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ABSTRACT We propose a method to automatically select proper values of three thresholds in the Canny edge
algorithm. Edge detection is widely used for object recognition, detection, and segmentation. Due to its good
performance, the Canny edge algorithm is still widely used among many edge detection algorithms. But,
it requires manually selecting three appropriate thresholds for the given image. Some approaches have been
proposed for automatically setting thresholds in the Canny edge algorithm. But, they either deal with partial
among three entries or only show their performance in a limited range of variation. In natural scenes, images
are acquired under various illumination, pose, and weather conditions. This paper proposes a method that
can operate in various environments. We formulate the given problem by adopting an actor-critic algorithm.
We propose an actor and critic network to solve the problem with an actor-critic algorithm. Also, we suggest a
reward configuration based on an edge evaluation network and measure to prevent the reversal between high
and low thresholds. The edge evaluation network uses an original image and an edge image as input. We set
a negative reward when reversing the high and low thresholds occur. The proposed algorithm can adapt to
unseen environments using images without requiring ground truth labels. Experimental results using diverse

datasets show the feasibility of the proposed algorithm.

INDEX TERMS Actor-critic algorithm, edge detection, deep reinforcement learning, deep learning.

I. INTRODUCTION
Edge information on images is helpful for object detection,
image segmentation, motion analysis, and 3D reconstruc-
tion [1], [2], [3], [4]. Most traditional edge detection algo-
rithms are filter-based and use statistical analysis. Recently
deep learning has also been applied to detecting edges on
images. The Canny algorithm proposed three decades ago
is still widely used due to its good performance [5]. The
user must set three parameters related to the smoothing
window size and two thresholds in the hysteresis process.
We obtain very different edge images according to values of
three parameters, as shown in Figure 1.

In our previous work [6], we proposed an algorithm that
automatically determines values of two thresholds in the
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Canny algorithm using the Deep Q-Network (DQN) [7], [8].
We used a fixed value for a parameter related to the smoothing
window size. In this paper, we propose an algorithm that can
automatically determine the three parameters in the Canny
algorithm. DQN is suitable for discrete types of actions.
Extending our previous algorithm by adding additional
parameters related to the smoothing window can cause a
problem due to many actions. Therefore, this paper copes
with this problem by adopting an actor-critic algorithm [9],
[10], [11] with continuous action. Also, we modify the edge
evaluation network used in our previous work [6] to use both
an original image and a corresponding edge image as input
for the improved evaluation of edge quality.

Also, the supervised learning-based method can be a
candidate to solve the given problem. It might have a network
structure in which an original image is used as input, and
a corresponding optimal edge image is used as output.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. The comparison of edge images according to different
threshold values in the Canny algorithm.

Preparing the correct edge image per input image for training
is necessary, which requires much time. In general, it is
known that supervised learning works well in environments
similar to the training, but it gives a poor performance
in environments different from training. One way to adapt
to a new environment is to retrain using an image of the
corresponding domain. Also, this requires the preparation
of ground truth labels. The proposed algorithm uses an
edge evaluation network trained in a supervised manner.
Still, we show that performance improvement is possible
through additional training using only images from a new
environment without updating the edge evaluation network.
The contributions of the proposed algorithm are as follows.
(1) We present a method for automatically selecting all
three threshold values that guarantee an excellent edge
image quality with the Canny algorithm. We solve
the problem caused by large combinations of three
threshold values by estimating continuous actions
based on an actor-critic algorithm.
(2) We present a reward model for stable training of
action and critic networks in the actor-critic algorithm.
We configure the reward model by reflecting two terms.
One is the output of the edge evaluation network. The
other is a constraint for preventing the reversal of high
and low thresholds. The edge evaluation network uses
an original image and the edge image as inputs and
produces a value for the quality of the edge.
(3) In unseen environments, the proposed algorithm can
improve performance by only using images without
requiring ground truth labels.

