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ABSTRACT Underwater image enhancement is a Low-Level Vision task that plays an important role in
marine resource development, but the light absorption and scattering cause severe underwater image quality
degradation. To solve these problems, this paper proposes a neural network based on a spatial and channel
attention module that reinforces the network’s attention to channel and spatial information. The network’s
Confidence Generator can precisely extract feature maps from multi-scale underwater images. Meanwhile,
we propose a new training loss function by mixing perceptual, MS-SSIM and MAE loss functions to
further improve the contrast in high-frequency, colors and luminance. For training, this paper also uses a
feature fusion strategy: Firstly, augmenting the training underwater images by Gamma Correction, White
Balance and Histogram Equalization algorithms to remove color cast, lighten up dark regions and improve
the contrast. Then, fusing the enhancing images with confidence maps predicted from the Generator. The
networkwas validated in the UIEB dataset and obtains efficient improvements on Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) metrics, yielding a PSNR of 22.9286 and SSIM of 0.9290.
Experimental results on real-world underwater images demonstrate that the proposed method performs well
on different underwater scenes.

INDEX TERMS Underwater image enhancement, low-level vision, attention mechanism.

I. INTRODUCTION
In recent years, underwater image enhancement plays an
important role in underwater resource exploration, aquatic
robotics inspection [1] and underwater archaeology [2].
Although underwater images are good for marine resource
development, there are still urgent issues to be solved,
such as image distortion caused by light absorption, and
image blur caused by scattering including forward scattering
and backward scattering [3]. Furthermore, underwater light
attenuation also rises some underwater image problems, such
as low contrast, color casts, low visibility and blurred details.
These issues significantly reduce the efficiency of marine
resource development. Therefore, it’s vital to improve the
visual quality, contrast and color properties of underwater
images to accurately excavate the underwater world.
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There have been several approaches to enhance the
visual quality of underwater images. Mainly underwater
enhancement methods are traditional visual enhancement
algorithms [21], [22], [23], [24], physical-based meth-
ods [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35] and Deep Learning-based methods [20], [36], [37], [38],
[39], [40], [41]. Traditional visual enhancement algorithms
mainly concentrate on modifying underwater images’ pixel
values to adapt contrast, saturation and brightness. However,
the lack of physical degradation process causes the inability
to achieve better enhancement quality. In addition, physical-
based methods use channel prior [26], [27], [30], [32] to
accurately estimate the medium transmission [28], [29], [35].
Through the estimation of medium transmission and some
other important physical parameters such as homogeneous
background light, a physical underwater formation model can
be constructed. Putting raw underwater images into the phys-
ical underwater formation model could reverse clean images.
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Although the physical-based methods could perform well in
specific underwater environments, it is limited in different
geographical and temporal underwater environments. The
changes in physical parameters would restrict the model’s
performance. In the past few years, the approaches based
on deep learning obtain tremendous progress which make
great effects on image enhancement and dehazing. In the
underwater image enhancement domain, the effectiveness
of Deep Learning-based methods depends on the model’s
capability and the existing underwater image datasets. Some
image enhancement and dehazing CNNs perform well in
ground scenes but obtain bad results in underwater scenes
due to the degradation process between underwater and
the ground being different. CNNs model constructed for
ground scenes could not fit underwater scenes. Also, the
lack of a high-quality real-world underwater image dataset,
such as a small number of images, not enough underwater
scenes and not enough real-world scenarios underwater
images restricts the performance of Deep-Learning based
method. A large-scale real-world underwater image dataset
makes CNNs trained easily to improve underwater results.
However, it is practically impossible to photograph a
real underwater scene and the corresponding ground truth
image for different underwater scenarios at the same
time.

To solve the above disadvantages of Deep Learning-based
enhancement methods, this paper proposes a network based
on Spatial and Channel Attention for Underwater Image
Enhancement, termed SCAUIE-Net. SCAUIE-Net is a gated
fusion framework including both Confidence Map Generator
and Image Refiner parts. The two parts are as follows:
Confidence Map Generator uses U-Net [4] architecture as
the backbone for feature extracting and confidence map
prediction. Image Refiner uses simple convolutional layers
to denoise, remove color cast and adjust underwater image’s
saturation and brightness. Although the U-Net [4] is already
performing very well in extracting feature information, there
are still exists some issues such as insufficient texture details
and local color cast. Inspired by CBAM [5] and SK-NET [6],
we applied Spatial Attention Module and Selective Kernel
Block to fully extract underwater image context information
so that the underwater images could be enhanced more
effectively.

To make further improvements in visual quality, we focus
on the loss function used to train a neural network
for underwater image enhancement. Due to the human
visual system being more sensitive to luminance and
color variations in texture-less regions, SCAUIE-Net uses
a loss function mixed with Perceptual Loss [7], MS-SSIM
Loss [8] and MAE Loss. These loss functions are more
compliant with the human vision system. Mix Loss
could maintain high-frequency regions, colors and lumi-
nance information. Meanwhile, Perceptual loss [7] in Mix
Loss measures the similarity of images matching with
the Human Visual System. It can express image details
well.

