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ABSTRACT This paper presents a comprehensive study of compressed sensing (CS) techniques applied
to Charge Coupled Device (CCD) and Complementary Metal-Oxide Semiconductor (CMOS) sensor-
based cameras. CS is a powerful technique for reducing the number of measurements required to capture
high-quality images while maintaining a high signal-to-noise ratio (SNR). In this study, we propose a
novel CS method for CCD and CMOS sensor-based cameras that combines a new sampling scheme with
a sparsity-inducing transform and a reconstruction algorithm to achieve high-quality images with fewer
measurements. This paper focuses on an efficient CCD image capturing system suitable for embedded
IoT applications. Hardware implementation has been done for proof of concept with an onboard Field
Programmable Gate Array (FPGA) performing the compression. This hardware module is used over a
wireless network to transmit and receive images under different test conditions with both CMOS and CCD
sensors. For each use case, Peak Signal to Noise Ratio (PSNR), average power, and memory usage are
computed under different ambient lighting conditions from dark to very bright. The results show that, a
640 × 480 CCD sensor with compressed sensing with a sparsity of 0.5, provides 13% power saving and
15% memory saving compared to uncompressed sensing in no-light condition, resulting in 25.76 dB PSNR.
Whereas, in no light condition, CMOS sensor does not capture any image at all. These results shows that
the CCD image capturing system with compressed sensing can be conveniently used for embedded IoT
applications. The data recovery from wireless sensor network is done at a central office where computing
time and processing power resources are not constrained. The weight of the CCD camera is approximately
100 grams with modular build approach.

INDEX TERMS CCD imager, CMOS imager, compressive sensing, dynamic range, fill-factor, global
shutter, IoT, LVDS, PSNR, quantum efficiency, rolling shutter, wearable camera.

I. INTRODUCTION
Wearable video cameras that can transmit streaming videos
will be of great aid in the surveillance applications. The
concern with wearable cameras is the quality of video, power
dissipation and resource requirements such as memory, band-
width etc. Video quality depends on whether the sensor is
a Complementary Metal Oxide Semiconductor (CMOS) or
Charge Coupled Device (CCD) [1]. Even though CMOS
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sensors consume less power and provide high-quality pic-
ture frames, they fail under poor ambient lighting conditions
because a minimum cut-in voltage (and hence a minimum
light) is required for the CMOS image sensor to function.
On the other hand, CCD sensors provide adequate quality
pictures even in the darkest ambiance where the human eye
cannot see anything. This is possible because of the inherent
characteristics of the CCD cells. However, CCD consumes
more power and hence results in higher heat dissipation and
shorter battery life, making its use challenging in wearable
devices. To transmit a streaming video from a wearable
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TABLE 1. Important characteristics Of CMOS and CCD image sensors.

device that can be reproduced at the receiver with high
fidelity, we either need a higher bandwidth or incorporate
video compression techniques before transmission. Need for
a higher bandwidth is obviously not a choice for any sus-
tainable applications. Hence, the only option is to perform
video compression before transmission. Video compression
involves image processing using a suitable processor and
memory. This results in a higher power requirement and
hence a need to use a heat sink. These additional com-
ponents not only increase the power requirement but also
the weight of the wearable device, once again making it
unsustainable. In this paper, we present the results of our
research using a novel technique that addresses all these
issues. We used a compressive sensing technique that avoids
the use of higher memory and on-board video processing,
thereby limiting the power requirement. We implemented
this with a CCD imager to obtain decent quality video
frames under low illumination. Combining these two will
make a high-quality wearable Internet of Things (IoT) cam-
era a reality, solving the power, need for higher memory,
quality, and weight issues, thus resulting in a sustainable
system.

This study is divided into six sections. In second section,
we presented an overview of CMOS and CCD image sen-
sor characteristics along with their merits and demerits.
In third section, we presented the requirements of an image
sensor for wearable IoT applications. In fourth and fifth
sections, we presented a compressed sensing and retrieval
technique that can be used for video frame compression.
In sixth section, we presented the hardware implementation.
In seventh section, we presented the results of the work we
performed by combining the image compression coupled
with the CCD image sensor. We have carried out experiments
with CMOS image sensor as well for comparison purpose.
In the concluding section, we presented the challenges in
image compression in IoT applications as a future research
direction.