The paper is organized as follows. Section II deals with
related works. Section III shows the proposed method.
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Experimental results are presented in section IV and finally
conclusion is section V.

Il. RELATED WORKS
Edge detection algorithms can be classified into filter-based,
learning-based, and recent deep learning-based algorithms.

A. FILTER-BASED ALGORITHMS

Filter-based algorithms [3], [5] find edges by investigating
dramatic changes in intensity, color, texture, etc. Learning-
based algorithms find edges by leveraging hand-crafted
features. Statistical Edges [12], Pb [13], and gPb [14] use fea-
tures found by manual design using information theory. Early
learning-based methods such as BEL [15], Multi-scale [16],
Sketch Tokens [17], and Structured Edges [18] also heavily
rely on manually designed features. Dollar et al. [18] detect
structured edges by joint learning ground truth clustering and
mapping image patches to clustered tokens. It showed state-
of-the-art performance on the BSDS500 dataset until the
advancement of deep learning-based algorithms. Learning-
based algorithms can automatically generate edge images
by using structured information on images. But, their
applicability is shown using only a small number of images
compared to the large number of images deployed in deep
learning.

B. DEEP LEARNING-BASED ALGORITHMS

Recent deep learning-based algorithms use features gen-
erated by convolutional neural networks (CNN) [19].
Bertasius et al. [20] use CNN to find features of candidate
contour points. Xie et al. [21] propose holistically-nested
edge detection (HED) that integrates the outputs from differ-
ent intermediate layers with skip connections. Xu et al. [22]
use a hierarchical model to find multi-scale features fused
by a gated conditional random field. He et al. [23] propose
a Bi-Directional Cascade Network (BDCN) structure to
detect edges at different scales. They train the network using
corresponding labeled edges for each scale. They introduced
the Scale Enhancement Module (SEM), which utilizes dilated
convolution to generate multi-scale features instead of using
deeper CNNs or explicitly fusing multi-scale edge maps.
Recent algorithms for edge detection focus on accurately
detecting object boundaries, which can provide intrinsic cues
for object detection, segmentation, and tracking.

Luetal. [24] proposed an algorithm to automatically select
thresholds for the Canny algorithm using a histogram of
the gradient image. Fang et al. [25] proposed an algorithm
to choose a high threshold for the Canny algorithm using
the Otsu method [26]. Meanwhile, they cannot select a
low threshold. Huo et al. [27] proposed an algorithm to
determine high and low thresholds in the Canny algorithm.
They choose a low threshold using a probability model.
Lu et al. [28] adaptively select two thresholds in the Canny
algorithm using minimal meaningful gradient and maximal
meaningless gradient magnitude assumption. Yitzhaky and
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Peli [29] proposed choosing the best edge parameters. First,
they construct Estimated Ground Truth (EGT) with different
detection results. Then, they determine the optimal parameter
set using a Chi-square test. Medina-Carnicer et al. [30]
proposed an algorithm for the unsupervised determination
of hysteresis thresholds by fusing the advantages and
disadvantages of two thresholding algorithms. They find the
best hysteresis thresholds in a set of candidates. Mediana-
Carnicer et al. [31] proposed a method to automatically
determine hysteresis thresholds of the Canny algorithm,
which can be used as an unsupervised edge detector.

These traditional unsupervised methods have the advan-
tage that they can be applied without a learning process.
However, these methods only provide evaluation results for a
few images. It is necessary to evaluate them using many data,
such as deep learning, to assess their performance objectively.