SCAUIE-Net is trained on a large-scale real-world under-
water image enhancement benchmark (i.e., UIEB [9]) dataset
which contains 950 real underwater images from different
light sources, such as natural light, artificial light or a
mixture of natural light and artificial light. Compared
to various baseline networks, SCAUIE-Net obtains visual
quality improvement in the UIEB dataset.

This paper introduces the following main contributions:
1. We use a gated fusion framework trained by the UIEB

dataset for the underwater image enhancement task including
Confidence Map Generator and Image Refiner. Confidence
Map Generator based on U-Net predicts the enhancing
confidence maps. Image Refiner fuses the raw images and
enhanced images to remove color cast.

2. We use Selective Kernel Block and Spatial Attention
Module for underwater image enhancement to improve the
model’s representation capability. Spatial Attention Module
decides ‘where’ is more informative to focus on. Selective
Kernel Convolution has a dynamic selection mechanism
to adaptively adjust the local receptive field sizes of
neurons.

3. We combine MS-SSIM loss, perceptual loss, MAE loss
as mixed loss function.MS-SSIM loss andMAE loss are used
to maintain high-frequency regions, colors and luminance
information. Perceptual loss measures the similarity of
images matching with the Human Visual System. It can
express image details well.

II. RELATED WORK
A. UNDERWATER IMAGE DATASET
Deep Learning based underwater enhancement methods
need to be heavily data-driven. The datasets can be
divided into two categories: real-world underwater image
datasets and synthetic underwater image datasets. Unlike
in-air image enhancement tasks, complicated underwater
environments (e.g., turbidity and lighting conditions) are
hard to synthesize plenty of realistic underwater images
for deep learning. Consequently, synthesizing underwater
images becomes a challenge. There are some ways to
synthesize underwater images including GAN-basedmethod,
underwater image formation model. GAN-based method
could obtain paired images, Wang et al. [10] proposed an
unsupervised GAN-based method called UWGAN to syn-
thesize underwater images from in-air RGB-D images and
depth maps pairs. More recently, Zhao et al. [11] used an
image-to-image framework for underwater image synthesis
and depth map estimation in underwater conditions which
eliminates the challenge to convert a single underwater
image into an underwater depth map due to the lack of
paired data. On the other hand, using an underwater image
formation model has gradually attracted attention recently.
Blasinski et al. [12] provided a three-parameter underwater
image formation model [13]. Anwar et al. [14] incorporate
a new underwater image synthesis method that simulates
10 different categories of underwater images using NYU-v2
indoor dataset [15]. Despite the similarity, there are still gaps
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FIGURE 1. Sampling of real-world underwater image enhancement by
SCAUIE-Net. Top row: raw underwater images taken in diverse
underwater scenes; Bottom row: the corresponding reference results.

between synthetic and real-world underwater images. Real-
world underwater datasets are Fish4Knowlege dataset for
underwater target detection and recognition, SUN dataset
for scene recognition and object detection [16], MARIS
dataset for marine autonomous robotics, Sea-thru dataset
including 1100 underwater images with range maps [17],
Haze-line dataset providing raw images, TIF files, camera
calibration files, and distance maps [18], Liu et al. [19]
proposed the RUIE dataset, which encompasses varied
underwater lighting, depth of filed blurriness and color
cast scenes and Peng et al. [20] proposed the LSUI dataset
including 4279 real-world underwater images with more
abundant scenes. However, most of the existing real-world
datasets still have some problems, such as limited scenes,
few degradation characteristics, insufficient data and no
corresponding ground truth images. Therefore, we use the
UIEB [9] dataset, a dataset including 950 real-world images.
To overcome issues of scene monotony and insufficient data,
890 images of them have the corresponding ground truth
images. These potential reference images are produced by
12 enhancement methods and voted by 50 volunteers to select
the final references.

B. UNDERWATER IMAGE ENHANCEMENT METHOD
There are various effective underwater image enhancement
solutions, such as traditional visual enhancement algorithms,
physical model-based and Deep Learning-based methods.

1) TRADITIONAL VISUAL ENHANCEMENT ALGORITHMS
In the earlier stage, traditional visual enhancement algo-
rithms perform well in underwater image enhancement.
This branch of underwater image enhancement methods
concentrates on operating enhancement algorithms in color
spaces. Hitam et al. [21] proposed a method called mixture
Contrast Limited Adaptive Histogram Equalization colors
models, which operates CLAHE [52] on RGB and HSV
color models. Ma et al. [22] proposed a fusion algorithm

in different color spaces based on CLAHE. This algorithm
converts RGB color space to two different color spaces YIQ
and HIS and operates CLAHE in both of them. Then the
algorithm converts two color spaces back to RGB color
space to fuse out the enhanced image. Abdul et al. [23]
enhance underwater images through dual-intensity images
and Rayleigh-stretching. The underwater image is applied
with modified Von Kreis hypothesis and stretched into
two different intensity images at the average value with
respects to Rayleigh distribution. Then, the image is applied
with color correction in HSV color model to obtain the
enhanced result. Huang et al. [24] proposed a relative global
histogram stretching algorithm, which is mainly based on the
equalization of G-B channels and histogram stretching in the
RGB color model.