FIGURE 1. Concept of fill factor; Courtesy: Silicon imaging [9].

II. OVERVIEW OF CCD AND CMOS IMAGERS
There is an extensive body of literature available on
construction techniques for both CCD [2], [3], [4] and
CMOS [1], [5], [6], [7] sensors for image capture.

Although the main purpose of CCD technology when
invented in Bell Labs in 1969 was for data storage [8], its
capability to transport electronic charges made it possible to
use it as an image sensor to convert light to analog pixel
information. Table 1 shows the various characteristics and
parameters of CCD and CMOS image sensors.

From the above list, we will explain a few important char-
acteristics of both the CCD and CMOS image sensors.

A. ACTIVE OR PASSIVE PIXEL SENSOR
The pixel sensor can be active or passive, depending on the
construction of the sensor. In a Passive Pixel Sensor (PPS),
light is converted to voltage by employing photosites that con-
vert photons into voltage. Photosites are tiny light collectors.
No amplification was performed in the passive pixel sensor.
In an Active Pixel Sensor (APS) [6], light is converted to volt-
age using an active electronic circuitry, including photodiodes
and amplifiers. The CCD image sensor is built using PPS,
whereas the CMOS uses both PPS and APS.

B. FILL FACTOR
The percentage of photo-site or pixel devoted to collecting
the light or the percentage of photo-site that is sensitive to
light is referred to as pixel’s Fill Factor (FF). A low FF
requires a higher exposure time and bright light to capture
an image of decent quality. CCD sensors have a 100% FF,
whereas CMOS sensors have a poor FF that is much less
than that of CCD sensors. This is because, in a CMOS image
sensor, each photo-site includes circuitry for filtering noise
and amplifying the signal; hence, the area that is sensitive to
light is significantly reduced (typically 60%-75% of CCD).
The concept of FF is illustrated in [9] as shown in Fig. 1.
The FF refers to the percentage of photo-sites that are

sensitive to light. If the circuits cover 25% of each photo
site, the sensor is said to have an FF of 75%. The higher
the fill factor, the more sensitive the sensor is [9]. Recent
studies [10] have shown that a fill factor of the order of 61%
and slightly above is achievable in CMOS image sensors with
Single Photon Avalanche Diode (SPAD) detector arrays.
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FIGURE 2. Smearing and blooming effect in CMOS & CCD.

C. SHUTTER TYPE
Two types of shutters are used in image sensors: rolling
shutters and global shutters [11]. Owing to the nature of the
construction mechanism, all CCD sensors have a global shut-
ter and all CMOS sensors have rolling shutters. Performance
of rolling shutter and global shutter cameras are explained
in [12].

In the rolling shutter mechanism, the pixels of each row of
the frame are exposed one row at a time and then converted
into digital signals one at a time. The exposure times for
all the rows are the same. Whereas in global shutter, all the
pixels are exposed to the light simultaneously and then read
sequentially one at a time. In global shutter, since all pixels
are captured at the same time, the image quality is superior to
that of the rolling shutter.

D. DYNAMIC RANGE
The dynamic range of an image sensor is defined as the ratio
of the maximum achievable signal (proportional to light) to
the sensor noise. The dynamic range of the image sensors
can be calculated using the photon transfer curve, as detailed
in [15]. The dynamic range is the range between the readable
brightest and darkest pixel areas that can be captured in a sin-
gle image. CCD image sensors have a better dynamic range
than CMOS image sensors, because there is no minimum
light required for the CCD to represent the charge.