Reinforcement learning [32] shows a good performance in
temporal decision-making problems. In typical reinforcement
learning, an agent aims to learn a policy that maximizes
accumulated reward from an environment. Recently, inte-
grating reinforcement learning and deep learning showed
human-level control [33]. Deep Q-Networks (DQN) [7], [8]
showed that human-level control is possible on Atari games.
Deep reinforcement learning offers impressive successes on
various tasks such as playing the board game GO [34], [35],
[36], object localization [37], region proposal [38], and visual
tracking [39].

lll. PROPOSED METHOD

In this paper, we propose a method for automatically selecting
suitable values of three thresholds in the Canny algorithm
using the advantage actor-critic (A2C) method [9], [10],
[11]. Figure 2 shows the resulting edge images by different
threshold values in the Canny edge method. We notice that the
difference in the resulting edge image is enormous according
to the threshold values change. However, the resulting edge
images are similar when threshold values are in close range.
Therefore, we assume the resulting edge image would follow
a normal distribution according to the threshold value.

We regard the threshold values in the Canny algorithm
as actions of agents. Therefore, through deep reinforcement
learning, we could automatically find appropriate threshold
values that guarantee an excellent edge image by the Canny
algorithm. Based on this assumption, we propose a method
to automatically determine the three threshold values which
ensure a superb edge image by the Canny algorithm adopting
the A2C [9], [10], [11].

A. OVERVIEW OF ADVANTAGE ACTOR-CRITIC (A2C)
ALGORITHM

In the standard reinforcement learning setting, an agent
interacts with an environment ¢ over several discrete time
steps. The agent selects an action a; at a state s; by policy 7,
where 7 is a mapping from states s; to action a;. An action
a; is chosen from some set of possible actions A. After the
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FIGURE 2. The similarity in the resulting edge image according to the
threshold values in the Canny algorithm (a) original image (b) resulting
edge image.

action, an agent gets to the next state s, | and receives a scalar
reward r;. The process continues until the agent reaches a
terminal state. The total accumulated rewards R, from time
step ¢ is denoted return as follows.

Ro= " v (ye©, 1) (1)

y is discounting factor. The agent wants to maximize
the expected return from each state s;. Policy-based model-
free methods directly parameterize the policy 7 (a|s;0)
and find the parameters 6 that maximize E[R;]. The
REINFORCE family of algorithms can be adopted [9].
Typical REINFORCE updates the policy parameters 6 in the
direction Vylogm (a; | s:;60) R;, which is an unbiased estimate
of VgE[R;]. It is possible to reduce the variance of this
estimate while keeping it unbiased by subtracting a learned
function of the state b;(s;), known as a baseline [9], from
return. The resulting gradient is as follows.

Vologm (ar | 5130) (Ry — by (s1)) @

A learned function of the value function V7(s;) is
commonly used as the baseline, leading to a much lower
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variance estimate of the policy gradient. The advantage of
action a; at state s; is defined as follows.

Ala, s1) = Q(as, 51) — V(sy) 3

O™ (a;,sy) = EWR,|s; =s,a; =a) is an action value
corresponding to the expected return for selecting action a
in state s following policy m. Since R; is an estimate of
Q™ (a;, sy) and by is an estimate of V7 (s;), A (a;, sy) can be
used for R; — b; (sy) in Eq. (2). This approach can be viewed
as an actor-critic architecture where the policy 7 is the actor
and the baseline b; is the critic [10].

If we use a one-step return, Eq. (2) can be represented as
follows.

Vologm (a; | 51;0) (Ri+1 + vV (5:41;6y) — V (5136y))  (4)

In advantage actor-critic algorithm, two networks of
7 (a; | s¢;0) and V (s;;6,) are used.

B. STATE CONFIGURATION

First, we consider the original image as the state and threshold
values as the action. If we regard an original image as a
current state s;, we may consider an edge image which
corresponds to the result of actions as a next state s;41. If the
resulting edge image is considered as a next state sy 1, it may
cause problems because an original image and an edge image
has different properties. In Eq. (4), the term V (s;;6,) uses
an original image as input while the term V (s;1;6,) uses an
edge image as input. Therefore, it isn’t easy to train the value
network if we consider the original image the current state
and the resulting edge image the next state.