2) PHYSICAL MODEL-BASED METHODS
Physical-based methods are accurately estimating the
medium transmission and some other important physical
parameters such as attenuation and diffusion coefficients. The
steps of physical model-based methods can be explained as
follow: 1) constructing a physical model with underwater
prior conditions; 2) estimating the key parameters; 3) putting
raw underwater images and reversing the degradation process
to obtain a clean image.

The essence of the physical model-based methods is
to establish an underwater image formation model with
prior knowledge, like Dark Channel Prior (DCP) [25].
Chiang et al. [26] used DCP combined with the wavelength-
dependent compensation algorithm to restore underwater
images. In [27], an Underwater Dark Channel Prior (UDCP)
was proposed based on the fact that the information of the red
channel in an underwater image is undependable. Based on
the observation that the dark channel of the underwater image
tends to be a zero map, Liu and Chau [28] formulated a cost
function and minimized it to find the optimal transmission
map, which can maximize the image contrast. Instead of the
DCP, Li et al. [29] employed the random forest regression
model to estimate the transmission of the underwater scenes.
Peng et al. [30] proposed a Generalized Dark Channel Prior
(GDCP) for image restoration, which incorporates adaptive
color correction into an image formation model. Carlevaris-
Bianco et al. [31] proposed a prior that exploits the difference
in attenuation among three color channels in RGB color
space to predict the transmission of an underwater scene.
Galdran et al. [32] proposed a Red Channel method, which
recovers the lost contrast of an underwater image by restoring
the colors associated with short wavelengths. Li et al. [33],
[34] proposed an underwater image enhancement method
based on the minimum information loss principle and
histogram distribution prior. Peng et al. [35] proposed a
depth estimation method for underwater scenes based on
image blurriness and light absorption, which is employed
to enhance underwater images. The physical-based methods
could perform well in specific underwater environments.
However, there are some disadvantages to these methods. For
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example, the degradation process is estimated inaccurately
when the underwater scenes change and physical-model
based methods do not take the human visual system into
account. Therefore, deep learning-based methods attract
researchers’ attention in recent years.

3) DEEP LEARNING-BASED METHODS
With the development of arithmetic power and the expansion
of data volume, deep learning-based methods are used to
improve the quality of underwater images. A variety of
methods based on deep learning can be divided into two main
categories, which are GAN-based methods and CNN-based
methods.

There are GAN-based methods. Li et al. [36] proposed
WaterGAN which first simulates underwater images from
the in-air image and depth pairings in an unsupervised
pipeline. The network includes a two-stage network for
color cast removal. Li et al. [37] proposed UWCNNs trained
by ten types of underwater images, where the underwater
images are synthesized from a revised underwater image
formation model [38] and the corresponding underwater
scene parameters. More recently, Li et al. [39] proposed a
weakly supervised underwater color transfer model called
Water CycleGAN which is based on CycleConsistent Adver-
sarial Networks [40]. Although the GAN-based methods
have made great progress in underwater image enhancement,
they still cannot solve the disadvantages of unstable outputs
from GANs. As for CNN-based methods, Wang et al. [41]
proposed a CNN model with two color spaces RGB and
HSV called UIEC^2. UIEC^2 uses RGB color space for
denoising and removing color cast and HSV color space for
globally adjusting underwater image luminance, color and
saturation. Li et al. [59] proposed Ucolor that uses medium
transmission-guided multi-color space embedding to solve
wavelength and distance-dependent attenuation and scatter-
ing. More recently, a transformer architecture [20] called
U-shape transformer was proposed. U-shape transformer
was designed with two transformer modules to reinforce
the network’s attention to color channels and space areas
and combines RGB, LAB and LCH color spaces as loss
function. In summary, many CNN-based methods improve
the quality of underwater images by increasing the network’s
feature extraction capability. However, there are still some
shortcomings in CNN-based methods discussed above. CNN
models rely on large number of high-quality datasets but
such datasets are difficult to obtain. Also, the structure of
these CNN models is often too complex resulting in a large
model size. Therefore, in this paper, we derive the inputs
with multiple preprocessing operations for data augmentation
and we use a simpler model structure to keep the model
lightweight.