E. SMEARING & BLOOMING EFFECT
The phenomenon of corrupting the acquired image owing to
the leakage of charge from one pixel to the adjacent pixel is
known as the horizontal blooming effect or pixel saturation in
image sensors. Both smearing (a type of contrast reduction)
and blooming effects are more prominent in CCD than in
CMOS technology. These effects are noticeable when a bright
light is captured with CCD image sensor. Fig. 2 shows the
smearing and blooming effect comparison in both CMOS
and CCD image sensors captured with the same exposure
time and ambient lighting conditions. There are several com-
pensation algorithms proposed [16] for removing smearing
effects.

F. QUANTUM EFFICIENCY
Quantum Efficiency (QE) is a measure of the efficiency with
which a sensor device converts incident light or photons

FIGURE 3. Quantum efficiency of CCD image sensor at various photon
wavelengths (λ nm).

into electrical charge carriers or electrons. The formula for
quantum efficiency is:

QE = (number of charge carriers generated) / (number of
photons incident) x 100%

For example, if a sensor produces X electrons when it is
exposed to X photons, the QE is said to be 100%. Generally,
the QE is measured for various photon wavelengths for a
given image sensor. The calculation of quantum efficiency
is influenced by various factors, such as temperature, voltage
bias, and material quality. Therefore, it is essential to perform
the measurements under controlled conditions to obtain accu-
rate results. The QE of a CCD sensor can be modeled as a
product of three components: the quantum efficiency of the
sensor’s photodiode, the reflectance of the sensor’s surface,
and the transmission of the sensor’s cover glass. The overall
QE of the sensor is the product of these three components.
For a typical CCD sensor, the QE is highest in the visi-
ble range, with a peak value around 500-600 nm. At longer
wavelengths, the QE drops rapidly due to absorption in the
silicon substrate of the sensor. The QE is typically less than
10% beyond 900 nm. Fig. 3 shows the QE values captured at
various photon wavelengths.

Studies have shown [17] that the QE of a CCD image
sensor at a wavelength of 550 nm is 70%, whereas that of
a CMOS sensor is only 37% at the same wavelength.

III. IMAGE SENSOR REQUIREMENTS FOR EMBEDDED IOT
APPLICATIONS
In the introduction section, we presented a brief description
of a few issues and challenges associated with using either
CCD or CMOS image sensors for wearable IoT applications.
In this section, we will highlight the sensor requirements
for embedded IoT applications in terms of their technical
characteristics.

One of the main image sensor applications of IoT devices
is wearable cameras for surveillance used by law-and-order
control officers or night watchman drones. Many times, the
requirement might be to grab a video in very low visibility or
in absolute dark conditions and transmit it to a remote place.
To capture the picture frame that can be decently reproduced,
the sensor should have the following specifications to make
a minimum viable product (MVP).
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• High fill factor – so that the image can be captured in
very low visibility or in the absence of light where the
human eye cannot see anything clearly.

• Large pixel size, so that image quality is high even under
low ambient lighting conditions.

• High dynamic range – so that a decent quality of image
can be captured in low-light conditions.

• Global Shutter – so that fast-moving objects can be
captured without distortion.

• Low power consumption – this results in less heat dissi-
pation, leading to a longer battery life.

• Low thermal noise, so that finer details in the captured
image (such as license plate number) are undistorted.

• Less Smear and Blooming Effect – images captured in
high-intensity light are not distorted.

• High Quantum Efficiency – so that lossless (high qual-
ity) images are captured.

• Uses as much less on-board memory as possible

Most of the above conditions are satisfied with CCD sen-
sor, which has the disadvantage of high-power consumption.
If we choose a CMOS sensor for the sake of low power
consumption, we cannot capture any image in poor visibility
or in the absence of light (dark ambient conditions) as the
CMOS transistor requires a minimum threshold voltage for
conduction. To overcome the challenges of high-power, and
high memory requirements while using CCD, we present
a novel technique of compressed sensing, where the image
is compressed while capturing. The results show that the
average power consumption is relatively low for the CCD
sensor based wearable IoT device with onboard compressed
sensing.

