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ABSTRACT The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical
Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods.
Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and
malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and
achieving real-time accuracy in detection present significant challenges for these techniques. To overcome
these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-
dimensional algorithm that captures behavioral features along with the relevant information that other
methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of
prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and
Edge I-IoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97%
and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is
compared to conventional ML algorithms, and simulation results demonstrate a significant performance
improvement over these algorithms in the I-IoT-enabled CPS realm.

INDEX TERMS Advanced persistent threat, deep learning, cyber-physical systems, graph attention net-
works, graph neural networks, the Industrial Internet of Things.

I. INTRODUCTION
The Cyber-Physical Systems (CPSs) enabled by the Indus-
trial Internet of Things (I-IoT) are software components that
operate like hardware in automating industrial processes,
collecting real-time data, and interacting with devices and
sensors via Human-Computer Interfaces (HCI). This technol-
ogy has several dimensions and aims to improve consistency,
identify opportunities for progress, and exploit the untapped
potential. By integrating the I-IoT sensors, data storage and
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integration, data analytics, and ML with CPSs, it is possible
to enhance interoperability and coordination among various
systems. The sensors gather data from different equipment
and continually provide it to the system analytics. The ML
algorithms then use this data to learn and refine the system’s
processes to reach optimal performance. The integration
model of I-IoT with CPS is illustrated in Figure 1.

Furthermore, the fourth industrial revolution has brought
about the concept of a ‘‘smart factory’’ through I-IoT, which
enables cooperation among enterprise networks, supply
chains, andmanufacturing procedures [1]. Data is transmitted
from machines to a top-level cloud server, providing a clear
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overview of the entire process. This system enables central-
ized control and remote monitoring of cyber assets located in
harsh environments, connecting people, processes, and data
in a more efficient, safer, and secure real-time information
management system. Figure 2 illustrates the integration of
I-IoT, IoT, and Industry 4.0. Moreover, there has been a
significant expansion in the realm of I-IoT, which has led
to a market size of more than USD 263 billion in 2021. It
is predicted to surpass USD 350 billion by the year 2028
[2]. The reason behind this growth is the increased adoption
of I-IoT platforms by large businesses that wish to keep up
with the continuously developing technological landscape.
As a result of this adoption, a huge volume of operational
and transactional data is generated every second, which,
when gathered and implemented in an I-IoT platform, can
be transformed into real-time business insights and solutions.
Figure 3 showcases the projected growth of the I-IoT market
size from the year 2020 to 2028 [3].

FIGURE 1. I-IoT and cyber-physical system integration model.

FIGURE 2. Integration of I-IoT and IoT with industry 4.0.

Although, the combination of I-IoT and CPS presents
several potential benefits for society, however, this technol-
ogy also faces numerous security challenges that must be
addressed to ensure a reliable and scalable CPS environ-
ment. One of the most significant security challenges is
the APT campaign, which uses multi-step attacks to pose
severe threats to high-level information and hardware sys-
tems. These complex attacks make detection one of the major

FIGURE 3. Projected market size of I-IoT 2020-28 [4].

security challenges facing industrial-scale CPS. As a result,
these attacks can cause system interference, disrupt com-
puter services, deny access to critical computer operations,
and even lead to sabotage [4], [5]. Detecting APT attacks
in I-IoT and CPS systems is difficult mainly because these
systems are both scalable and heterogeneous. They also rely
on isolated and complex data. Any exposure to these sys-
tems can lead to disastrous consequences, which is especially
concerning because they are widely deployed systems. Con-
ventional methods for understanding cyber threats typically
rely on analyzing attack alerts to identify attack intentions.
However, these methods are insufficient for dealing with the
ever-changing threat landscape of complex cyber threats. It
is essential to have a robust security system that can identify
and prevent sophisticated APT attack campaigns quickly and
accurately. This mechanism should be capable of countering
APT and its advanced variants, reducing their destructive
effects, and creating a cyber-situation comprehension system
designed to detect APT attacks.

Numerous techniques based on ML and DL have been
utilized to identify and categorize malware that exhibits
intricate and harmful behaviors. The traditional securitymod-
els, which rely on cryptographic techniques, are typically
time-consuming and cannot efficiently handle large amounts
of data, especially when dealing with sophisticated threats
like APT campaigns. Consequently, these models are not
commonly utilized in I-IoT environments, which generate
huge amounts of data [6]. DL has demonstrated significant
potential in various fields, including I-IoT. Its ability to han-
dle intricate problems and its robustness have piqued the
interest of numerous researchers, who have employed various
DL-based algorithms in critical systems. These include but
are not limited to Convolutional Neural Networks (CNN),
Graph Neural Networks (GNN), Artificial Neural Networks
(ANN), Boltzmann Machines, and Recurrent Neural Net-
works (RNN) to detect sophisticated threats [7].

