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ABSTRACT Semantic communications have shown promising advancements by optimizing source and
channel coding jointly. However, the dynamics of these systems remain understudied, limiting research and
performance gains. Inspired by the robustness of Vision Transformers (ViTs) in handling image nuisances,
we propose a ViT-based model for semantic communications. Our approach achieves a peak signal-to-noise
ratio (PSNR) gain of +0.5 dB over convolutional neural network variants. We introduce novel measures,
average cosine similarity and Fourier analysis, to analyze the inner workings of semantic communications
and optimize the system’s performance. We also validate our approach through a real wireless channel
prototype using software-defined radio (SDR). To the best of our knowledge, this is the first investigation of
the fundamental workings of a semantic communications system, accompanied by the pioneering hardware
implementation. To facilitate reproducibility and encourage further research, we provide open-source code,
including neural network implementations and LabVIEW codes for SDR-based wireless transmission
systems (Source codes available at https://bit.ly/SemViT).

INDEX TERMS 6G, deep neural network, real-time wireless communications, semantic communications,
wireless image transmission.

I. INTRODUCTION
Conventional communications systems traditionally employ
separate blocks for source coding and channel coding. This
modular approach stems from Shannon’s separation the-
orem [1], which asserts that source coding and channel
coding can be independently optimized without compromis-
ing optimality, under idealized communication conditions
like infinite code length, independent and identically dis-
tributed (i.i.d.) symbols, or stationary channels. However,
in practical communication scenarios, these assumptions
often do not hold [2].
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To bridge the gap between theoretical assumptions and
real-world conditions, there is growing interest in semantic
communications. Semantic communications aims to address
these challenges by integrating source coding, channel cod-
ing, and modulation within a joint optimization framework
based on deep learning techniques [3], [4], [5]. By con-
sidering the interplay between these components, semantic
communications holds promise for achieving improved trans-
mission performance and enhanced efficiency in real-world
communication systems.

Typically, these systems treat wireless channels as a non-
trainable, noise-adding layer, and are trained end-to-end [4],
[5], [6], [7], [8]. Because neural networks consist of various
matrix operations, they are highly parallelizable and can be
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scaled to meet performance and latency requirements, which
is critical in emerging applications such as extended real-
ity (XR) [9]. Unlike traditional coding methods that aim to
recover the original symbols precisely, deep-learning-based
models can be optimized for goal-oriented communications.
For example, learned representations can target more accu-
rate classifications of an image [10] rather than full signal
recovery, which may not be necessary.

The semantic communications system can be viewed as
a deep neural network problem that involves reconstructing
the original signal from the corrupted latent representations.
One of the main research focuses is selecting building blocks
for the neural network, such as convolutional [4], [7], self-
attention [6], [8], or recurrent neural network blocks [5],
or finding optimal network architecture. While heuristics can
be used to find optimal architectures, a deeper analysis of
how deep neural networks jointly perform source/channel
coding or modulations, which is currently understudied, can
significantly enhance these architecture search procedures
and facilitate research.

In this paper, we extend our prior work [11], which
merely adopted the Vision Transformer (ViT) architecture to
semantic communications systems, and carefully fine-tune
the network to find better architectures for the system.
Moreover, we thoroughly analyze the results to understand
how the image semantic communications systems work
and what the advantage of the ViT is. We also verify the
results in real wireless channels using a software-defined-
radio (SDR)-based testbed. Full source codes is available at
https://bit.ly/SemViT, including SDR implementations and
trained neural network parameters. Our contributions are as
follows:

• We carefully design semantic communications systems
that harmonize Vision Transformers with CNNs, with
appropriate priors and insights from the computer vision
community.

• We conduct extensive analysis about how image seman-
tic communications systems work in an additive white
Gaussian noise (AWGN) or Rayleigh channel, yielding
various insights while introducing analysis metrics such
as average cosine similarities and Fourier analysis.

• We build a SDR-based wireless semantic communica-
tions system prototype and verify that the simulated
results fit well with the real wireless channels.

• We publicly release our source codes, including deep
neural network implementations, trained parameters,
or SDR-based testbed implementations, to facilitate
follow-up studies.

II. BACKGROUNDS
A. SEMANTIC COMMUNICATIONS
A semantic communications system is a kind of autoencoder,
a neural network capable of compressing given signals and
reconstructing them. A typical autoencoder encodes the given
image into the smaller but high-dimensional features and then

reversely generates the output of the latent representations
to match the original signals. In that process of squeezing
and expanding, only the core part of the input is extracted in
an unsupervised manner [3], [12]. One way to exploit those
properties is a denoising autoencoder [13], which removes
artifacts in a noised image.

The semantic communication system, however, may be
distinguished from the denoising autoencoder regarding the
location of the noise. In the denoising autoencoder, the orig-
inal image contains the artifacts. In the contrary, in the
semantic communications system, perturbations are added to
the compressed latent features (i.e., encoded symbols). Those
perturbations typically consist of theoretical Rayleigh fad-
ing or AWGN. The networks learn to generate compressed,
noise-resilient signal representations by using loss functions
that measure the distance between the original signals and the
reconstructed ones (e.g., mean-squared error loss). If those
learned features are composed of two-dimensional complex
numbers, those autoencoder networks can be viewed as a
mapping function from the source to a symbol. Unlike tradi-
tional communications systems that separate source coding,
channel coding, and modulation, a semantic communications
system conducts joint source-channel coding using a deep
neural network.