IV. COMPRESSED SENSING
Compressed sensing (CS) was first demonstrated by Donoho
in 2006 [18] and Cande‘s et al. [19], where a technique
of simultaneous image sensing and compression was used,
which is also known as compressive sensing. The main idea
involved in CS is to recover a sparse signal by means of
nonadaptive linear measurements with convex optimization.
This method involves recovering a multidimensional sparse
vector with a dimension-reduction step.

A sparse matrix or sparse array is a matrix with a majority
of zero elements. Sparsity refers to the nonzero elements of
the matrix. The sparse matrix is said to be dense if most of
the elements are non-zero. The sparsity of the matrix was
obtained by dividing the number of zero-valued elements by
the total number of elements. Compressive sensing is suitable
for reducing the bandwidth and power of imaging applica-
tions. In the CS technique [20], [21], [22], while acquiring the
image itself, only the non-redundant required image is sensed
or captured, instead of capturing the entire frame, including
redundant information, and then removing the redundancy.
This technique is presented in [23] with relevant algorithm.

A schematic of the CS implementation is shown in
Fig. 4 and the compression process is shown in Fig. 5. The

FIGURE 4. Implementation block schematic for compressed sensing.

FIGURE 5. Compressed sensing process flow.

streaming video image captured by the CCD image sensor
was processed frame-by-frame and transmitted over a wire-
less sensor network. The received frames are reconstructed at
the receiver end.

Generally, the acquired images are sparse in transform
domains such as DCT, DFT, or DWT. To understand com-
pressed sensing, consider a transform domain basis Ψ repre-
sented as an n× nmatrix such that the image x represented as
a column vector, n × 1 is sparse in Ψ . This can be expressed
as shown in (1) [21], [22]:

x = Ψθ; ||θ ||0 ≤ k (1)

where θ is a n× 1 k-sparse vector; meaning, θ has at most k
non-zero elements, where k ≪ n.

In practice, the transformed image of x, denoted by y, is a
column vector m × 1, where m < n is measured. In a linear
measurement model represented by a matrixΦ, y is expressed
as in (2).

y = Φx = ΦΨθ = Φ′θ (2)

In compressed sensing computations,Φ is a randommatrix
of order m × n, known as a mixing matrix. Using this
random matrix, the transformed image y can be represented
using a basis, whose vectors are random linear combina-
tions of the original basis Ψ . In addition, Φ′ is expressed
as Φ′

= ΦΨ .
It has been shown [20] that for efficient compression to

occur,Φmust be incoherent with the basisΨ .This condition is
satisfied when Φ is chosen as a random matrix. Interestingly,
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FIGURE 6. Compressed sensing algorithm flow chart.

the sparsity becomes 1 when k equals n. This resulted in zero
compression. If we chose k ≪ n, this would give reasonably
high compression, but owing to limited non-zero samples, the
reconstructed image will be very lossy. While computing the
CS using equation 2, in the random matrix Φ of the order
m × n, the compression ratio is m

n , where m represents no.
of measurements, and n represents no. of pixels. Ifm< n, the
solution is said to be ill-posed, as there are more unknowns
than equations.

This problem can be overcome by using the sparsity k
of θ . In this scenario, the measurement vector y is a linear
combination of k columns of the matrix, ΦΨ with θ ̸= 0.
If we know beforehand the non-zero k entries of θ , then we
can form an m × k system of linear equations to solve for
the non-zero values. In this case, the number of equations m
either equals or exceeds the number of unknowns k in many
cases. The measurement matrix Φ must satisfy the Restricted
Isometry Property (RIP) which is a necessary and sufficient
condition to ensure that the m × k system is resolvable [21].
RIP is expressed as shown in (3).

(1 − δ) ≤

∥∥∅ψ−1v
∥∥
2

| |v| |2
≤ (1 + δ) (3)

where v is any vector with the same nonzero coefficients as
that of θ and 0 < δ < 1.

Various optimization solutions can be incorporated to
determine θ from known values of y and Ψ . We chose the
following optimization method [21], [25] as shown in (4).