In this research, a method of detecting and classifying
APT attacks in the I-IoT-enabled CPS environment is pro-
posed using Graph Attention Network (GAN). The proposed
approach is designed to efficiently handle complex and
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dynamic APT attacks. The method is evaluated on two pub-
licly available datasets, the DAPT2020 malware, and the
Edge I-IoT dataset, using standard performance metrics. The
results show that the proposed GAN-based method achieves
a high detection accuracy of 96.97% with a processing time
of 20.56 seconds on the DAPT2020 malware dataset and
95.97% with a processing time of 21.65 seconds on the
Edge I-IoT dataset. Furthermore, a comparison drawn with
conventional ML techniques demonstrates the superiority of
the proposed GAN-based method within the subject domain.
The results of this study suggest that the proposed approach
can provide effective protection against APT attacks in the
I-IoT-enabled CPS environment.

The rest of the paper is structured as follows: Section II
covers the APT and security challenges in I-IoT-enabled CPS.
The related work in the field is presented in Section III.
The methodology approach used in the study is outlined in
Section IV. The results and analysis of the experiments are
discussed in Chapter V, and the paper is concluded with
suggestions for future research directions in Section VI.

II. APT AND SECURITY ISSUES IN I-IOT ENABLED CPS
The I-IoT plays a crucial role in the advancement of industry
4.0 by driving the smart manufacturing process. However,
this progress has made the I-IoT a prime target for cyber
attackers who face growing security challenges. Several well-
known and unknown attacks have been observed on IoT
devices with weak security and high vulnerabilities, including
DDoS attacks, identity theft, MIME attacks, and network
compromise [16]. However, due to limited resources, these
devices are often unable to store enough information to
defend against these attacks, making them vulnerable to
attacks from botnets and APTs. These types of cyber-attacks
can have disastrous effects on the entire organization which
results in it becoming a prime target of cyber attackers,
leading to significant security challenges. Many known and
unknown types of attacks have been observed on IoT devices,
which possess weak security and high vulnerabilities [8]. Due
to various resource constraints, IoT nodes cannot often carry
out efficient computer analysis with low information storage,
leaving them vulnerable in terms of security. This provides
opportunities for attackers to exploit the devices using known
techniques, including but not limited to Distributed Denial
of Service (DDoS) attacks, identity theft, MIME attacks,
and compromised local networks [9]. In recent times, botnet
and APT cyber-attacks have emerged as potential threats
to I-IoT networks, which can have catastrophic effects on
enterprise-wide organizations. The IoT devices are typically
resource-constrained and are deployed across different loca-
tions, which makes it challenging to install computationally
expensive attack detection systems on them. The traditional
centralized cloud computing architecture is not capable of
managing the high transmission overheads of attack detection
systems. This approach could result in missing alerts and
failing to detect certain attack intentions, particularly when
it comes to complex APT attacks. APTs are a significant

security challenge for I-IoT-enabled CPS due to their adapt-
able nature and refined exploitation methods.

A. APT THREAT CYCLE
The initial phase of an APT involves conducting recon-
naissance activities to probe the targeted industrial network
for vulnerable and exploitable components. This is done
by gathering information about the network from general
internet searches or using social engineering tools for prop-
agation. In the weaponization phase, the attacker creates
a malicious document paired with a customized phishing
email or employs a new strain of self-replicating malware.
These are then distributed through various means such as
malware laden email, Wi-Fi, or other entry points into the
core network. The delivery phase focuses on transmitting the
malware to the intended industrial network, taking advantage
of weak account and password management measures as a
gateway for intrusion. Once inside the network, the exploita-
tion phase begins, with the attacker using the infiltrated
malware to exploit vulnerabilities within the target network.
In the installation phase, the APT malware is installed on the
processing layermachines, establishing a foothold. The Com-
mand and Control (C&C) phase serves as a post-compromise
layer, enabling the attacker to control the compromised sys-
tems through an external C&C system. The communication
between the compromised host and the C&C system is typi-
cally encrypted to avoid detection. The final phase, known as
actions on objectives or data exfiltration, involves the cyber
attacker gaining access to the organization and executing
actions to achieve their objectives, often involving the theft
or exfiltration of high-value data [10]. Within the context
of the IoT enabled CPS domain, APT attacks the core CPS
to exploit various areas of vulnerability. These may involve
altering the sensor and actuator thresholds, manipulating the
network connections between controllers and actuators, and
disrupting the network connectivity between sensors and
the Human Machine Interface (HMI) connected controllers
[11]. Existing state-of-the-art system defenders are unable
to withstand the highly sophisticated, covert, and deceptive
APT attacks. They are developed by cyber adversaries having
technical expertise that use complicated attack methods and
take advantage of various intrusion programs to achieve their
attack objectives. Often referred to as ‘‘one-day exploits’’
the attacker continue to have other attack objectives even
if the critical system is breached [12]. Figure 4 depicts the
most significant security obstacles faced by Cyber-Physical
Systems enabled by I-IoT.