We regard a randomly selected image as the next state s,
not an edge image to solve this problem. If we train the model
well, we can assume that appropriate actions will be selected
for randomly chosen images. Therefore, the value evaluation
for the randomly selected image would be similar to the
value evaluation considering future actions. Throughout this,
we can apply the A2C algorithm to choose thresholds in the
Canny algorithm automatically.

C. ACTOR AND CRITIC NETWORK CONFIGURATION
In the A2C, an actor network evaluates actions performed
by an agent, and a critic network evaluates the accumulated
return from the current state. There are two kinds of actor
and critic networks configuration in the A2C algorithm. The
first method uses the same backbone and has two branch
outputs for the actor and critic networks. The second method
uses two different networks for the actor and critic networks.
Through experiments, we found that the first method that
uses the same backbone gives inconsistent results, including
divergence during training. Therefore, in this paper, the actor
and critic networks use separate networks.

Compared to the DQN, the A2C algorithm has the
advantage that it can deal with continuous actions. The
policy will have a continuous output if it follows a normal
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distribution.

7 (ar | 5:30) =

1 exp _(at - M(St§9)2 (5)
o (s1:0)V2m 20 (s1;0)°

u(sy;0) and o (s;;60) is the mean and standard deviation of
the Gaussian distribution.

Figure 3 shows the structure of the proposed actor network.
We use an original image as the input of the network. The
actor network determines the mean and variance of the
Gaussian distribution. The network output corresponds to
the mean and variance of three actions. We select threshold
values by random selection from the Gaussian distribution.

We extract features of the original image using a
pre-trained CNN of the ResNet50 structure. Then they are
used to yield the mean and standard deviation of the Gaussian
distribution. Parameters related to the fully connected (FC)
layers are trained after random initialization. We use tanh as
the activation function at the last layer for the mean to have a
value between —1 and 1. We use sigmoid as the activation
function at the last layer for standard deviation to have a
value between 0 and 1. The output of the actor network is
continuous real values, and it is necessary to convert them into
the range used in the Canny algorithm. For the high and low
thresholds, we convert the output of the actor network into
an integer from O to 500. For the filter size of the smoothing
window, we convert the output of the actor network into an
integer from 3 to 9.

Figure 4 shows the structure of the proposed critic network.
The input of the critic network is composed of an original
image and action values, while a typical critic network uses
only the current state as input. We randomly select action
values from the normal distribution provided by the actor
network and then use them as input for the actor network. The
output of the critic network corresponds to V(s;). Since the
critic network is a model that approximates the V(s;) value
according to each action, we use action values as the input
of the critic network. Through this, we can guarantee that
training would increase the probability of selecting proper
actions from the normal distribution of the actor network.

We do not use an activation function at the output layer in
the critic network. It is based on the consideration that the
critical network evaluates the accumulated return from the
current state. In addition, we concatenate three action values
with features from the pre-trained model in the middle of the
fully connected layer to prevent them from being reflected in
a small proportion.

D. REWARD COMPUTATION

In reinforcement learning for robot posture control, we can
easily set rewards by checking whether the robot is straight
or falling. However, in the case of the automatic selection of
the three threshold values of the Canny edge to be solved
in this paper, reward selection is complex. It is necessary
to evaluate the resulting edge image by selected values of
three thresholds. To this end, in this paper, the reward is
computed using the result of the edge evaluation network.
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FIGURE 3. The structure of the proposed actor network.
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FIGURE 5. The structure of the proposed edge evaluation network.

We train it in an end-to-end manner. Therefore, it requires
generating separate label data. Also, it has a disadvantage that
generalization ability is poor in an environment that is not
similar to the training.