C. UNDERWATER IMAGE ENHANCEMENT USING
ATTENTION MECHANISM
In previous studies, attention mechanism [42] has been
widely used in various low-level vision tasks, such as

image restoration [43], image super resolution [44], image
segmentation [45] and image enhancement [46]. It biases
the allocation of the most informative feature expression and
simultaneously suppresses the less useful ones. From the
above researches, we could see that attention mechanism
has the advantages of feature representation and visual
compensation, which are important for the low-level tasks.
Because of these advantages, attention has been applied to
many underwater image enhancement tasks. Li et al. [47]
proposed UDA-Net using unsupervised attention mech-
anism for region-wise underwater image enhancement,
Wang et al. [48] used class-condition attention, in which an
underwater image is classified first and then the class label
guides the generating of enhanced images and Fu et al. [49],
used residual two-fold attention, in which non-local attention
and channel attention are embedding to extract and enhance
features. Furthermore, Qi et al. [50] proposed SGUIE-Net
using semantic information as high-level guidance across
different images that share common semantic regions.
Given the above introduction, using attention mechanism
shows better performance in underwater image enhancement
both synthetic and real-world. Therefore, in this paper,
we use spatial and channel attention in underwater image
enhancement to achieve higher-quality images. Inspired by
Selective Kernel Network [6] and Convolutional Block
Attention Module [5], we combine both and apply them in
U-Net [4]. Our Selective Kernel Block and Spatial Attention
Module can guide the network to pay more attention to the
more serious attenuated color channels and spatial areas.
Unlike other models, our network could adaptively adjust
receptive filed sizes of spatial areas and color channel
weights.

III. PROPOSED NETWORK
In this section, we discuss the details of the proposed
CNN-based underwater image enhancement model using
spatial and channel attention, called SCAUIE-Net. Firstly,
we introduce the input generation, a preprocessingmodule for
underwater images. Then we depict the network architecture
including Selective Kernel Block and Spatial Attention
Module. Finally, we introduce the loss function used in
SCAUIE-Net.

A. INPUT GENERATION
To fulfill lighting conditions and complex underwater
scenes needed for the training data, we derive the inputs
with multiple preprocessing operations. Inspired by the
degradation process of underwater images, we generate
three inputs by respectively applying White Balance [51],
Histogram Equalization [52] and Gamma Correction algo-
rithms [53]. Then we use the fusion strategy of blending
color features to obtain decent results. We directly apply
the white balancing technique proposed in [51] which
minimizes this effect of color casts for the entire scene.
We employ Histogram Equalization on Lab color space for
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FIGURE 2. Selective Kernel Convolution. ⊕ denotes element-wise summation and ⊗ denotes element-wise product.

improving the contrast and lightening up dark regions. In the
Gamma Correction algorithm, we set the Gamma value to
0.7 empirically.

B. SELECTIVE KERNEL CONVOLUTION
Receptive field sizes play an important role in image color
perception. For underwater images, the enhancement effect
could be benefited from adaptively adjusting receptive field
sizes. Therefore, we use an automatic selection operation,
‘‘Selective Kernel Convolution’’, among multiple kernels
with different kernel sizes. Specifically, we implement the
SK convolution via three operators – Split, Fuse and Select,
as illustrated in Fig. 2, where a two-branch case is shown.
Therefore, in this example, there are only two kernels with
different kernel sizes, but it is easy to extend to multiple
branches case.

1) SPLIT
For any given feature map X ∈ RH

′
×W ′

×C ′

, by default,
we first conduct two transformations F̃ : X → Ũ ∈

RH×W×C and F̂ : X → Û ∈ RH×W×C with kernel sizes
3 and 5, respectively. Note that both F̃ and F̂ are composed
of efficient grouped/depthwise convolutions, Batch Normal-
ization [53] and ReLU [54] function in sequence. For further
efficiency, the conventional convolution with a 5 × 5 kernel
is replaced with the dilated convolution with a 3 × 3 kernel
and dilation size 2.

2) FUSE
As stated in the Introduction, our goal is to enable neurons
to adaptively adjust their receptive field sizes according to
the stimulus content. The basic idea is to use gates to control
the information multiple branches carrying different scales
of information into neurons in the next layer. To achieve
this goal, the gates need to integrate information from all
branches. We first fuse results from multiple (two in Fig.2)
branches via an element-wise summation:

U = Ũ + Û (1)

then we embed the global information by simply using global
average pooling to generate channel-wise statistics as s ∈ RC .
Specifically, the c-th element of s is calculated by shrinking

U through spatial dimensions H ×W :

sc = Fgp (Uc) =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j). (2)

Further, a compact feature z ∈ Rd×1 is created to enable
the guidance for the precise and adaptive selections. This
is achieved by a simple fully connected (fc) layer, with the
reduction of dimensionality for better efficiency:

z = Ffc(s) = δ(B(Ws)), (3)

where δ is the ReLU function, B denotes the Batch
Normalization, W ∈ Rd×C . To study the impact of d on the
efficiency of the model, we use a reduction ratio r to control
its value:

d = max(C/r,L), (4)

where L denotes the minimal value of d (L = 32 is a typical
setting in our experiments).