In summary, I-IoT enabled CPS in industrial environ-
ments are critical for mission-critical operations, but they
have limitations when it comes to security. Therefore, it is
crucial to develop a real-time security monitoring mecha-
nism that specifically focuses on preventing unauthorized and
malicious users from accessing industrial critical systems.
Traditional security models rely on cryptographic techniques,
which require significant processing time to analyze large
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FIGURE 4. Security challenges in I-IoT enabled CPS.

volumes of data and detect complex threats like APTs. As
a result, these models are not widely adopted in I-IoT envi-
ronments due to the extensive size of data involved. In order
to minimize potential damage, it is necessary to promptly
identify security threats and take appropriate actions. By
promptly identifying and analyzing APT data traffic within
the I-IoT domain, organizations that deploy I-IoT sensors can
effectively protect their most valuable assets and data from
digital disruption in industrial processing units.

III. RELATED WORK
Identifying and accurately categorizing APT signatures in
the context of the I-IoT-enabled CPS domain is a difficult
challenge that many researchers and solution providers have
attempted to tackle. As a result, several efficient intrusion
detection systems have been proposed over time. A variety
of signature-based and behavior-based security frameworks
have been put forward to detect and classify cyber threats,
including APT which are discussed.

Azizjon et al. [13] propose a novel technique for identi-
fying malware that employs edge computing and DL, more
specifically, the CNNmodel. The CNN is utilized to translate
the binary file of themalware into images composed of pixels,
and this methodology has demonstrated an accuracy rate of
98.93% on the Malimg dataset intended for the I-IoT envi-
ronment. The system involves the distribution of considerable
amounts of traffic data generated by smart factories’ I-IoT to
edge servers for processing by DL. The system consists of
three layers, namely the edge device layer, edge layer, and
cloud layer. The edge-based DL approach comprises four
functions, which include model training and testing, model
deployment, model inference, and transmission of training
data. While the system has demonstrated excellent accuracy

on publicly available datasets, it must be tested in real-time
situations on APT datasets to ensure its effectiveness.

In their research, Huang and Zhu [14] have presented a
game-theoretic methodology for developing proactive and
cross-layer defenses against APT in a CPS environment.
This approach involves each player creating a belief about
unknown variables and utilizing Bayesian updates to learn
private information and minimize uncertainty. By analyzing
the Perfect Bayesian Nash Equilibrium (PBNE), the authors
have provided the defender with an effective countermeasure
against strategic attacks at multiple stages. They have also
introduced a nested algorithm that alternates between forward
belief updates and backward policy computation, rapidly
converging to the E-PBNE and providing a consistent set of
beliefs and policies for identifying complex malware attacks.
The experimental results have demonstrated that a sophis-
ticated defense can receive a 56% higher payoff compared
to a primitive defense. However, it is necessary to validate
the efficacy of this approach on real-time APT datasets to
demonstrate its effectiveness in I-IoT-enabled CPS.

Tamy et al. [15] present ML model for classifying and
predicting cyberattacks by using different conventional algo-
rithms, including Naive Bayes, SVM, J48, and Random
Decision Forest (RDF), on a ‘‘10% Random Sample Gas
Pipeline’’ dataset. The objective of the research is to identify
the optimal algorithm for detecting and predicting cyberat-
tacks in the CPS so that appropriate preventive actions can be
taken to reduce the risk of intrusion. The findings of the study
showed that RDF is the most effective, with a remarkable
accuracy rate of 99.30%. However, this method should still
be tested using the APT dataset in a real-time I-IoT CPS
environment.

Qian et al. [16] introduced an IDS-based system designed
to detect Man-in-the-Middle (MITM) and Replay attacks in
cyber and physical systems that utilize the Modbus TCP
Protocol. The system uses a validation process to identify
malicious activity and prevent harm to the physical system
caused by MITM, Replay, and Zero-day attacks. A non-
parallel hyper-plane fuzzy classifier utilizing SVM is used
to detect DoS (SYN flood) attacks in the cyber domain.
The system employs a 41-dimensional dataset containing
2200 samples gathered from a Supervisory Control and Data
Acquisitions (SCADA) system combined with Modbus and
TCP protocol traffic data. Although this system is capable
of detecting the aforementioned attacks, it cannot determine
the location or type of the attacks, making it unsuitable for
detecting APT-type attacks.