Figure 5 shows the proposed edge evaluation network.
It uses the original image and the edge image as input
and outputs the goodness of the edge image. We use
the pre-trained CNN structure of ResNet-50 for extracting
features of the original image and the edge image. The
extracted features are concatenated and go through a fully
connected layer to yield the output. The last layer of the fully
connected layer uses the sigmoid as an activation function.
Through this, the output has a value between 0 and 1.
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Our previous work [6] used an edge evaluation network
that only used the original image as input. In experimental
results, we show that the proposed edge evaluation network
gives an improved outcome.

Since the proposed edge evaluation network has output
values between O and 1, we always have positive output
values if we use them directly as rewards. If only positive
reward values are used, feedback on wrong actions is
impossible in reinforcement learning [40]. In addition, it is
necessary to take measures to suppress the occurrence of
the reversal of high and low thresholds. The reverse of high
and low thresholds is inevitable because we randomly choose
actions from the Gaussian distribution.
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TABLE 1. Reward value configuration by reflecting action result and edge
evaluation result.

TABLE 2. Hyperparameters used for training actor network, critic
network, and edge evaluation network.

" edge reward value actor network | critic network | edge evaluation network
action . T . 7
evaluation | case 1 case 2 case 3 case 4 original image:
o 236(H)X256(WIX3(C) | 5561y x256(W)X3(C)
>=0.999 1.0 1.0 1.0 1.0 input image edge image:
high 2 low >=0.500 0.5 0.5 0.5 0.5 next image: random 256(H)X256(W)X3(C)
<0.500 -0.5 -0.5 -0.5 -0.5 preprocessing | image resize — pixel range conversion ([0, 255] — [0, 1])
high < low - -1.0 -5.0 -10.0 -50.0 optimizer Adam Optimizer
learning rate 0.001
max epoch 35 20
train epoch 35 14
Table 1 shows the reward configuration after reflecting batch size 8 | 8 16
on these two considerations. We make reward to have y (Eq. 1) 0.99 -
positive and negative values according to the output of the
edge evaluation network. When reversing the high and low 10?
4

thresholds occurs, we set the reward to a negative value.
We experimented with four cases, when the reversal of high
threshold and low threshold occurs, to investigate the effect of
the magnitude of negative reward. For all four cases, reward
values are negative but have different magnitudes.

IV. EXPERIMENTAL RESULTS

Experiments are done using NVIDIA 3090 and Intel
19-10900. Table 2 shows the values of hyperparameters used
for training the actor, critic, and edge evaluation networks.
All networks use images with sizes 256(H)X256(W)X3(C).
We divide each pixel by 255, which results in a value between
0 and 1. The Adam optimizer was used for training, and the
learning rate was 0.001.

A. RESULT OF EDGE EVALUATION NETWORK

We used 600 images from BDD100K [41] to train the edge
evaluation network in Figure 5. We manually generated one
negative and one positive edge image for each image. Then,
we augmented them through geometric transformations.
Finally, we used 20,000 images for training the edge
evaluation network. We used the mean squared error (MSE)
by the output of the network and the ground truth label as
loss of the edge evaluation network. The accuracy is defined
as follows.

ACC = (1— |04 — 0,|) x100 (6)

Oy is a ground-truth value. A positive edge image has a
value of 1, and negative edge images have a value of 0. O, is
an output of the edge evaluation network, and it has a value
between 0 and 1.

Figure 6 shows the variation of loss and accuracy during
training of 14 epochs. We use the result of the 11th epoch,
which offers the best outcome for the validation data. Figure 7
shows the comparison results of the proposed edge evaluation
network that uses both the original image and edge image
as input and our previous edge evaluation network [6],
which only uses an edge image as input. The proposed edge
evaluation network provides better results than our previous
edge evaluation network [6].
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FIGURE 6. The variation of loss and accuracy during training (a) loss
(b) accuracy.