θ̂ = min
2

∥ΦΨ − y∥22 + α||θ ||1 (4)

We obtain the optimal solution of equation (4) using l1min-
imization as shown in Equation (5), where ε is the maximum
permissible error in the l1 minimization step.

min ∥θ∥1 subject to ∥ΦΨθ − y∥22 ≤ ε (5)

The original image data, x, can be reconstructed from the
obtained solution, θ̂ , as shown in (6).

x̂ = Ψ θ̂ (6)

We first acquired the image and converted it to a grey scale
before dividing it into 8 × 8 blocks. Subsequently, the DCT

FIGURE 7. MATLAB simulation results with different sparsity values:
Figure (a) & (b) are MRI images sampled with sparsity values of 0.3 and
0.7 respectively. Fig. (c) is camera man image sampled with a sparsity 0.5.

coefficients were computed for each block. The coefficients
were then normalized using the largest coefficient magnitude.
We then chose a threshold value, γ , where any coefficient
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value < γ was set to zero. The no. of coefficients > γ are
sampled to have ‘m’ samples. The value of ‘m’ is referred to
as ‘sparsity’ or a sparse value. This process is outlined in the
flowchart shown in Fig. 6.
MATLAB simulation results [24] for standard images with

different sparsity values are shown in Fig. 7.

V. IMAGE RECONSTRUCTION
In compressed sensing (CS), the goal is to reconstruct an
image from a small number of linear measurements, exploit-
ing its sparsity or compressibility in a certain transform
domain. There are several familiar reconstruction techniques
commonly used to recover sparse signals at various sparse
levels. Most used techniques [25] are Basis Pursuit, Matching
Pursuit, Orthogonal Matching Pursuit (OMP) and Com-
pressive Sampling Matching Pursuit (CoSaMP) algorithms.
CoSaMP is an iterative algorithm that combines ideas from
OMP and Iterative Hard Thresholding (IHT). CoSaMP is
known for its ability to handle higher levels of sparsity and
noisy measurements. We have used CoSaMP algorithm [26]
to reconstruct the sparse signal.

Let’s consider a compressive sensing problem where we
aim to reconstruct a sparse signal x frommeasurements y. The
sensing process can be represented by a measurement matrix
A. The CoSaMP algorithm involves the following five steps:

Initialization:

• Set the solution vector x as an all-zero vector of appro-
priate size.

• Compute the initial residual r by subtracting the mea-
surements y from the product of the sensing matrix A
and the current solution estimate x.

Support Set Selection:

• Compute the correlation vector between the residual r
and the columns of A : z = AT r

• Select the indices of the K largest magnitude entries in
z: � = topk_indices(|z|, K).

Least-Squares Estimation:

• Form a submatrix A_� by selecting the columns of A
indexed by the elements in �.

• Solve the least-squares problemmin| |(A_� ∗ x_�)−y| |2,
where x_� represents the sub-vector of x corresponding
to the indices in �.

• Obtain the least-squares solution x_�∗ within the sup-
port set �.

Where, ‘x’ represents the original signal vector, ‘�’ refers to
the support set, which is a set of indices indicating the selected
features or columns of the measurement matrix and ‘x_�∗’
denotes the estimated or optimal solution for the signal values
within the support set ‘�’.

Thresholding and Solution Update:

• Update the solution estimate x by setting all elements
outside� to zero and assigning x_�∗ to the correspond-
ing elements within �.

FIGURE 8. System-on-module (SoM) block diagram for image acquisition
and processing.

FIGURE 9. System-on-module (SoM) hardware implementation for image
acquisition and processing.

• Compute the updated residual r by subtracting the mea-
surements y from the product of the sensingmatrixA and
the updated solution estimate x.

Convergence Check:
• If the residual norm ||r|| is below a predefined threshold
ε, terminate the iterations and return the final solution
estimate x.

• Otherwise, continue to the next iteration.
The algorithm iteratively refines the solution estimate by
updating the support set � and performing a least-squares
estimation within the support set. The thresholding step
enforces sparsity by setting coefficients outside � to zero,
and the solution update step incorporates the least-squares
estimate within � to improve the solution estimate. The
reconstructed images are shown in Table 2 through 10.