Ongoing research on semantic communications covers
various domains, including texts [5], [6], [14], speech sig-
nals [15], images [4], [7], and videos [16]. For example,
the authors in [14] proposed a transformer-based seman-
tic communications architecture, DeepSC. Reference [15]
expanded the domain to speech transmission with squeeze-
and-excitation-aided convolutional neural networks (CNN).
The work [4] proposed a joint source and channel coding
(JSCC) network for images, which compresses given images
with CNNs. Their coding method achieved 3 dB peak signal-
to-noise-ratio (PSNR) gain to JPEG+LDPC coding scheme
under the Rayleigh fading channel. Reference [16] presented
DeepWiVe, an video transmission JSCC system that uses
CNN and non-local blocks [17] to capture the redundancies
between frames.

However, most prior work mentioned above has the fol-
lowing limitations: 1) they mostly have focused on the
implementation rather than delicate considerations of the
network architecture or careful analysis of why the proposed
system works; 2) they have evaluated the system only in the
simulated channel environments (i.e., Rayleigh and AWGN
channels). In this paper, we propose a ViT-based image
semantic communication system inspired by existing analysis
of the computer vision communities on ViTs; we carefully
analyze the results with various metrics to figure out how the
ViTs work in the semantics communications system. We also
verify the system with the SDR-based wireless prototype to
show the system’s feasibility in a real wireless channel.

Recently, there have been a few pioneering works that
have used Vision Transformer-based backbones for semantic
communications. For example, the authors in [18] used a ViT
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FIGURE 1. (a) Proposed system architecture and (b) a ViT block. For convolutional layers, kernel size k and output channel C are denoted by (k × k ,
C). For ViT layers, the number of heads Nh and dimensions per head dh are denoted as (Nh, dh). H × W × C denotes the height, width, and channels
of the image/features, and DS and US stand for spatial downsampling and upsampling, respectively.

encoder to produce semantic-noise resilient features inspired
by ViT’s patch-wise image processing. The authors in [8]
used a Swin Transformer-based backbone for image analysis/
transform to bring the hyperprior concept to the semantic
communications.

However, they used ViTs only to realize their ideas, while
we aim here–through extensive analysis–to figure out how the
ViT works in sematic communications via extensive analysis
and try to provide some insights. We also verify our results
on a real wireless channel with our SDR-based testbed. Our
contributions are parallel to those works and can be utilized
simultaneously to improve communications systems.

B. MULTI-HEAD SELF-ATTENTION AND CONVOLUTIONS
Multi-Head Self-Attention (MHSA) mechanism is the
essence of the Vision Transformer architecture. It is dif-
ferentiated from convolution in that it has global receptive
fields and content-adaptivity. In this section, we introduce
the mathematical formulation of the multi-head self-attention
and compare them to convolutions. The notation used is
mainly borrowed from [19].

1) SELF-ATTENTION
Let X ∈ RN×Din represent an input matrix, which has N
tokens (or pixels) and Din dimensions. An (single-headed)
self-attention block maps an inputX into outputY ∈ RN×Dout

dimension output as follows:

Y = Self-Attention(X) = softmax(A/
√
Din)XWval (1)

where A is an attention matrix and is defined as:

A = XWqryWT
keyX

T
+ P (2)

and Wqry, Wkey, Wval ∈ RDin×Dout are query, key, value
transformation matricies and

√
Din is a normalization factor,

respectively. P ∈ RN×N is a learnable positional encoding
that alleviates its permutation-equivariance and translation-
variance, which can be problematic for images. Attention
matrix A can be interpreted as a similarity matrix between
input tokens in a latent space, and self-attention produces
new features by using mutual similarities of given inputs
as weights by softmaxing and multiplying the attention
matrix.

2) MULTI-HEAD SELF-ATTENTION
Multi-head self-attention is done by conducting multiple
self-attentions (‘‘heads’’) in parallel to enable multiple inter-
pretations of the same input exploiting different query,
key, and value transformations. It consists of Nh heads
and Dh dimensions per each head, and multiple head
outputs are combined to produce final representations as
follows:

MHSA(X) = concat
h∈[Nh]

[Self-Attentionh(X)]Wout (3)

where Wout ∈ RDout×Dout is a transformation matrix used
for projecting concatenated head outputs, and the output
dimension of Self-Attentionh is Dh. Typically Dh is set as
Dh × Nh = Dout.

3) CONVOLUTIONS
Convolutional layers have been widely adopted in building
neural networks for images, even after the advent of self-
attentions. For a input feature X ∈ RH×W×Din , convolutional
layers with learned kernel matrix K ∈ Rk×k×Din can be
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TABLE 1. Tested architectures, their computational complexity (GFLOPs), trainable parameters, and decoded image quality.

denoted as follows:

Conv(X)i,j =

⌊
k
2 ⌋∑

a=⌊−
k
2 ⌋

⌊
k
2 ⌋∑

b=⌊−
k
2 ⌋

KT
⌊
k
2 ⌋+a,⌊ k2 ⌋+b,:

Xi+a,j+b,:. (4)

As seen above, convolutional layers transform given matri-
ces only depending on learned kernels shared by all pixels
and are content-agnostic. Their receptive fields, i.e., the range
of input pixels utilized to produce a single output token, are
limited to the kernel size k . In the contrary, multi-head self-
attention has a global receptive field and calculates the inner
products of the queries and keys, enabling content-dependent
operations. However, it requires much more computation and
memory resources due to the calculation of N × N inner
products of the attention matrix. It should be carefully used
when there are a number of tokens, e.g., high-resolution
images.