Gao et al. [17] developed an IDS that employs RNN and
Long-Short Term Memory (LSTM) with MTM and MTO
architectures in the CPS domain network. The system uti-
lizes two different datasets, one consisting of correlated data
and the other uncorrelated data, collected in real-time, and
extracts relevant features. The results showed that the MTO
architecture is effective in detecting sequentially uncorrelated
attacks, achieving a 90% F1 score accuracy, and it performed
even better in detecting temporally coordinated attacks.
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Stewart et al. [18] conduct a study to examine the impact
of changes in the network architecture of the CPS system on
the performance of an IDS using a one-class Support Vector
Machine (OCSVM). The system is designed to be adaptive
and can adjust to real-time situations. The effectiveness of
the system is evaluated using traces from a hybrid ICS testbed
and the NSL-KDD dataset.

George and Thampi [19] addressed the security vulner-
ability concerns in the I-IoT network and its devices and
presented a graph model for its representation. The model
serves as a security framework for evaluating and reducing
the risk of network traffic. It provides a multi-faceted and
multi-host attack detection system that focuses on the chain
of vulnerabilities in I-IoT networks. The approach extracts
security-related parameters from the graph-based model by
eliminating high-risk attack paths and attack paths with low
hop lengths and hot spots.

Teixeira et al. [20] develop a model that employs five
traditional ML algorithms for detecting cyber-attacks on both
online and offline systems. The model consists of RDF, DT,
LR, NB, and KNN. The ML models that have been trained
are subsequently implemented in the network by utilizing
real-time network traffic. The performance of the model
during the training and testing phase was compared with
the results obtained from its real-time deployment online.
The results showed that RDF achieved 100% and 99.89%
accuracy with a False Alarm Rate (FAR) of 0.00 on online
and offline systems, respectively.

Lin and Nadjm-Tehrani [21] introduce a method for mod-
eling the timing characteristics of spontaneous events in the
IEC-60870-5-104 network and using the model for detect-
ing anomalies in the CPS domain. The method is tested
using a real-time power utility dataset that introduced timing
effects to detect two types of attacks. One attack causes
time-based anomalies that result in the malfunction of edge
devices, while the other involves sporadic, stealthy attacks.
The results are promising, with 99.99% of all persistence
attacks detected. The approach needs to be tested using APT
datasets for its efficacy in a CPS-I-IoT environment.

Zhou et al. [22] present a framework for behavior-based
anomaly detection, which collects information to create three
different normal behavior baselines from various dimensions.
The framework employs a transparent network snooping
mechanism on the ICS system components. Passive recogni-
tion methods use PCAP files generated by the Wireshark tool
and online sniffers for data analysis. However, this approach
has a drawback in that the data packet tampering and logical
attacks go undetected, and the framework needs to be tested
for APT detection in I-IoT and CPS domains.

Hnamte and Hussain [32] propose a framework called
MLAPT for detecting and predicting APT signature attacks.
This framework is divided into three phases: threat detection,
alert correlation, and attack prediction. The first phase aims
to reduce false positive rates, the second phase uses amachine
learning-based prediction module to monitor network

repository data, and the third phase quickly captures attacks.
The framework achieved an accuracy of 84.8% on a generic
system.

Veličković et al. [33] put forth a system for detecting APT
that categorizes Command and Control (C & C) communi-
cations. The classification system showed impressive results
when tested on a publicly available dataset, with a True
Positive Rate (TPR) of 83.3%. However, this approach is
susceptible to evasion if infected hosts connect to a C & C
domain. Additionally, the whole APT life cycle may not be
detected if the signatures of the C & C remain unnoticed.

You et al. [34] propose a method for detecting APT using
the spear-phishing technique. A mathematical computation
filter is used to identify spam emails using tokens of detection
algorithms, separating legitimate and spam emails. Nonethe-
less, this approach is limited because it only employs a single
step for identifying APT traffic, which renders it unsuitable
for deployment in the I-IoT realm.

Yu et al. [23] propose a DL-based proactive APT detection
scheme in I-IoT that uses bidirectional encoder repre-
sentations from transformers (BERT) scheme that detects
APT attack sequences. The APT attack sequence is opti-
mized to ensure the model’s long-term sequence judgment
effectiveness. The approach is authenticated on a dataset
gathered through various equipment manufacturers and cate-
gorized into five simulated attack categories: ‘‘NORMAL’’,
‘‘PROBE’’, ‘‘DOS’’, ‘‘U2R’’ and ‘‘R2L’’. The scheme pro-
vides an accuracy of 99%. The scheme needs to be validated
computationally for the I-IoT environment.