VI. HARDWARE IMPLEMENTATION
In this section, we briefly present an IoT System-On-
Module (SoM) built with CCD and CMOS image sensors.
We adopted a modular hardware design approach such that
the same hardware modules could be used for either of the
sensors. A block diagram of the image acquisition and pro-
cessing of SoM is shown in Fig. 8. The modular design
facilitates easier debugging of hardware.

As shown in Fig.9, the hardware implementation involves
modular design to make embedded system as compact as
possible. It consists of sensor module, compression sens-
ing module (that includes FPGA), an interface module and
power supply module. The image sensor module design is
performed in such a way that it can hold either a CCD or
a CMOS imager with the associated sensor electronics. The
overall weight of the above hardware module is approxi-
mately 100 grams (without any type of casing) whichmakes it
easier to use in embedded IoT applications. Detailed descrip-
tion of the hardware implementation is beyond the scope of
this paper. The completely assembled system of the module
is shown in Fig.9. The laboratory test setup is shown in
Fig. 10. The tests were repeated for both the CMOS and CCD
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FIGURE 10. Laboratory test & measurement setup acquiring images and
measuring average power for various test conditions.

FIGURE 11. PSNR computation algorithm.

TABLE 2. Test Condition 1: Ambient light intensity < 100 Lux;
Sparsity = 0.2.

image sensors under the same test conditions for comparison
purpose.

VII. TEST RESULTS
We have summarized the power measurements and memory
computation based on the dynamic FIFO register imple-
mented in the FPGA for different test conditions using
monochrome CMOS and CCD imagers. Both sensors were
set up with the same exposure time, frame rate, and resolution
for an apple-to-apple comparison. The Peak Signal-to-
Noise Ratio (PSNR) is a measure of the degree to which
the original image is corrupted in terms of distortion.
The PSNR can be mathematically represented as shown
in (7).

PSNR = 20log10
(
Max f /

√
MSE

)
(7)

TABLE 3. Test Condition 2: Ambient light intensity < 100 Lux; Sparsity =

0.5.

TABLE 4. Test Condition 3: Ambient light intensity < 100 Lux; Sparsity =

0.7.

TABLE 5. Test Condition 4: Ambient light intensity = 1000 Lux; Sparsity =

0.2.

where f is an m × n matrix form of the original image, and
MSE is the mean square error, which is expressed as shown
in (8).

MSE =
1
mn

∑m−1

i=0

∑n−1

j=0
| |f (i, j)− g (i, j)| |2 (8)
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TABLE 6. Test Condition 5: Ambient light intensity = 1000 Lux;
Sparsity = 0.5.

TABLE 7. Test Condition 6: Ambient light intensity = 1000 Lux;
Sparsity = 0.7.

TABLE 8. Test Condition 7: Ambient light intensity = 100000 Lux;
Sparsity = 0.2.

where g is the matrix form of the decompressed image,m rep-
resents no. of pixels in a row, i is the row index, n represents
no. of pixels in a column, j is the column index.

The PSNR is computed for each image using the algorithm
described in Fig.11. The results for each test case are listed in
Table 2 through 11.

In Table 2 through 11, original image and reconstructed
image have the following meanings:

Original Image: At the output of the sensor.

TABLE 9. Test Condition 7: Ambient light intensity = 100000 Lux;
Sparsity = 0.5.

TABLE 10. Test Condition 7: Ambient light intensity = 100000 Lux;
Sparsity = 0.7.

TABLE 11. PSNR Values computed for each test case for different lighting
conditions.

Reconstructed Image: At the IoT receiver in the wireless
sensor network.

Constant parameters were:
Sensor resolution: Video Graphic Array (VGA)
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TABLE 12. PSNR power savings for CCD and CMOS image sensors at
different sparsity values.