C. VISION TRANSFORMERS
Vision Transformers were first introduced in [20], inspired by
a Transformer [21], which is a de facto standard architecture
in a natural language processing research community. Unlike
CNN, it adopts the multi-head self-attention mechanism to
enable content-adaptive operations and has global recep-
tive fields. ViTs and their variants outperform CNNs and
record state-of-the-art performances in various computer-
vision fields, including image classification [22], object
detection [23], or image restoration [24].

In the recent research [25], it is found that ViTs are
more robust on common image corruptions, such as occlu-
sions, permutations, natural perturbations, or even adversarial
attacks. When 80% of an image is randomly dropped, for
example, it shows ∼60% classification accuracy, whereas
CNN maintains zero accuracies. It also recorded 36% lower
mean corruption error [26] for natural perturbations, or 30%p
more classification accuracy when an adversarial patch – 5%
of the total image size – is added. Also, the authors in [27]
argued that ViTs behave like low-pass filters in image clas-
sification, unlike CNNs resembling high-pass filters, which

is desirable as low-pass filtering is a typical way to enhance
noised images.

Inspired by helpful characteristics of ViTs, such as
low-pass filtering effects and robustness to impaired sig-
nals, we chose the Vision Transformer architecture and its
multi-head self-attention mechanism as our primary building
blocks. Our rationale for using ViTs in semantic communica-
tions systems is as follows:

• ViTs can perform source coding better than CNNs.
Vision Transformers have content-adaptivity and global
receptive fields, whereas CNNs learn kernel weights and
have local receptive fields. Those properties can help
source coding, where reducing content redundancies
among all features is critical.

• ViTs are more robust to noised signals than CNNs.
ViTs behave like low-pass filters [27] in image clas-
sifcation, unlike CNNs, which behave like high-pass
filters. As the decoding process can be viewed as
denoising, which removes high-frequency artifacts from
the channel noises, ViT can outperform CNNs in seman-
tic communications systems. ViTs are also known for
their robustness to occlusions or perturbations in images,
which resemble channel noises.

III. SEMANTIC ViT
A. SYSTEM ARCHITECTURE
In this paper, we propose SemViT, an abbreviation for
Semantic Vision Transformer. It follows the typical autoen-
coder design of a semantic communications system,
as described in Section II-A. It has ten blocks, 5 for the
encoder and decoder networks, respectively. The encoder
network maps input color image X ∈ RH×W×3 into complex
in- and quadrature-phase messagesM ∈ CS , and the decoder
reconstructs the decoded image X̂ ∈ RH×W×3 from the
channel-corrupted symbols. Following prior works [4], [7],
we denote the proportion of the number of complex symbols
sent and the number of pixels in the original image, S

H×W×3 ,
as a bandwidth ratio.

As shown in Fig. 1, we combine convolutional and ViT
layers to build the semantic communications systems. For
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FIGURE 2. System architecture of the USRP-based wireless semantic communications system testbed.

FIGURE 3. Example I/Q signals transmitted in the wireless testbed. (a) Modulated symbol plot obtained from 64 test images, corresponding to a total of
32,768 symbols. (b) Raw in-phase sequence received in the USRP device. The red vertical lines indicate the estimated symbol duration, obtained by
autocorrelation of the pilot sequence added to the front and back of the modulated symbols. (c) Visualization of the I/Q imbalance problem. Despite
transmitting only in-phase symbols, the same signal is also received (albeit with weak power) in the quadrature phase.

convolutional layers, we used a kernel size of 9× 9 or 5× 5,
following [7], [28]. We used [20] and [22]-inspired ViT lay-
ers, which consist ofMHSA layers (described in Section II-B)
and multi-layer perceptron layers for ViT blocks. For posi-
tional encoding, we used learnable 2D positional encoding
P ∈ RN×N that are sampled from R(2N−1)×(2N−1) based on
the relative distance between the key and query pixels.

To find the best combinations of the convolution and ViT
layers, we started from the CNN baseline (based on [7] and
[28]) and replaced one by one each convolutional layer with
a ViT layer from the middle of the architecture. We did
so because ViTs are known to perform poorly at the first
few layers of the neural network (called ‘‘stem’’) [22].
To overcome the time-consuming training process associated
with testing all possible combinations, we adopted a more
efficient approach. Specifically, we replaced convolutional
layers selectively either in the encoder (e.g., C-C-V-C-C-C)
or the decoder (e.g., C-C-C-V-C-C) to test each combination
independently.

We also adhered to the approach suggested in [22],
imposing a constraint that convolution stages should pre-
cede Transformer stages [17], [22], [29]. This decision

was based on the observation that convolutional layers
excel at processing local patterns, which are more preva-
lent in the early stages of the network. By assessing the
performance of these individual combinations, we identi-
fied the most effective configurations for both the encoder
and decoder parts. Subsequently, we assembled the best
combinations to determine the optimal network architec-
ture for the entire system. Considering the time-consuming
nature of testing all possible combinations, this approach
allowed us to efficiently determine the most effective
configurations.

Table 1 shows the tested architecture, computational com-
plexity (GFLOPs), the number of parameters, and the average
quality of the reconstructed images (PSNR). We report the
image PSNR results with 1/6 bandwidth ratio, 10 dB SNR.
GDN denotes whether the generalized divisive normaliza-
tion layer [28] is adopted. We used ‘C’ for convolutional
layers and ‘V’ for ViT layers, and their index denotes their
layer number. For example, C-C-V-V-C-C means we used
ViT layers at layers 2 and 3 (see Fig. 1) and convolutional
layers for all other layers. Each architecture is trained for
100 epochs.