Siniosoglou et al. [24] present a unified DL-based anomaly
detection and classification approach that targets APT and
security threats in I-IoT enabled smart grid environment.
The proposed IDS called MENSA (Anomaly Detection
and classification) adopts a novel Auto-Encoder-Generative
Adversarial Network (A-EGAN) architecture for detect-
ing operational anomalies and classifying Modbus/TCP and
DNP3 including APT cyberattacks. The scheme is validated
on various datasets that include Modbus/TCP network flows,
DNP3 network flows and operational time-series electric-
ity measurements data and provides accuracy, TRP, and
FPR of 0.947%, 0.812, and 0.036 respectively. Although the
approach provides convincing results, however, validation for
APT data traffic needs to be ascertained including training
and testing time of the framework.

Kumar and Thing [25] have introduced RAPTOR, an APT
detection system that has been specifically developed for
I-IoT environments. RAPTOR identifies and connects attack
stages obtained from an APT Attack Invariant State Machine
using optimal data sources that are selected for each stage.
The correlated attack stages are used to produce a concise,
high-level APT Campaign Graph that can track the progress
of the APT campaign and implement suitable mitigation
measures. Performance evaluations of RAPTOR show that it
can detect APT campaigns, modeled after real-world attacks,
with high precision and low false positive and negative
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TABLE 1. Summary of related work.
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TABLE 1. (Continued.) Summary of related work.

rates in the I-IoT domain. The authors have used synthetic
APT campaigns inserted into the CSE-IDC2018 intrusion
detection dataset to evaluate the approach, which yielded a
precision accuracy of 0.996%. However, further validation of
this approach in a real-time I-IoT environment is necessary.

Yao et al. [26] presented a hybrid intrusion detection
system for Edge-Based I-IoT relying on ML-aided detec-
tion for edge-based I-IoT, innovations in detection methods,
and system architecture. At the detection method level, the
lightweight LightGBM DL algorithm using CNN algorithms
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FIGURE 5. The proposed adversarial system.

is utilized in the lower level and upper level of the network,
respectively. Xiao et al. [27] suggest Sybil-based collusion
attacks (SCA) in the I-IoT-FL system for the detection of
malicious attacks.

Dhelim et al. [28] suggested a Trust Management System
(TMS) called Trust2Vec which is an integral component
of any IoT network. Trust2Vec is capable of mitigating
large-scale trust attacks that involve hundreds of malicious
devices. The system uses a random-walk network exploration
algorithm that navigates the trust relationship among devices
and computes trust network embedding. To detect large-scale
attacks such as self-promoting and bad-mouthing, the sys-
tem proposes a network embedding community detection
algorithm that identifies and blocks communities of mali-
cious nodes. The proposed system achieves a mitigation rate
of up to 94% in various network settings.

Hnamte et al. [57] propose an intelligent and efficient Net-
work Intrusion Detection System (NIDS) based on DL. The
focus is on developing a DL-based IDS for the detection of
attacks. To train the model, real-time traffic datasets, specifi-
cally CICIDS2018 and Edge_IIoT datasets, are utilized. The
performance of the model is evaluated using multiclass clas-
sification, and it achieves an accuracy rate of 100% when
trained and tested with the CICIDS 2018 dataset.

Similarly, when trained and tested with the Edge_IIoT
dataset, themodel achieves an accuracy rate of 99.64%. These
results demonstrate the effectiveness of the proposed DL-
based IDS in detecting attacks in network traffic. Although,
the approach achieves high accuracy on two diversified
datasets, one related to the I-IoT domain, however, the
approach still needs to be validated for the I-IoT domain.
In short, current methods focus on identifying anomalous
traffic and APT attacks in I-IoT-enabled CPS using various

DL and autonomous techniques. However, their effectiveness
in detecting modern cyber threats like APT in in the I-IoT-
enabled CPS, domain is questionable. Table 1 summarizes the
related work.

Conclusively speaking, these techniques have been tested
in generic and SCADA systems using generic and specific
datasets, but they cannot provide real-time recognition of
genuine APT threats, limiting the security administrator’s
decision-making ability. Moreover, detecting all APT phases
and balancing between false positive and negative rates also
remains a challenging task. Furthermore, the suitability of
these models in detecting APT malware traffic needs to
be tested in mission-critical cyber complex domains where
computational resources are limited. Moreover, they have not
been tested on real-time systems with APT-specific datasets,
as any false positive or false negative can have a signifi-
cant impact on the complex system. Therefore, there is a
need for a computationally efficient APT malware detection
system that can quickly identify APT attacks and protect
the mission-critical infrastructure of I-IoT-enabled CPS. To
achieve this goal, this study presents a computationally effec-
tive DL-based APT malware detection and classification
system that uses a GAN model on APT and IoT-specific
datasets suitable for complex I-IoT-enabled CPS. The pro-
posed GAN-based model combines the strengths of Neural
Networks (NN) and node feature generators on DAPT2020
malware and Edge I-IoT datasets to cover all phases of the
APT cycle in the cyber complex domain.