Images acquired at nighttime have low contrast. Therefore,
it is challenging to extract edges. The previous edge
evaluation network used in [6] has difficulty in those images,
as shown in Figure 7. It gives a wrong high evaluation for
a low-quality edge image. The proposed edge evaluation
network gives a correct assessment even in this case.
Improved evaluation of edge image provides a proper reward,
and at last, it helps train the proposed method. This fact is
shown in experimental results.
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FIGURE 7. The comparison results of the proposed edge evaluation model and evaluation model used in [6] (a) original image (b) proposed
algorithm on a good edge image (c) proposed algorithm on a bad edge image (d) [6] on a good edge image (e) [6] on a bad edge image (EQ: stand

for edge quality).

B. RESULT OF THE PROPOSED METHOD

We automatically determine the values of three thresholds
for the Canny edge algorithm from the output of the actor
network in Figure 3. The training of the actor network
and the critic network was done using 50,000 images in
BDDI100K [41]. We use three items for the assessment of
training results. First, we use the change of variance output
in the actor network. Second, we use the ratio of reversal
between high and low thresholds. Third, we check the average
of the output of the edge evaluation network.

If training is done well, the actor network will yield
appropriate threshold values in a narrow range. Therefore,
when training is done in a proper direction, the magnitude
of variance, one of the two outputs of the actor network in
Figure 3, will decrease as training goes on.

Figure 8 shows the variance change of three actions
according to four cases of reward configuration during
training. In Figure 8, we notice that the magnitude of variance
is continuously decreasing for all cases. It indicates that the
training is proceeding in the correct direction. The variance
of smoothing window size has a relatively large value,
while the high and low thresholds variance falls below 0.3.
We convert the smoothing window size value into a value
between 3 and 9 and the high and low threshold values into
a value between 0 and 500. The relatively high variance
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of smoothing window size is acceptable, considering the
conversion range difference. Among the four reward cases in
Table 1, case 3 shows the smallest variance. Case 3 can be
viewed as the most suitable reward model through this.

Figure 9 shows the variation of reward values during
training by four reward models in Table 1. The average
reward values by the last 80 samples for each trial are
shown. We notice that the average reward value continuously
increases to 1.6 million, which indicates that training is being
appropriately performed. Finally, the average reward value
has values larger than 0.5. This shows that the edge evaluation
network obtained values larger than 0.5 in most images by
referring to the reward value configuration in Table 1. When
the actor network is appropriately trained, the edge evaluation
network might have a high output value.

Figure 10 shows the edge evaluation network’s output
value change during training. It shows a similar tendency
to Figure 9. Also, we indirectly convince that the proposed
method is well-trained in a direction that offers appropriate
threshold values for the Canny algorithm.

Table 3 shows the comparison results of the proposed and
the DQN [6] methods. The original DQN method [6] uses an
original image as the input of the edge evaluation network.
We also tested the DQN method using the proposed edge
evaluation network, which uses an original image and an edge
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FIGURE 8. The change of variance of three actions according to the four
reward cases during training (a) high threshold (b) low threshold
(c) smoothing window size.
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FIGURE 9. The variation of the mean reward of the last 80 samples
during training.

image as input. Statistics in Table 3 are obtained using 20,000
images.

The proposed actor network’s output is the Gaussian
distribution’s mean and standard deviation. Three Gaussian
distributions corresponding to three thresholds are indepen-
dently established. This fact makes reversing between the
high and low threshold inevitable. We set a negative reward to
prevent the reversal from occurring. Therefore, if the model is
trained correctly, the high threshold should have a larger value
than the low threshold. Checking the frequency of the high

VOLUME 11, 2023

train reward

1

09
0.8 s e e
& e S — et g
;n(),? - e — —
506 Vet case 1
z L
= 0.5 / case 2
’;‘ 04 case 3
203} s
o2 b case
ol f
0 L s L) L L
01234567 8910111213141516171819202122232425262728203031323334
epoch
(a)
validation reward
1
0.9
< S AR (T —
. 0.8 ) eSS ——— =7
?0,7 — 7
g 06 case 1
z
T 0.5 case 2
; Ot case 3
203
02 case 4
0.1
o b v v e
012345678910111213141516171819202122232425262728293031323334
epoch
(b)

FIGURE 10. The variation of quality value of the edge evaluation model
during training (a) training set (b) validation set.