71532 VOLUME 11, 2023



Yoo et al.: On the Role of ViT and CNN in Semantic Communications

The C-C-V and V-C-C architecture performed best
regarding produced image quality at the encoder and
the decoder, respectively. As a result, we adopted the
C-C-V-V-C-C architecture to our semantic communications
system. Furthermore, this architecture had the lowest com-
putation complexity and trainable parameters, thanks to the
parameter-FLOPs efficiency of the ViTs compared to CNNs
with large kernel sizes (e.g., 5 or 9). We also found that
the generalized divisive normalization (GDN) layer, which is
a normalization layer typically used in image compression
community [28] and prior works [7], is not beneficial for
ViTs. This is possibly due to the Layer Normalization [30] in
the ViT layer, and is also consistent with the recent research
result [31], which reports that GDN resulted in training
instability with ViTs. We thus removed it to get additional
GFLOPs and parameter reduction. Note that due to hardware
architecture and software optimizations, calculated GFLOPs
are not proportional to latencies (e.g., the C-C-V-V-C-C
architecture is about 1.3× slower at training than is the
C-C-C-C-C-C).

B. TRAINING AND SYSTEM SETUP
For training and evaluation, we used a desktop PC equipped
with Nvidia GeForce RTX 2080 Ti 11 GB. We used the
CIFAR-10 [32] dataset for training/validations and reported
test results based on the CIFAR-100 test dataset, both
of which consist of 60,000 32 × 32-pixel color images
(50,000 training, 10,000 test images). Unless stated other-
wise, we used an Adam optimizer with 0.0001 constant
learning rate. We trained the model for 600 epochs.

We implemented a wireless semantic communications
system based on the NI USRP-2943R FPGA platform
and PXIe-1082 chassis for experiments in a real wireless
channel. Fig. 2 shows the wireless transmission process
of USRP-based semantic communication systems. We first
encoded the given image with the encoder network in the
host PC. The encoded symbols were then sent to the USRP
via LAN with UDP protocol, after which the USRP con-
ducted the wireless transmission of the received symbol. The
USRP then delivered the channel-corrupted symbol back to
the PC, where the signal was decoded to produce the output
image.

We conducted wireless transmission experiments using
a single USRP device equipped with two omnidirectional
antennas: one for transmission and another for reception.
The transmission was carried out with a base frequency of
2 GHz and a bandwidth of 1 MHz. The experiments were
performed in line-of-sight (LoS) environments, as depicted
in Figs. 2 and 9a. To decode the received signals, we initially
performed gain compensation using the pilot signals. Subse-
quently, we employed a neural network decoder that had been
trained in simulated AWGN environments. It is important to
note that our focus in this study is to present initial proof-of-
concepts for neural network-modulated symbol transmission,
and as such, the specific parameters mentioned above can be
adjusted as needed.

To address hardware implementation challenges and
accommodate the Gaussian-like nature of the neural-
network-modulated symbols (as depicted in Fig. 3a), symbol
clipping was employed using constant thresholds to align
with the digital-to-analog converter (DAC) requirements.
Additionally, pilot symbols were introduced at the beginning
and end of the transmitted symbols, to enable signal detection
via autocorrelation and gain compensation (see Fig. 3b and
Fig. 3c).
Fig. 3c reveals the presence of I/Q imbalance problems

arising from impairments in our USRP device. To miti-
gate these issues, we developed a model to characterize the
interference between the I/Q symbols, as demonstrated in
(5). In these equations, x̂i/x̂q represents the interfered I/Q
symbols, xi/xq denotes the original I/Q sequence, and ki/kq
represents the interference constant associated with each
respective component:

x̂i = xi + kqxq, (5)

x̂q = kixi + xq. (6)

In the next step, we estimated the constants ki and kq by
utilizing the pilot signal transmitted prior to the main symbol
transmission. Through this calibration process, we success-
fully obtained the I/Q symbols without interference. It is
important to note that these calibration procedures, as well
as our coarse hardware implementations, introduced addi-
tional noise. More precise hardware implementations have
the potential to further enhance performance, and we leave
them for future work.

IV. RESULTS AND ANALYSIS
A. IMAGE PSNR PERFORMANCE
Fig. 4 compares decoded image quality (PSNR) between
proposed SemViT, CNN-based DeepJSCC, and conventional
better portable graphics1 (BPG) [33] format. To facilitate a
direct comparison with previous works [7], we considered
several bandwidth ratios, namely 1/12, 1/6, 1/4, 1/3, and 1/2.
These ratios were chosen to align with the parameters used
in the referenced study, allowing for easy and meaningful
comparisons between our results and those reported in the
literature.

For the BPG+LDPC approach, we evaluated the perfor-
mance in terms of the best PSNR value across various
combinations of code rates and modulations. We evaluated
various combinations of code rates and modulations, includ-
ing (3072, 6144), (3072, 4608), and (1536, 4608), which
correspond to 1/2, 2/3, and 1/3 code rates, respectively.
In terms of modulations, we considered options such as
BPSK, 4-QAM, 16-QAM, or 64-QAM. To ensure compat-
ibility between the code bits and the bits per symbol in the
selected modulation schemes, we made sure that the number
of code bits was divisible by the number of bits per symbol

1BPG format is an image format based on HEVC (H.265) video codec
and is one of the most efficient image compression methods among the non-
neural network-based image codec.
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FIGURE 4. (a): Decoded image quality at bandwidth ratio=1/6 with respect to channel SNRs. (b), (c): Transmitted image PSNR with regard to bandwidth
ratio at 0 dB and 10 dB SNR, respectively. All results are reported from the models trained at the same SNR and BW ratio to the evaluation setup.