IV. METHODOLOGY
Recently, the Graph Attention Network (GAN) has garnered
substantial interest among cyber security researchers due to
its unique capabilities. Unlike other NN models, such as
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CNNs, Recurrent Neural Nets (RNNs), or Auto-encoders, the
GAN allows each node to be associated with a label that
enables the prediction of unknown nodes by leveraging the
information contained in the edges connecting neighboring
nodes. This is an advantage that the other NN models cannot
replicate due to their inability to model graph structures [33].
While traditional NN models such as CNNs, RNNs, or Auto-
encoders are effective at identifying patterns in data such as
text, images, or video, they are not well suited for handling
graph structures, which are interconnected by various nodes.
To address this limitation, GAN is developed as a DL method
specifically designed for handling graph data. GANs are
applied directly to graph structures, offering the advantage of
making predictions at the node, edge, and graph levels. This
makes them a suitable solution for analyzing graph-structured
data [34]. Additionally, GAN can also be utilized for training
networks with less computational expense, using methods
like Spatial Graph Convolution Networks (SGCN) and Spec-
tral Graph Convolution Networks [35]. In our proposed
approach, GAN is employed to classify and detect intricate
APT malware in graphical data. It works on the principle
that each adjacent node contributes equally to producing
the central node representation. The attention mechanism
of GAN allocates varying importance to each neighboring
node’s contribution, rendering it more reliable and effective
than other NN [36]. Moreover, to prevent overfitting during
model training, the structure incorporates dropout and reg-
ularization layers after the convolution and global pooling
layers. Node2Vec embedding is also integrated as a node
feature, which utilizes parameters to determine the pace at
which adjacent nodes are encountered in graph traversals.
Figure 5 depicts the proposed structure of our system in the
realm of IoT-enabled CPS.

The system is composed of five layers: the data acquisition
layer, the GAN construction layer, the embedding vector
layer, the detection layer, and the model evaluation layer. The
system is built in four stages, starting with convolution layers
that create generalized feature representations of a specific
size for each node. To decrease the dimensions, a global
pooling layer is employed. Dropout and regularization stages
have been included after the convolution and global pooling
layers to prevent over-fitting while training the model. The
Adam optimizer is preferred over other optimizers such as
AdaBelief, Adagrad, and Rmsprop due to its faster conver-
gence and higher accuracy [37]. The output is generated in
the global pooling layer and presented as a softmax layer
to determine whether the network traffic is APT malware,
benign, or normal data traffic. The GAN model’s hyper-
parameters are listed in Table 2.

A. DATASETS
As complex cyber threats are becoming increasingly intri-
cate in their tactics, techniques, and procedures (TTP), many
modern cyber-attacks can be characterized by their TTP
that concentrates on analyzing and profiling distinct threat
vectors.

TABLE 2. Hyper-parameters of the proposed graph attention network
model.

In the same manner, most of today’s widespread malware
threats follow similar actions to those of APT attack cam-
paigns [38]. To evaluate our proposed system, we utilized the
following publicly accessible datasets: -

B. DAPT20201

Complex cyber threats are becoming more multifaceted
in their tactics, techniques, and procedures (TTP). The
DAPT2020 dataset [39] facilitates and enables a better under-
standing of the relationship between theAPT groups and TTP.
In this dataset, the analysis of attack behavior at the interface
and inside the network level incorporates four major APT
attack phases that include Intelligence gathering, Penetration,
Network propagation, and Data outflow. Additionally, the
network flow characteristics in DAPT 2020encode numer-
ous latent factors, which include versatility and stealthiness,
which are core features of APTs. The dataset captures the var-
ious aspects of real-world APT attacks, which include attack
behavior both at the interface and inside the network. The
threat model used for the creation of the APT dataset incorpo-
rates the four main phases of an APT attack reconnaissance,
foothold establishment, lateral movement, and data exfiltra-
tion. The traffic features in the dataset encode several latent
characteristics, such as adaptability and stealthiness, of APTs
spanning all the stages of an APT. Generalized APT attack
phases mapped to its real-time activity are summarized in
Table 3.