3) SELECT
A soft attention across channels is used to adaptively select
different spatial scales of information, which is guided by the
compact feature descriptor z. Specifically, a softmax operator
is applied on the channel-wise digits:

ac =
eAcz

eAcz + eBcz
, bc =

eBcz

eAcz + eBcz
(5)

where A,B ∈ RC×d and a, b denote the soft attention vector
for Ũ and Û, respectively. Note that Ac ∈ R1×d is the c-th
row of A and ac is the c-th element of a, likewise Bc and bc.
In the case of two branches, thematrixB is redundant because
ac + bc = 1. The final feature map V is obtained through the
attention weights on various kernels:

Vc = ac · Ũc + bc · Ûc, ac + bc = 1, (6)

where V = [V1,V2, . . . ,Vc] ,Vc ∈ RH×W . Note that here
we provide a formula for two-branch cases and on can
easily deduce situations with more branches by extending
equals (1) (5) (6).
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FIGURE 3. Spatial Attention Module. The spatial attention module uses max-pooling and average-pooling along the channel
axis to obtain outputs. Then, the spatial attention module forwards the outputs to a selective kernel convolution.

C. SPATIAL ATTENTION MODULE
We generate a spatial attention map by utilizing the
inter-spatial relationship of features. Different from chan-
nel attention, spatial attention focuses on ‘where’ is an
informative part, which is complementary to channel atten-
tion. To compute the spatial attention, we first apply
average-pooling and max-pooling operations along the chan-
nel axis and concatenate them to generate an efficient feature
descriptor. Applying pooling operations along the channel
axis is shown to be effective in highlighting informative
regions. On the concatenated feature descriptor, we apply
a selective kernel convolution layer to generate a spatial
attention map Ms (F) ∈ RH×W which encodes were to
emphasize or suppress. Selective kernel convolution employs
adaptive channel weights, which could select the weights of
the concatenated feature descriptor to improve the channel
representation capability of the Spatial Attention Module.
The Spatial Attention Module is illustrated in Fig. 3.
We describe the detailed operation below.

We aggregate channel information of a feature map by
using two pooling operations, generating two 2D maps:
Fs
avg ∈ R1×H×W and Fs

max ∈ R1×H×W . Each denotes average
pooled features and max-pooled features across the channel.
Those are then concatenated and convolved by a standard
convolution layer, producing our 2D spatial attention map.
In short, the spatial attention is computed as:

Ms(F) = σ
(
f 7×7([AvgPool(F);MaxPool(F)])

)
,

= σ
(
f 7×7

([
Fs
avg ;Fs

max

]))
(7)

where σ denotes the sigmoid function and f 7×7 represents
a selective kernel convolution operation with the filter size
of 7×7.

D. NETWORK ARCHITECTURE
1) OVERALL ARCHITECTURE
SCAUIE-Net is illustrated in Fig.4. It’s a gated fusion
network to learn three confidence maps that indicate the most
significant features of inputs respectively. Then, the inputs are
fused with the confidence maps to get the fused images. The
sum of the fused images is the enhanced result.

The architecture of the proposed SCAUIE-Net consists of
two parts: Image Refiner and Confidence Map Generator.
The components used in SCAUIE-Net are Selective Block
and Spatial Attention Module. Image Refiner is a plain fully
CNN. Confidence Map Generator uses U-Net [4] as the
backbone. To reduce the color casts and artifacts brought
by the White Balance [51], Histogram Equalization [52] and
Gamma Correct algorithms, we add three Image Refiners
and feed the three derived inputs and original input to the
Image Refiner. Then, we separately feed the refined inputs
to the Confidence Map Generator to predict confidence
maps. At last, the refined three inputs are multiplied by the
three learned confidence maps to achieve the final enhanced
result:

Ien = RWB ⊙ CWB + RHE ⊙ CHE + RC ⊙ CGC (8)

where Ien is the enhanced result;⊙ indicates the element-wise
production of matrices; RWB,RHE and RGC are the refined
results of input after processing by White Balance [51],
Histogram Equalization [52] and GammaCorrect algorithms;
CWB, CHE and CGC are the learned confidence maps.

2) IMAGE REFINER
Image Refiner is a shallow CNN. It consists of Selective
Kernel Convolution and 2D convolutional layers, each
followed by a ReLU [54]. At the first layer, 1×1 convolution
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FIGURE 4. The network structure of SCAUIE-Net. SCAUIE-Net consists of a Confidence Map Generator for predicting the confidence maps and three Image
Refiners for removing color cast.

FIGURE 5. The structure of Image Refiner that is a shallow CNN.

is used to increase the number of feature channels to 32.
Then, Selective Kernel Convolution is applied twice to focus
on the channel information. the second Selective Kernel
Convolution layer will double the number of the feature
channels. At the final layer, 1×1 convolution is used to reduce
dimension mapping 64 feature channels to a refined image
with 3 channels.