(1, 2, 4, or 6). On the other hand, for the BPG+capacity
approach, we focused on calculating the theoretical capac-
ity of the AWGN channel based on the SNR, which was
expressed in bit/s/Hz or bit/symbol. Using this information,
we determined the required image file size that matched the
number of symbols transmitted. Consequently, we adjusted
the quality factor of BPG compression to ensure compliance
with the file size restrictions. Finally, we reported the PSNR
of the encoded image obtained using this approach.

As expected, the proposed SemViT outperformed
DeepJSCCs in all regions, proving ViT’s benefits in semantic
communications. Interestingly, the performance gap between
SemViT and DeepJSCC increased as the channel SNR and
bandwidth ratio rose, effectively narrowing the gap between
conventional separate source-channel coding-based meth-
ods and semantic communications in the high SNR and
bandwidth ratio region. DeepJSCC particularly underper-
formed BPG+capacity at AWGN 10 dB, 1/4 bandwidth ratio
(Fig. 4c), but SemViT effectively utilized given data rates and
SNR to beat the DeepJSCC and even BPG+capacity.

This is in accord with our first intuitions–SemViT
can effectively reduce redundancies between represen-
tations and diversify output features, thanks to its
content-adaptiveness and global receptive field. According
to this interpretation, the ViT’s ability to produce diverse
features led to a more significant performance gap in the
higher SNR and bandwidth ratio region, where semantic com-
munication systems should conveymore detailed information
(e.g., high-frequency components of the image). The lower
gap in the lower SNR and bandwidth region can be explained
by the CNN’s ability to extract critical features in the image
or the necessity of redundant features to deal with the harsher
channels. To support these ideas, we chose two metrics for
the analysis–cosine similarity and Fourier analysis. Detailed
analysis and rationales are explained in the following
sections.

B. COSINE SIMILARITY ANALYSIS
We chose a metric spatial-wise average cosine similarity to
show the diversity of the produced features. We interpreted
each layer’s output features X ∈ RH×W×C as a set of
C-dimensional vectors and computed average cosine similar-
ities S between all H ×W vectors as follows:

S =
1

HW (HW − 1)

∑
i,j

∑
p,q

(p,q)̸=(i,j)

XT
i,j,:Xp,q,:∥∥Xi,j,:
∥∥ ∥∥Xp,q,:

∥∥ . (7)

SemViT produces more diverse features. In Fig. 5a,
we show the average cosine similarity with respect to the
number of symbols in layer 2, which produces final fea-
tures before being projected to symbols. SemViT consistently
reduced the average cossims as the number of symbols
increased, while DeepJSCC failed to reduce them in a large
number of symbol regions. Instead, in DeepJSCC, sym-
bol diversification is conducted by the mere weighted sum
of the features in the linear projection layer behind (see
Fig. 5a and Fig. 5c). This coincides with the tendency for
the image-quality gap to increase as the number of sym-
bols increases. Furthermore, among all regions, the average
cosine similarity of the SemViT is significantly lower than
DeepJSCC. Considering both results, we can interpret the
performance gain as a result of SemViT’s ability to pro-
duce more diverse features, thanks to its content-adaptiveness
and global receptive field. CNN’s failure to produce diverse
features can be explained by the significant redundancy of
learned filters [34] (a well-known problem), leading to redun-
dant representations.

Note that cosine similarity was not incorporated as a metric
in our loss function during the training of the neural net-
work, and the cosine similarity results are obtained from
the network’s primary objective of maximizing its decoding
performance. Our insights based on cosine similarity analysis
are as follows:
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FIGURE 5. (a), (b): Cosine similarity at layer 2 (last features before symbol projection layer) with respect to bandwidth ratio and channel SNR,
respectively. (c), (d): Cosine similarity at complex symbol with respect to BW ratio and SNR. (a) and (c) are measured in AWGN 10 dB channel, and
(b) and (d) are with 512 symbols. Note that layer two output has 256-dims while the complex symbol is a 2-dimensional vector, so a direct comparison
of cossim values might be unfair.

FIGURE 6. Evolution of average cosine similarities over epochs in encoder network. Every encoder layer produces features with lower average cosine
similarities as the training continues. (a), (b), (c): Cosine similarities at layers 0, 1, and 2, respectively. See Fig. 1 for layer naming.

ViTs can be good at source coding, while CNNs may
be so at channel coding. In Fig. 5b, DeepJSCC shows a
weak tendency to diversify its output features as the channel
SNR rises, whereas SemViT shows no significant tendency
to do so. SemViT’s invariability to channel SNRs is rather
complemented by the linear projection layer behind (see
Fig. 5b and Fig. 5d). This implies the specialization between
ViTs (for the source coding) and projection layers (kind of
channel coding). In contrast, CNN’s cosine similarity at
layer 2 is inversely proportional to channel SNRs, while the
tendency becomes weaker in the symbols produced by the
1D-projection layer (See Fig. 5b and Fig. 5d). This pattern
suggests the possibility that the CNNs are best at the channel
coding among the ViTs, projection layers, and CNNs. Also,
the inconsistency of symbol cosine similarity with respect
to train SNRs may be due to oversimplified symbol produc-
tion. As a solution for building symbols, linear projection
followed by reshaping might not be a good one. Note that
the architecture of our proposed SemViT is not based on these
insights, as our purpose in designing SemViT is to find initial
designs of ViT-based semantic communications systems and
to provide preliminary analysis. We leave the architecture
design based on those understanding to future work.
Appropriateness of the metric. Judging the effectiveness of

the chosen metric is a difficult work. Hence, we show that
the network is trained to reduce average cosine similarity.
Fig. 6 shows the average cosine similarity of the encoder
layers decreases as the training epochs lengthen, showing
the association between lower cosine similarities and the

image quality. Furthermore, as shown in Fig. 5a, the cosine
similarity gap between SemViT and DeepJSCC increases as
the channel SNR and bandwidth ratio rises, which aligns with
the PSNR results. We are not arguing that average cosine
similarity is the perfect metric that measures the amount of
information, but we believe it is good enough to show the
difference between the ViTs and CNNs.