C. EDGE—IIOT2

We utilized a comprehensive dataset called Edge-IIoT [40],
[41], which is focused on cyber security in IoT and I-IoT
applications. The IDS systems based on ML algorithms were
developed using a dataset called Edge-IIoT. This dataset
includes data from various IoT devices such as digital
sensors for temperature and humidity sensing, ultrasonic sen-
sors, water level detection sensors, pH sensor meters, soil
moisture sensors, heart rate sensors, and flame sensors. It
contains 14 attacks that target IoT and I-IoT connectivity
protocols and are divided into five categories: DoS/DDoS
attacks, information gathering, man-in-the-middle attacks,
injection attacks, and malware attacks. The dataset also

1https://www.kaggle.com/datasets/sowmyamyneni/dapt2020
2https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-

realistic- cyber-security-dataset-iot-and-iiot-applications
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TABLE 3. Network activities with mapped APT attack phases on DAPT2020 dataset.

includes features extracted from various sources such as sys-
tem resources, logs, alerts, and network traffic. The dataset
includes 2,219,201 attacks, with 1,615,643 considered regu-
lar and 603,558 classified as attacks. Tables 4 and 5 provide
information on the attack scenarios in the Edge-IIoT dataset
and the selected categories, respectively.

D. ALGORITHMIC WORKFLOW OF GAN MODEL
Before feeding the data into the NN classifier, it is pre-
processed and normalized. Careful data analysis is crucial for
accurately predicting I-IoT traffic as APT malware, benign

APT, or normal data traffic. So, the first step is to organize the
data in a way that is compatible with input for DL classifiers.
During the data de-noising process, any datasets containing
missing, infinite, or NAN values including unexpected val-
ues are removed. Types of features such as numerical and
categorical data are also identified, and categorical data are
converted to numerical data through the process of label
encoding.

The layer takes a set of node features, denoted as h = {h1,
h2, . . . , h N}, where each hi belongs to RF, representing
the features of each node. N represents the total number of
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TABLE 4. Attack scenario – edge IIoT dataset.

nodes, and F represents the number of features in each node.
The layer generates a new set of node features, also denoted
as h = {h1, h2, . . . , h N}, where each hi belongs to RF, as the
output. The objective is to have sufficient expressive power to
transform the input features into higher-level features, which
requires at least one learnable linear transformation. As a
first step, a shared linear transformation is applied to each
node using a weight matrix, W, which has dimensions F×F.
Subsequently, the layer employs a self-attention mechanism
on the nodes. This mechanism, represented by a function a:

RF×RF → R, computes attention coefficients by Eq 1:

eij = a
(
Wh→

i ,Wh→
j

)
(1)

The importance of the node j’s features to node i is determined
by the attention coefficients. In the general formulation of
the model, every node can attend to all other nodes, without
considering the structural information of the graph. How-
ever, we incorporate the graph structure by applying masked
attention. This means that we only compute the attention
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TABLE 5. Selected classes – edge IIoT dataset.

coefficient eij for nodes j that belong to the neighborhood
of node i, denoted as Ni. In our experiments, the neighbor-
hood Ni specifically includes the first-order neighbors of
node i, including node i itself. To ensure that the attention
coefficients can be compared across different nodes, we nor-
malize them using the softmax function. This normalization
is performed across all possible choices of node j within the
neighborhood Ni computed by Eq 2:

αij = softmax j
(
eij

)
=

exp
(
eij

)∑
kϵNi exp (eik)

(2)

In our experiments, the attention mechanism, denoted as a,
is implemented as a single-layer feed-forward neural net-
work. It is parametrized by a weight vector belonging to the
real number R and has a dimension of 2F. The non-linearity
used in this mechanism is the Leaky ReLU, with a negative
input slope of α = 0.2. Expanding the attention mechanism
further, the computed coefficients can be expressed as follows
in Eq 3:

αij =

exp
(
LeakyReLU

(
a→T [Wh→

i ||Wh→
j ]

))
∑

kϵNi exp
(
LeakyReLU

(
a→T [Wh→

i ||Wh→
j ]

))
(3)

In the equation, ’· T’ represents the transposition operation,
and ’||’ denotes the concatenation operation. After obtain-
ing the normalized attention coefficients, they are utilized
to compute a linear combination of the features associated
with each coefficient. This linear combination serves as the
final output feature for every node. The attention mecha-
nism used in our model is denoted as a (Whi, Whj), where
Whi and Whj represent the transformed features of nodes i
and j, respectively. This mechanism is parameterized by a
weight vector belonging to the real number R and utilizes the
LeakyReLU activation function.