TABLE 3. Comparison results of the proposed algorithm and DQN [6].

edge_ reward type no threshold
method | evaluation reward average o
network input (Table 1) reversal ratio(%)
edge only case 1 0.782 100.0
case 1 0.794 100.0
DQNJ6] case 2 0.781 100.0
S case 3 0.810 100.0
OHiI:fL(‘im:ge case 4 0.804 100.0
image case 1 0815 87.1
case 2 0.832 94.9
proposed case 3 0.837 96.7
case 4 0.794 97.4

TABLE 4. Comparison result when applying to unseen images of

YTVOS [42].
reward type no threshold

method (Table 1) reward average reversal ratio(%)
case 1 0.658 100.0
case 2 0.684 100.0
DQN[6] case 3 0.721 100.0
case 4 0.699 100.0
case 1 0.715 86.6
ronosed case 2 0.723 94.7
prop case 3 0.746 95.8
case 4 0.698 88.6

and low threshold reversal is a good candidate for checking
how well training goes.

Table 3 shows that it is essential to give a negative
reward when the reversal of the high and low thresholds

67065



IEEE Access

K.-H. Choi, J.-E. Ha: Adaptive Threshold for the Canny Edge With Actor-Critic Algorithm

(a) (b) (©)

FIGURE 11. The comparison result of edge image by the proposed and
DQN [6] method (a) original image (b) edge image by the proposed
method (c) edge image by DQN [6] method (FS, EQ: stand for filter size
and edge quality).

occurs. As we increase the magnitude of the negative reward,
the occurrence of the reversal reduces. But it reduces the
performance of the actor network. Therefore, choosing an
appropriate negative reward value must consider the actor
network’s performance simultaneously. The DQN method [6]
has the advantage of no reversal between high and low
thresholds. But, it gives a reward value smaller than the
proposed method. In all four cases, the proposed algorithm
offers superior results than the DQN method [6]. But 96.7%
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FIGURE 12. The distribution of high and low thresholds by the proposed
algorithm and DQN [6].

47 L:38°FS:3 EQ:1.0

@) O T ©

FIGURE 13. Result of the proposed method on images having false edge
evaluation results (a) original image (b) false cases by edge evaluation
network (c) result by the proposed method.

TABLE 5. Result of the proposed algorithm after retraining using
YTVOS [42] images.

relative no threshold
method re\;ﬁ? t}]/pe reward improvement(%)| reversal
(Table 1) average ratio(%)
case 1 0.679 3.19 100.0
case 2 0.671 -1.90 100.0
DQNIE] case 3 0.752 4.30 100.0
case 4 0.634 -9.30 100.0
case 1 0.735 2.80 89.0
proposed case 2 0.779 7.75 96.5
case 3 0.801 7.37 97.2
case 4 0.657 -5.87 86.2

of the 20,000 images were obtained without reversing high
and low thresholds in the best case 3. In contrast, in the case of
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FIGURE 14. Results of the proposed method on unseen images in the YTVOS [42].

the DQN method, the threshold value reversal does not occur
in all cases.

The reversal of high and low thresholds in the proposed
algorithm is inherently connected to the procedure that
randomly selects the mean and standard deviation from the
output of the actor network. There is a radical possibility
of reversing high and low threshold values during sampling
even if the proposed network is well-trained. It requires
further research to solve this problem. In contrast, in the
DQN method, it is structurally possible to configure a high
threshold always to have a larger value than the low threshold.
Figure 11 shows the comparison results of edge images by
the proposed and the DQN method [6]. In Figure 11, FS and
EQ represent filter size and edge quality. EQ corresponds
to the output of the edge evaluation network in Figure 5.
The proposed method provides better results than the DQN
method [6], particularly on difficult images with dark areas,
small objects, and complex boundaries.