3) CONFIDENCE MAP GENERATOR
The backbone of Confidence Map Generator is U-Net which
performs well in image processing. Similar to U-Net [4],
Confidence Map Generator consists of a contracting path
and an expanding path. The contracting path consists of

the repeated application of two 3 × 3 convolutions, each
followed by a ReLU [54], a 2× 2 maxpooling operation with
stride 2 for downsampling, a Selective Kernel Block that is a
basic residual block [55] (shown in Fig. 7) built by Selective
Kernel Convolution and a Spatial Attention Module for
extracting spatial attention weights. At each downsampling
step, we double the number of feature channels. The
expanding path consists of an upsampling of the feature
map followed by a 2 × 2 convolution, a Selective Kernel
Block and a Spatial AttentionModule. The usage of Selective
Kernel Block and Spatial Attention Module is similar to
the contracting step. At each expanding step, we halve the
number of feature channels.
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FIGURE 6. The structure of Confidence Map Generator. Each blue block represents a multi-channel feature map. The number of channels is denoted at
the top of the box. The symbols in the box above are the operations that we use in the confidence map generator.

E. NETWORK LOSS FUNCTION
The end-to-end training of SCAUIE-Net is supervised by
three loss components, which consist of LMS−SSIM , Lℓ1

and LPerceptual .

1) SSIM LOSS
To enhance underwater images from the perspective of
luminance, contrast and structure, the error function of
perceptually motivated SSIM is effective. SSIM for pixel p
is defined as

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ 2
x + σ 2

y + C2

= l(p) · cs(p) (9)

where x, y denotes the position of pixel p; µx , µy and σx , σy
separately denotes the mean and standard deviation of pixel
p; σxy represents the covariance of x, y; C1, C2 are small
constants used to maintain the stability of l (p), c (p) and
s (p). The loss function for SSIM can be then written setting
ε (p) = 1 − SSIM (p):

LSSIM (P)=
1
N

∑
p∈P

1 − SSIM (p). (10)

2) MS-SSIM LOSS
In practice, the subjective evaluation of a given image
varies due to the different factors for different images.
The single-scale method SSIM described in 4.5.1 may be
appropriate only for specific settings. Multi-scale method
is convenient to incorporate image details at different

resolutions. Rather than fine-tuning settings, we propose to
use the multiscale version of SSIM, MS-SSIM. Given a
dyadic pyramid ofM levels, MS-SSIM is defined as

MS-SSIM(p) = lαM (p) ·

M∏
j=1

cs
βj
j (p) (11)

where lM and csj are the terms that we defined in Selection
4.5.1 at scale M and j, respectively. For convenience, we set
α = βj = 1, for j = {1, . . . ,M}. Like Equation (10), the loss
function for MS-SSIM can be written as follow:

LMS−SSIM (P) = 1 − MS-SSIM(p). (12)

3) PERCEPTUAL LOSS
Perceptual loss can produce visually pleasing and realistic
results. Inspired by [7] and [58], We define the perceptual
loss based on the ReLU activation layers of the pretrained
19 layers VGG network [56]. Due to the deep layer could
represent semantic information well and can fully preserve
the image content and overall spatial structure, we select
layer 5_4 from VGG19 to make it sensitive to semantics.
The perceptual loss is expressed as the distance between the
feature representations of the enhanced underwater image Ien
and the reference underwater image Igt :

Lφ
j =

1
CjHjWj

∑
i=1

∥ φj

(
Iien

)
− φj

(
Iigt

)
∥, (13)

where φj (x) denotes the jth convolution layer (after activa-
tion) of the VGG19 network pretrained on the ImageNet [57]
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FIGURE 7. Selective Kernel Block. A basic residual block built by Selective
Kernel Convolution.

dataset; N is the number of each batch in the training
procedure; CjHjWj represents the dimension of the feature
maps of the jth convolution layer within the VGG19 network;
Cj,Hj, andWj are the number, height, and width of the feature
map.

4) MAE LOSS
Due to the ℓ2 loss function will cause artifacts, ℓ1 is applied
ℓ1 instead of ℓ2. The loss function ℓ1 is simply defined as
follows:

Lℓ1 (P) =
1
N

∑
P

|x(p) − y(p)|, (14)

where p is the index of the pixel and P is the patch; x (p)
and y (p) are the values of the pixels in the processed patch
and the ground truth respectively. The derivatives for the
back-propagation are also simple, since ∂Lℓ1 (p) /∂q =

0, ∀ {q} ̸= p. Therefore, for each pixel p in the patch,

∂Lℓ1(P)/∂x(p) = sign(x(p) − y(p)). (15)

The derivative of Lℓ1 is not defined at 0. Thus, we use the
convention that sign (0) = 0. The network will not update
the weights when Lℓ1 = 0.