C. FOURIER ANALYSIS
We perform a Fourier analysis on the input image, analyzing
the behavior of each layer’s frequency filtering up to the final
feature prior to image generation (i.e., the output of layer 3).
Specifically, we begin by averaging the features produced
by layer 2 across the channel dimension to obtain a matrix
X ∈ RH×W , and then calculate the log-amplitude difference
from the DC component.To maintain clarity and consistency
with prior work [27], we report only the half-diagonal portion
of the 2D discrete Fourier transform (DFT) of the averaged
features. The mathematical formula for obtaining the Fourier
analysis result y ∈ R⌊

H
2 ⌋+1 of the given features, computed

from 2D DFT representation F of the given features X, is as
follows:

Fk,l =

H−1∑
n=0

W−1∑
m=0

Xn,me−j2π nk
H +

ml
W , (8)

ŷ = log(diag(|F|)) − log(diag(|F0,0|I)), (9)

y = ŷ0:⌊H2 ⌋+1. (10)
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FIGURE 7. top: fourier analysis from the input image to the final layer output. The gray arrow shows how the relative amplitude changes as the layer
index increases. Bottom: Layer-wise average cosine similarity. We denoted whether the given layer is a high-pass filter (HPF) or a low-pass filter (LPF)
based on the fourier analysis. The colored region (layers 0-2) represents the encoder part.

Note that the operator diag(·) generates the diagonal vec-
tor from a given matrix, while log(·) carries out an
element-wise logarithmic operation. Additionally, |F| indi-
cates element-wise absolute value of complex-valued matrix
F, and |F0,0| signifies the magnitude of the DC component.
Equation 10 calculates the half-diagonal elements from the
computed difference in log-amplitude. Based on the Fourier
analysis, we have observed the following results:
Encoders are high-pass filters, while decoders are low-

pass filters. As can be seen in Fig. 7, in the encoder network,
the amplitude of high-frequency components is continuously
increased, whereas the decoder works oppositely. Layer 5
exceptionally acts as a weak high-pass filter, possibly due
to the generation of high-frequency details of the image,
but the relative amplitude difference is not that significant.
Interestingly, unlike CNNs that behave likeHPFs in the image
classification tasks [27], convolutional layers in the decoder
network consistently behave like LPFs. This is likely due to
the ‘‘unpacking’’ properties of the decoder, which decodes
the highly compressed (high-pass filtered) features produced
by encoder networks. Also note that the operating dynamics
of the CNN can be different between the image classification
network and the semantic communications system, as the
training objective is different.
ViTs behave like strong LPFs in the decoder. This affirms

that ViT’s usage in the decoder network is a good idea, as the
decoders are essentially low-pass filters (possibly to suppress
the high-frequency noise induced by the channel). Fig. 7
shows the relative amplitude differences of layer 3, in the
high-frequency regime, are significant in SemViT compared
to DeepJSCC. Interestingly, although layer 3 acts like low-
pass filters, the cosine similarity decreases in DeepJSCC;
This can be due to the weak low-pass filtering effects of

DeepJSCC and the extraction of high-dimensional features
(256-dims) from the extremely low-dimensional symbol vec-
tors (e.g., for 1/6 BW ratio, reshaped dimension of layer 3’s
input is 8). Also, layer 4 in SemViT decreases cosine similar-
ity while acting like a low-pass filter, which can be because of
selective solid amplification of mid-band signal (around 0.5π
radians, see Fig. 7d) while inhibiting other high-frequency
regions.
ViTs produce many more high-frequency details, especially

in the high-BW region. Comparing Fig. 7a and Fig. 7c,
or Fig. 7b and Fig. 7d suggests the key difference between
the low- and high-BW ratio region is the amplitude of the
high-frequency components. Generally, the high-frequency
components of the image contain the details (e.g., textures),
while the low-frequency parts consist of the rough shape.
Therefore, we can interpret the PSNR gain on the high-BW
ratio in Fig. 4 is thanks to the increased details. Further-
more, SemViT shows a much larger amplitude in mid- and
high-frequency regions than DeepJSCC, which are also com-
pliant with the more significant PSNR gap at a larger BW
ratio (Fig. 4c) and the conclusion of Section IV-B. Note that
the ViT decoder still behaves like a robust low-pass filter (i.e.,
the overall amplitude difference of the final encoder output
and the ViT decoder features are relatively huge in high-
frequency regions), but selectively retains high amplitude in
certain high-frequency bands (e.g., 0.5π and 1π )

D. ATTENTION MAPS
In Fig. 8, we visualize the sublayer attention map of layer 2
(the last layer before the symbol projection) and layer 3
(the first layer of the decoder). For visibility, we chose the
attention map at the index (4, 4) and reshaped it to match the
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FIGURE 8. Visualization of sublayer attention map at layers 2 and 3 on the index (4, 4). The symmetrical structure of global-to-local attention is clearly
visible.

feature map size (8 × 8). The results are averaged over all
CIFAR-10 test sets (10,000 images).