Figure 12 shows the distribution of high and low thresholds
selected on 1,000 images by the proposed and DQN [6]
methods. The proposed method gives a broader distribution

VOLUME 11, 2023

than the DQN method. From this fact, we can conclude that
the proposed method gives more suitable threshold values
than the DQN method.

The edge evaluation network in Figure 5 gives correct
evaluation results for most images. However, it occasionally
offers high scores even for the bad edge image. Figure 13
shows comparison results using the same image that the edge
evaluation network produces a wrong result. Figure 13(a) is
an original image. Figure 13(b) is an edge image that gives
a bad score in that edge evaluation network. Figure 13(c)
is the edge image by the proposed algorithm. Although the
edge evaluation network has some drawbacks, the proposed
algorithm improves results. It shows that training is possible
even using an edge evaluation network with low accuracy,
ultimately providing improved results.

C. EXPERIMENTAL RESULT USING UNSEEN IMAGES

We test using unseen images to evaluate the generalization
ability of the proposed method qualitatively. The proposed
method uses three networks: actor, critic, and edge eval-
uation. All three networks are trained using images in
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BDD100K [41]. We investigate the proposed method’s gener-
alization ability by applying a trained model with BBD100K
to images in YTVOS [42]. Table 4 shows results applied
to images in YTVOS [42], an environment different from
training. We obtain results using 1,070 images in YTVOS.
In the BDD100OK, case 3, which provides the best result
in the proposed method, showed an average reward value
of 0.837. When applied to the YTVOS image, the average
reward value decreased to 0.746. In the new environment, all
four cases showed decreased reward value. In YTVOS, the
proposed method still provides better results than the DQN
method [6]. Among the four reward configurations in Table 1,
case 3 offers the best result by the proposed and DQN [6]
method as in the case of BBD100K. Figure 14 shows the
results of the proposed method applied to images of YTVOS.

Next, we trained the actor and critic networks using only
images in YTVOS. We use the same edge evaluation network
without training using images in YTVOS. Therefore, the
proposed method can do additional training without requiring
ground truth labels of edge images. Table 5 shows results
after additional training using 14,000 images in YTVOS. The
statistics in Table 5 are obtained using the results of 1,070
images. The DQN method shows an improvement of 4.1%
from 0.721 to 0.751, while the proposed method shows a
gain of 7.4% from 0.746 to 0.801. Also, the proposed method
gives a better result than the DQN [6] method. In Table 4 and
Table 5, both the proposed and the DQN [6] methods used the
model in Figure 5 as the edge evaluation network.

Though we cannot have results comparable to the case of
BDD100K, the proposed algorithm can have improved results
by training only using images in unseen environments. The
edge evaluation network must be trained using images in
unseen environments if we want a performance similar to the
case of BDD10OK.

V. CONCLUSION

This paper proposes a method for automatically selecting
appropriate values of three thresholds in the Canny edge
algorithm. In the Canny edge algorithm, the resulting edge
images have a similar tendency if their threshold values
are similar. We adopt the A2C algorithm considering this
fact. The proposed actor network extracts the feature of
an image using pre-trained weights and then yields the
mean and standard deviation of three thresholds through
the fully connected layers. The proposed critic network also
extracts features of an image using pre-trained weights then
sampled actions are integrated into the fully connected layers.
We propose a reward configuration using the edge evaluation
network and considering the reversal of high threshold and
low threshold. The proposed method can adapt to unseen
images by training only using original images in unseen
environments. The proposed method has shortcomings: it
cannot completely cope with the reversal of high and low
thresholds, and the edge evaluation network is trained in a
supervised way. For further research, we are going to research
to solve these problems. Also, we want to apply SAC [43] and
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PPO [44], which give the best performance among many deep
reinforcement learning algorithms, to our problem.
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