5) LOSS TERM WEIGHTS
MS-SSIM preserves the contrast in high-frequency regions,
ℓ1 preserves colors and luminance, and Perceptual Loss
preserves semantic information. To capture the best charac-
teristics of these functions, we propose to combine them, and
each loss term has a weight hyperparameter: α, β, γ :

LMix
= α · LMS-SSIM

+ β · Lℓ1 + γ · LPerceptual, (16)

where we empirically set α = 2, β = 0.000025 and
γ = 0.0025.

IV. EXPERIMENTS
In this section, we first introduce the training details of
the SCAUIE-Net. Then, we train our network model with
the UIEB dataset. Furthermore, we perform qualitative
and quantitative comparisons with traditional, physical-
based, and recent deep-learning-based methods to evaluate
our proposed network. These methods include Histogram
Equalization [52], GDCP [30], UDCP [27], UWGAN [10],
Water-Net [9], Ucolor [59]. Finally, we conduct ablation
studies to demonstrate the effectiveness of each component
in SCAUIE-Net.

A. IMPLEMENTATION DETAILS
For training, the inputs of our network are real-world
underwater images. A random set of 800 pairs of real-world
images extracted from the UIEB dataset are used to train our
network. We resize the input images to size 112× 112 due to
our limited memory. Flipping and rotation are used to obtain
7 augmented versions of the original training data. For testing,
the rest 90 pairs of real-world images are treated as the testing
set.

We implemented the proposed SCAUIE-Net with PyTorch
on Ubuntu20 with an Nvidia 2080Ti GPU. During training,
a batch-mode learning method with a batch size of 16 was
applied and the epoch was set to 300. The filter weights of
each layer were initialized by standard Gaussian distribution.
Bias was initialized as a constant. We trained our model
using ADAM and set the learning rate to 0.0001. We used
ReduceLROnPlateau as the learning rate decay strategy. The
learning rate decreased by a factor of 0.50 when the loss
stopped declining over 10 epochs.

B. EXPERIMENT ON UIEB DATASET
We first select underwater images from the UIEB and then
divide these images into five categories: greenish and bluish
images, yellowish images, low backscatter scenes (short
distance between camera and scene), and high backscatter
scenes (long distance between camera and scene). Then,
we enhance images of the various categories in different
methods. Moreover, we qualitatively compare the enhanced
results of different methods and the corresponding images are
shown in Fig. 8.

Due to the different attenuation ratios of red, green, and
blue lights, photographs taken underwater always show color
casts, such as greenish color, and bluish color shown in
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FIGURE 8. Qualitative comparisons on underwater samples from the UIEB dataset. (a) denotes the greenish image;
(b) denotes the bluish image; (c) denotes the yellowish image; (d) denotes the low backscatter image; (e) denotes the high
backscatter image. From the top row to the bottom row are raw underwater images, the results of Histogram
Equalization [52], GDCP [30], UDCP [27], UWGAN [10], Water-Net [9], Ucolor [59], the proposed SCAUIE-Net and reference
images.

Fig. 8 (a) and (b). Also, the particles that are suspended
underwater will absorb blue lights which cause yellowish
color casts shown in Fig. 8 (c). With the distance that light
travels farther in underwater, the yellowish color cast will
be deepened. Additionally, because of the light coming from
atmospheric light reflected by the suspended particles [3], the
backscatter will cause foggy veiling in underwater images.
The low backscatter underwater image and high backscatter
underwater image are separately shown in Fig.8 (d) and (e).
Histogram Equalization [52] effectively improves the con-
trast of images and performs well in Fig. 8 (d). However,

Histogram Equalization causes significant over-saturation.
GDCP [30] brightens the underwater images. UDCP [27]
could significantly dehaze underwater images but aggravate
the color casts. UWGAN [10] improves the brightness and
contrast of underwater images but the enhanced images are
bluish. Water-Net [9] could effectively reduce artifacts but
has local over-saturation. Ucolor [59] has fewer color casts
but introduces artifacts shown in Fig. 8 (d). Our proposed
method improves proper contrast and saturation making
the foreground more natural but still exists obvious color
casts. In conclusion, most methods could effectively remove
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FIGURE 9. The enhanced results of without using Spatial Attention Module, without using Selective Kernel Block and SCAUIE-Net. (a)-(e) are
underwater images randomly selected from the UIEB dataset and enhanced by each component. Top row: the results of without using Spatial
Attention Module; Middle row: the results of without using Selective Kernel Block; Bottom row: the results of SCAUIE-Net.

the haze and improve the quality of underwater images.
However, for deep-learning based methods, introducing arti-
facts, over-enhancement and color casts are still issues to be
overcome.