Surprisingly, the attention map clearly shows the symmet-
ric structure of global-to-local attention; This resembles the
context, global- and local- hyperprior structure, which was
recently proposed by deep-learning-based image compres-
sion community [35]. This might be further evidence showing
ViT’s strength in source coding. The evident cross-structure
of the attention map is due to the additive positional encoding
(not shown in the paper). The low self-weighting is likely due
to the residual connection of the model architecture (i.e., the
previous features are added to the next feature even without
the attention procedure).

V. RESULTS IN OTHER ENVIRONMENTS
To see the generalization of the results in other channel
environments or metrics, we additionally show the results in
the Rayleigh fading channel, in the real wireless channel, and
with the structural similarity indexmetric (SSIM) [36], which
is a perceptual image quality metric.

A. DECODED IMAGE QUALITY
Fig. 11a shows the results in the slow Rayleigh fading
channel, where the channel is kept unchanged during the
transmission of the entire image. We retrained the entire
network to match the Rayleigh fading environment without
any channel state information to the network. SemViT still
outperforms DeepJSCC, especially in the high SNR regions.
The PSNRgap betweenDeepJSCC and the proposed SemViT
increases as the SNR rises, coinciding with the AWGN results
and our previous analysis.

Fig. 11b shows the PSNR results in the real wireless
channel, which are measured in the USRP-based prototype
mentioned in Section III-B. We transmitted encoded constel-
lations at different SNR regions by adjusting the amplitude
of the transmitted signals, i.e., dividing the encoded signal
with varying constants. Each points in the figure denote the
average image PSNR of the transmission of the 64 random
images. As expected, the proposed SemViT shows better
image quality than DeepJSCC in the real wireless channel.
However, there exists about a 3 dB PSNR gap between the
simulated (AWGN) results and actual measurements due to
non-Gaussian errors of the channel (i.e., errors induced by

imperfect gain compensations, reflections, and quantization
errors of the DAC). We further validated the system in the
crowded indoor environment at CES 2023 (Fig. 9), and con-
firmed there was no significant difference in the performance
(Fig. 10).
Interestingly, the performance gap between the simulated

and real environment rises as the channel SNR degrades. This
is likely due to the disparity in the precision between the
simulation (32-bit floating points) and the USRP hardware
(12-bit fixed-point DAC hardware). As we manipulated the
signal power (and the resulting channel SNR) by reducing
the signal amplitude, more quantization errors were induced
in the lower SNRs (due to the fixed-point arithmetic of DAC
hadware) to degenerate the reported image quality. This sug-
gests that the semantic communications system should be
trained to consider RF hardware restrictions (e.g., DAC quan-
tizations, power-to-average-power-ratio (PAPR) constraints).
We leave them for future work.

Fig. 11c reports the SSIM score of the proposed SemViT
and DeepJSCC in the AWGN channel. Unsurprisingly, the
proposed SemViT shows better SSIM scores compared to
DeepJSCC, which are coincident with image PSNR results
(Fig. 4b). Note that the reported SSIM values are with the
model trained with PSNR loss and thus can be improved
by using the SSIM loss in the training procedure. More
perceptual loss, e.g., MS-SSIM [37] or VGG loss [38], might
be utilized to enable more semantical compression of the
images.

B. ANALYSIS IN THE RAYLEIGH FADING CHANNEL
To see if our analysis in the AWGN channel can be gen-
eralized to the Rayleigh fading channel, we conducted the
Fourier and average spatial-wise cosine similarity analysis in
the Rayleigh channel. Fig. 12a and Fig. 12b shows the Fourier
analysis results. The filter characteristics of the encoder and
the decoder in AWGN and Rayleigh channel are almost
identical. The proposed SemViT trained in the Rayleigh
channel behaves like a more robust low- or high-pass filter,
coinciding with the previous analysis. However, the ampli-
tude deviation of encoded features is relatively minor in
the Rayleigh channel in both DeepJSCC and SemViT, i.e.,
the encoder network produces much less diverse features
to deal with the more unpredictable channel. Also, layer 3
in DeepJSCC does not conduct notable transformations in
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FIGURE 9. (a): Real-time demonstration of the proposed system in a crowded indoor environment (at CES 2023, Las Vegas, USA), (b) screenshots of the
client/server (for neural encoding/decoding), and (c) the LabVIEW block diagram (for real-time wireless transmission). Both softwares, including neural
network parameters, are available open-source. See https://bit.ly/SemViT/.

FIGURE 10. Examples of original (left) and transmitted images using proposed SemViT (middle) and conventional JPEG (right). For the JPEG image,
we assumed LTE’s modulation-and-constellation scheme targetting 0 dB SNR and inversely calculated the required image bytes to send an equal number
of symbols compared to our proposed system. Transmitted images are randomly chosen from the CIFAR-10 test set.

frequency domains, whereas SemViT still shows obvious
LPF behavior.

