
that Fig. 5 was obtained for the initial system state n = 0 and
i = 1, Fig. 6 for the initial state n = 16 and i = 2, while
Fig. 7 for the initial state n = 32 and i = 3.
As we can see in these figures, the convergence to the

stationary value is slightly quicker, when a strong rejection
function is used (e.g. d0.25), and slightly slower, when a weak
function is applied (e.g. d8). The differences, however, are
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FIGURE 6. The mean waiting time for different rejection probability
functions and n = 16, i = 2.

FIGURE 7. The mean waiting time for different rejection probability
functions and n = 32, i = 3.

not profound – in all cases the stationary value is reached
somewhere between 60s and 100s.

Moreover, the evolution of the system in each figure is
different, depending on the initial state of the queue, nomatter
which dx function was used.
Finally, we can see that for high values of x, the curves

change less and less. This can be easily explained by the fact
that if x → ∞, then the rejection scheme approaches the
tail-drop scheme, i.e. the rejection probability becomes 0 for
every n < 32 and 1 for n = 32. Therefore, the curves in
Figs. 5, 6 and 7 converge to the tail-drop curve, when x grows.

C. IMPACT OF AUTOCORRELATION
So far, only the parameterization of the MMPP given in
(43) and (44) was used. We will alter this in this section,
to obtain different strengths of the autocorrelation. Namely,
the following two other parameterizations will be used:

MMPP’: Q′
= 10Q, 3′

= 3,
MMPP’’: Q′′

= Q/10, 3′′
= 3,

together with function d(n) from (45).
In Fig. 8, the autocorrelation functions for matrices Q′

and Q′′ are depicted, and accompanied by the original auto-
correlation for Q. As we can see, autocorrelation for Q′′ is
strong and long term, while for Q′ is weak and short term.

FIGURE 8. Autocorrelation function for traffic parameterized by matrices
Q, Q′ and Q′′ .

FIGURE 9. The mean waiting time for weak autocorrelation (Q′), several
initial queue sizes and i = 2.

Autocorrelation for the original Q is moderate, somewhere
between the two.

In Fig. 9 the mean waiting time is presented as a function t
for weak autocorrelation (Q′), several initial queue sizes and
i = 2. Similarly, in Fig. 10 the mean waiting time is presented
for strong autocorrelation (Q′′), several initial queue sizes and
i = 2.
When comparing Fig. 9 with Fig. 10, the first striking

observation is the time of convergence to the stationary value.
In the case of strong autocorrelation, the time of convergence
is about 5 times longer (approx. 500s versus 100s). This was
to be expected - the long term autocorrelation should cause
such an effect.

An interesting and rather surprising observation can be
made if we compare stationary waiting times for the three
MMPP parameterizations considered so far. Namely, the sta-
tionary waiting times are 10.9, 9.2 and 6.9 for matrices Q′, Q
and Q′′, i.e. for weak, moderate and strong autocorrelation,
respectively. Note that other parameters of the system are not
altered (the load, distribution of the service time and rejection
probabilities).

This observation contradicts a naive belief that the stronger
positive autocorrelation of traffic is, the worse all queueing
performance characteristics are. In our case, the stronger
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FIGURE 10. The mean waiting time for strong autocorrelation (Q′′),
several initial queue sizes and i = 2.

autocorrelation, the better (shorter) stationary waiting time.
This effect is, naturally, of great significance in networking,
where we can always expect autocorrelated traffic.

The observed phenomenon can be explained by the inter-
action between traffic autocorrelation and rejection function,
d(n). It is true that a strong, positive autocorrelation drives
the queue size to grow. In a system without job rejections,
we indeed would have higher queue sizes and waiting times
for stronger autocorrelations. In our system, however, there
are job rejections caused by d(n). Moreover, function d(n)
rejects the more jobs, the longer the queue is. Therefore, the
overall number of rejected jobs grows when autocorrelation
gets stronger. In effect, the carried load of a system with the
rejection mechanism decreases, even if the offered load, ρ,
remains unaltered.

In other words, the reduced stationary waiting time for
strongly correlated traffic comes with the price of increased
number of rejected jobs.

VI. CONCLUSION
In this paper, an analysis of the waiting time was carried
out in a queueing scheme, in which an arriving job can be
denied service with probability relative to the queue size.
Such queueing scheme can be found in computer networking,
call centers and other customer service systems. It is also
a generalization of the commonly used tail-drop scheme.
Therefore, all the results presented herein can be used for
the tail-drop queue as well, by applying function d(n)=0 for
n < N and 1 otherwise.

A general model of the queue was used, with the arrival
process of arbitrary interarrival time distribution and interar-
rival time autocorrelation, arbitrary distribution of the service
time and job rejection probabilities. For this model, two theo-
rems on the mean waiting time were proven - in the transient
and stationary regime, respectively.

These theorems were illustrated via numerical examples,
in which the dependence of the transient behaviour of the
system on various parameters was depicted. In particular,
it was shown how the initial state of the queue and the form

of the rejection probability function influence the transient
evolution of the mean waiting time.

A special consideration was given to autocorrelation of
traffic. It was shown that strong autocorrelation may increase
significantly the time of convergence to the stationary value.
It was also demonstrated that strong autocorrelation may
cause the mean stationary waiting time to be shorter, if com-
pared with a weak autocorrelation case. This contradicts a
naive belief that the stronger autocorrelation of traffic, the
worse all queueing performance characteristics. Such a sim-
plification is clearly not valid in queues with the rejection
mechanism.

Both of these observations are important in network-
ing, where we do have traffic autocorrelation. Namely,
when the rejection mechanism is used, we can expect long
non-stationary periods of operation of the system, as well as
reduced waiting times, at the price of increased number of
rejected jobs.
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