(640 × 480) pixels;
Exposure time or shutter speed: 10 ms;
Frame rate: 30 fps.
Variable parameters were:
Lighting conditions,
Sparsity (0.2 0.5, 0.7, programmed through FPGA).
Memory and power savings are calculated comparing with

uncompressed data. Before we present the test results and
analysis, tomake it clear, when sparsity is 1, we do not discard
any samples from the captured image; hence, compressive
sensing is not applied. As a result, we do not obtain any
savings in power and memory with a sparsity equal to 1.
In other words, PSNR is highest when sparsity is 1 (no com-
pression), and PSNR is lowest when sparsity is close to 0.2
(highest compression). The results for various test conditions
are summarized in Table 2 through 10.

VIII. CONCLUSION
The PSNR values computed for each test case are sum-
marized in the Table 11. The PSNR values are plotted for
various lighting conditions and sparsity levels for both CCD
and CMOS sensors is shown in Fig.12. Percentage of power
savings for both CMOS and CCD sensor based embedded
system at different sparsity values and light intensity are
listed in Table 12. Power savings as shown in Table 12 for
various lighting conditions and sparsity values are plotted in
Fig. 13 for both CCD and CMOS sensor based embedded
system.

Under low ambient light conditions, the CMOS sensor
cannot be used, whereas the CCD sensor outperforms it, and
the reproduced image is clearly readable. This is exhibited
in Table 2, 3 and 4. The resulting plot shown in Fig.12 also

FIGURE 12. PSNR values at various lighting conditions for CMOS and CCD
sensors.

FIGURE 13. Power savings for CMOS and CCD sensors at different
sparsity values.

illustrates this phenomenon where PSNR drops for CMOS
image sensor when the light intensity falls < 500 Lux. For
the same light intensity levels of< 500 Lux, the PSNR values
obtained for CCD sensor are considerably high. This is the
biggest advantage of using a CCD sensor for low-or no-light
conditions, as the CCD imager develops a charge even in the
absence of light, which is necessary for wearable IoT devices.
Power and memory savings are functions of the sparsity for a
given sensor resolution. The savings shown in our test results
were for the VGA resolution. For higher resolution image
sensors, the savings are significantly high. With the adoption
of compressed sensing onboard the CCD image sensor, the
memory and power requirements are reduced. Hence, the
CCD image sensor with compressed sensing can be used for
wearable IoT applications, which makes it sustainable even
in low light conditions. The image recovery system can be
on a cloud or in a data center with no resource limitations.
Using CCD sensors for drone applications [27] has definite
advantage.

FromTable 12 and Fig.13, we can see that the power saving
is function of sparsity values and does not change with ambi-
ent lighting conditions. With the combination of CCD sensor
using compressed sensing (with sparsity of 0.5), we can
achieve reasonably decent image capturing system that can be
used in embedded IoT applications. The memory saving too
is a function of sparsity level and image sensor resolution.
More the resolution of the image sensor, more the memory
saving would be at sparsity levels of 0.5. The percentage of
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memory savings are shown in Table 2 to Table 10 for all the
test conditions.

The entire system can be made even more sustainable by
using both CMOS and CCD sensors in the modular design
shown in Fig.8 and Fig.9 for night watchman drone applica-
tions. Both the sensors can be connected to a single backend
module through a multiplexer. At any given point in time,
only one, CMOS or CCD sensor module be connected to the
backend system. The selected multiplexer signal is controlled
by a light sensor. Under adequate ambient lighting conditions,
a CMOS sensor can be chosen, and during the dark, a CCD
sensor can be chosen. The energy models for sensor nodes in
wireless sensor network with compressed sensing is proposed
in [28].

The method proposed in this paper can achieve
high-quality images with significant reductions in the number
of measurements required, making it a promising technique
for CCD sensor-based cameras. The simulation and exper-
iment results demonstrate the effectiveness of the proposed
method in reconstructing images with a high SNR and with-
out visible artifacts. Future work can investigate the use of
different sparsifying transforms, measurement matrices, and
reconstruction algorithms to further improve the performance
of the proposed method. Additionally, the proposed method
can be extended to color images by compressing and recon-
structing each color channel separately. Overall, the proposed
method has the potential to improve the performance of CCD
sensor-based cameras in various imaging applications, where
CMOS sensors cannot capture the images.
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