To quantitatively evaluate the performance of different
methods, we choose two commonly used full-reference
metrics (i.e., PSNR and SSIM) to assess the enhanced results
on the UIEB dataset. A higher PSNR score means that the
enhanced image is closer to the reference image in terms
of image content. A higher SSIM denotes that the enhanced
image is more like the reference image in the image structure.
Meanwhile, we choose underwater color image quality eval-
uation (UCIQE [60]) and underwater image quality measures
(UIQM [61]) as non-reference image quality metrics. UCIQE
evaluates underwater quality by color density, saturation, and
contrast. UIQM measures the underwater image quality by
underwater colorfulness, underwater image sharpness and
underwater image contrast.

The full-reference results of different methods on the UIEB
dataset are reported in Table 1. Also, the non-reference results
of different methods on the UIEB dataset are reported in
Table 2. A higher UCIQE or UIQM score denotes a better
human visual perception. We highlight the best performance
in red, the second best is in blue. As shown in Table 1,
our proposed SCAUIE-Net stands as the performer across
all metrics and the Ucolor [59] performs the second best

TABLE 1. Full-reference image quality evaluation in terms of PSNR, and
SSIM on the UIEB dataset.

in full-reference metrics. The highest scores obtained by
SCAUIE-Net demonstrate that our method could process
details better. The scores of UCIQE and UIQM are shown
in Table 2. In Table 2, the Histogram Equalization [52] (HE)
performs best in UCIQE and GDCP [30] performs the second
best in UCIQE; theUWGAN [10] ranks the best in UIQMand
the Ucolor [59] achieves the second best in UIQM. The poor
non-reference metrics generated from SCAUIE-Net show
that the underwater non-reference metrics could not provide
a good measure of human eyes’ perception.

To further measure the performance between the different
deep-learning-based methods (i.e., UWGAN [10], Water-
Net [9], Ucolor [59], and SCAUIE-Net), we also compare
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TABLE 2. Non-reference image quality evaluation in terms of UCIQE,
UIQM on UIEB dataset.

TABLE 3. FLOPs and Params for different algorithms.

TABLE 4. Full-reference Image Quality Assessment without Spatial
Attention Module and Selective Kernel Block.

TABLE 5. Non-reference Image Quality Assessment without Spatial
Attention Module and Selective Kernel Block.

FLOPs and Params for different algorithms in Table 3.
As shown in Table 3, SCAUIE-Net has the fewest FLOPs
compared to other deep-learning-based methods although we
do not have the fewest Params. Because we introduce the
selective kernel blocks that allow the network to reduce the
FLOPs with increasing the number of Params. Water-Net
employs a wider network, resulting in high FLOPs. Ucolor
employs multi-color space encoder network, which causes
too large network Params and FLOPs.

C. ABLATION STUDY
To demonstrate the effect of Spatial Attention Module
and Selective Kernel Block in our network, we compared
the proposed SCAUIE-Net without (w/o) Spatial Attention
Module and without Selective Kernel Block as an ablation
study. As shown in Table 4 and Table 5, Spatial Attention
Module significantly improves the whole model performance
though it decreases the performance of UIQM; Selective
Kernel Block increases the performance of UIQM even
though the improvements are not as obvious as Spatial
Attention Module.

In Fig. 9, we select five images (a)-(e) that are performed
on the network with different components. Fig. 9 (a), (b)
shows that Spatial attention module and Selective Kernel
Attention are effective in removing the background color cast
which makes the images more realistic. Fig. 9 (c) shows that
although the components could effectively process color cast,
they perform not well in preserving image details and edge
contour information. Fig. 9 (d) shows that Spatial Attention
Module is not sensitive to the local color of the image, and the
background color is relatively monotonous. Fig. 9 (e) shows
that Selective Kernel Block compared to Spatial Attention
module could obtain reasonable underwater images even
though Spatial Attention Module could obtain more visually
pleasing images.

V. CONCLUSION
This paper proposes an underwater image enhancement
method called SCAUIE-Net, using both Spatial Attention
Mechanism and Channel Attention Mechanism. The network
uses a gated fusion strategy and attention mechanism on
the UIEB dataset. Compared to Water-Net, this network
uses U-Net architecture as the backbone which enlarges
the network’s depth and width. Besides, the network’s
Spatial Attention Module and Selective Block could perceive
color differences of underwater images in different color
channels and space regions. Combined with the multiple
image quality loss function, the contrast and saturation
of output images are further improved. In terms of full-
referencemetrics, the PSNR of SCAUIE-Net is 3.8156 higher
than that of Water-Net, and the SSIM of SCAUIE-Net is
0.1289 higher than that of Water-Net. In the section on
experiments, we validate the model’s effectiveness through
qualitative comparisons and quantitative comparisons with
other underwater image enhancement methods. Furthermore,
we conduct ablation studies to demonstrate the effectiveness
of each component in SCAUIE-Net. Nevertheless, there
is a lack of reference metrics to measure the underwater
image quality. Therefore, appropriate evaluation metrics for
measuring the performance and effectiveness of underwater
image enhancement algorithms is an important direction for
the future work.
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