Notably, DeepJSCC produces low-pass-filtered features in
layer two, in which SemViT in the Rayleigh channel or even
DeepJSCC in the AWGN channel conducts high-pass filter-
ing (top left in Fig. 12c). Due to the CNN decoder’s weakness
in low-pass filtering, or decoding, DeepJSCC should pro-
duce more redundant features in the encoder (LPF behavior)
rather than dimensionality reduction (HPF behavior) as like
in AWGN channel or SemViT, leading to poorer decoded
image quality (Fig. 11a). This phenomenon is also seen in
cosine similarity analysis results – in Rayleigh channels,
DeepJSCC’s average cosine similarity of layer 2 output
increases (top left of Fig. 11c) whereas SemViT (top right) or
DeepJSCC in AWGN (Fig. 7a) lowers the feature cosine sim-
ilarity in layer 2. DeepJSCC and SemViT conduct low-pass
filtering in the last layer (layer 5), leading to more amplitude
differences in high-frequency regions between the original

image and the layer five output. This explains the lower image
PSNR quality in the Rayleigh channel.

The top part of Fig. 12c shows the layer-wise cosine sim-
ilarity and whether the layer is HPF or LPF, based on the
Fourier analysis. The key difference compared to AWGN
results is that the cosine similarity of the last layer’s fea-
tures almost equals 1 in both DeepJSCC and SemViT. One
possible interpretation is that the semantic communication
systems try to average all given symbols spatially to deal
with harsh channel conditions and produce a single pol-
ished vector from which the network reconstructs the entire
image. The DeepJSCC decoder’s consistent increase of the
cosine similarity, both in Rayleigh and AWGN (Fig. 12c
and Fig. 7a), can be explained well in this way. However,
layer 4 of AWGN-trained SemViT behaves differently from
the DeepJSCC or Rayleigh-trained SemViT – it diversifies
its output features while performing low-pass filtering if the
channel is good enough (e.g., AWGN 10 dB SNR as in
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FIGURE 11. (a), (b): PSNR results in the Rayleigh and real wireless channel, respectively. (c): Image SSIM results in the AWGN, 0 dB SNR.
We borrow the BPG+capacity data in (a) from [7].

FIGURE 12. (a), (b): Fourier and (c): cosine similarity analysis in Rayleigh fading channels.

(Fig. 7b). Considering the content-adaptivity of the ViTs, this
may mean that SemViT decodes the signal by aggregating
similar information across all symbols to produce multiple
‘‘pure’’ information sources, while DeepJSCC can only aver-
age the adjacent symbols due to its content-agnostic property.
This suggests that using ViTs may also benefit interference-
canceling applications, e.g., inter-symbol interference or
self-interference cancellation in full-duplex communications.

In Fig. 12, the bottom left illustrates the 2D symbol, while
the bottom right shows the layer two feature cosine similarity
analysis. As in Fig. 5b, the layer two cosine similarity of
DeepJSCC gradually decreases as the channel SNR rises, i.e.,
encoded features has some channel adaptivity. Even SemViT,
whose features were channel-agnostic in AWGN, produces
more diverse symbols as the channel improves. This could
be because the Rayleigh channel was so harsh that even the
channel-insensitive ViT had to adapt to the SNR, or decoding
the symbols in AWGN might be too easy for ViTs. The
cosine similarity of the 2D symbols does not show any
evident tendencies to adapt better to channel environments,
which is corresponsive to AWGN results (Fig. 5d), and
still suggests using a more robust network for final symbol
production.

VI. DISCUSSIONS
In this section, we provide some insights and possible
research directions based on the analysis given in Section IV.

• Using heterogeneous architectures for semantic commu-
nications, which combine the strengths of both ViTs and
CNNs, may be more beneficial than relying on either
approach alone. This could involve usingViTs for source
coding and CNNs for channel coding, with possible
applications including the extraction of hierarchical fea-
tures and the creation of more robust models that are
resistant to channel noise.

• ViTs can serve as effective LPFs that aid in decoding.
To test their impact on performance, we can incorporate
at least one ViT layer into the decoder network or intro-
duce a non-trainable, explicit blurring layer prior to the
decoder network and analyze the results.

• A more robust network may be necessary for symbol-
producing layers. Although we did not observe any
clear inverse-proportional relationships between chan-
nel SNR and symbol cosine similarities, this may be
attributed to the current oversimplified symbol pro-
jection layer. To address this, future research may
explore the use of channel-wise attention to generate
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symbols instead of the simple projection and reshaping
method.

• More efficient ViT-based models can be developed
to reduce encoding/decoding latencies. Our work did
not specifically focus on the computational efficiency
of SemViT or compare it to conventional image
transmission systems. This is because conventional
communication systems typically operate on special-
ized hardware, whereas our proposed system utilizes a
general-purpose graphics processing unit, making a fair
comparison difficult. However, with the critical latency
requirements of future B5G/6G systems in mind, it is
imperative to research more efficient neural network
architectures for semantic communications.

VII. CONCLUSION
The SemViT system proposed in this paper used a Vision
Transformer to enhance image transmission performance
in semantic communications. The experiments conducted
in various regions show that SemViT outperforms conven-
tional CNN-based methods in all regions, particularly in
high-SNR and bandwidth ratio regimes. We verified the
system’s availability in real-world wireless channels by con-
ducting extensive experiments on a USRP-based wireless
semantic communications testbed, which have been made
publicily available as an open-source to enable reproducibil-
ity. We also conducted a thorough analysis to determine how
a Vision Transformer can improve semantic communications
systems. Our analysis stated that 1) encoders are essentially
HPF and decoders are LPF, 2) ViTs are good source-coders
and diversify the encoded representations, 3) ViTs are bene-
ficial in decoders thanks to their strong LPF behavior, and
4) CNN might be good at channel coding, affirming the
combined usage of ViT and convolutional layers. We hope
our work provides some deeper insights and facilitates further
studies.
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