In the illustration of multi-head attention, node 1 performs
attention on its neighborhood. The attention computations
are independent and represented by different arrow styles

and colors. The model employs K =3 heads for this multi-
head attention. The features obtained from each head are
aggregated by concatenating or averaging them to obtain the
final output feature h1 for node 1. Applying a nonlinearity,
σ ) in the following Eq 4:

h→′
i = σ

(∑
kϵNi

αijWh→
j

)
(4)

To enhance the stability of the learning process in self-
attention, we have discovered that employing multi-head
attention is beneficial. This involves executingK-independent
attention mechanisms to transform the input features. The
transformation is carried out using the following Eq 5:

headk = a_k(Whi,Whi) (5)

Each attention mechanism, denoted as a_k, operates inde-
pendently. After the transformation, the features obtained
from each head are concatenated together, resulting in the
following output feature representation in Eq 6:

h→′
i = ||

K
k=1σ

(∑
kϵNi

αkijW
kh→

j

)
(6)

In the equation, ’||’ represents concatenation, αkij repre-
sents the normalized attention coefficients computed by
the kth attention mechanism (ak), and Wk represents the
weight matrix of the corresponding input linear transfor-
mation. It is important to note that in this setting, the
final returned output, h, will consist of KF features (rather
than F) for each node. Specifically, if we apply multi-head
attention on the final (prediction) layer of the network,
concatenation is no longer appropriate. Instead, we employ
averaging and postpone the application of the final nonlin-
earity (such as softmax or logistic sigmoid in classification
problems). Eq 7: -

h→′
i = σ

(
1
K

∑K

k=1

∑
kϵNi

αkijW
kh→

j

)
(7)
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E. LAYER-WISE WORKING OF GAN MODEL
ARCHITECTURE
Layer-wise demonstration of GAN transformation is outlined
through the following steps [33]:

F. DATA ACQUISITION LAYER
The proposed system uses information from two datasets,
namely DAPT2020 [39] and Edge IIoT [41], which are acces-
sible to the public, to create the GAN model.

G. LINEAR TRANSFORMATION LAYER
The proposed system applies a linear transformation to the
Weighted Matrix W function to obtain feature vectors for
the nodes. This function, also known as a projection to
the one-hot vectors, encodes the node representations while
maintaining the structure of the vector space. Eq 8 computes
this linear transformation [42]:

Y = WX + b (8)

H. COMPUTATION OF ATTENTION COEFFICIENTS
The importance of the features of neighboring nodes is
determined through the application of Attention Coefficients,
which are computed using Eq 9 [43]:

eij = a
(
Wh→

i ,Wh→
j

)
(9)

Here a is a function that computes the Attention Coefficients
and i and j are neighboring nodes.

I. NORMALIZATION OF ATTENTION COEFFICIENTS
The structures of graphs are diverse, resulting in differ-
ent numbers of neighbors for each node. To ensure that
all neighborhoods have a common scale, attention coeffi-
cients are normalized. The normalization function is defined
by Eq 10 [44]:

αij =
exp

(
LeakyReLU

(
eij

))∑
kϵN exp

(
LeakyReLU

(
eij

)) (10)

FIGURE 6. Learned features of node.

J. COMPUTATION OF FINAL OUTPUT FEATURES
After normalizing the attention coefficients, the subsequent
step is to calculate the group of characteristics connected to
the coefficients to achieve the final feature of the network.

The method of producing the ultimate output feature is out-
lined in Eq 11 [45]:-

h→′
i = σ

(∑
jϵN

αijWh→
′

j

)
(11)

and its output features are shown in Figure 6.

K. COMPUTATION OF MULTIPLE ATTENTION
MECHANISMS
In the last stage, the goal is to enhance the learning process’s
stability. To accomplish this, Multi-head attention is used to
compute several attention maps and obtain a final aggregate
of learned representations. This step helps to stabilize the
attention process, allowing for multiple independent attention
mechanisms to be employed for transforming and concatenat-
ing output features. The corresponding equation is Eq 12 [45]
defines the Final Learned Feature Computation, whereas its
output is shown in Figure 7: -

h→′
i = σ

(
1
K

∑K

k=1

∑
jϵN

αkijW
kh→

′

j

)
(12)

FIGURE 7. Learned features of node.

L. NODE2VEC EMBEDDING LAYER
Node2Vec is a graph embedding technique that converts the
nodes in a graph into compact, high-dimensional attribute
representations. During the creation of the vector, it takes into
account the edges and their weights between the nodes [46].
This technique samples the neighborhood through random
walks and trains a hidden layer to predict the probability
of one node occurring based on the occurrence of another
node, using multiple random neighborhood samples [47].
Node2Vec allows for flexible parameters to explore the
graph’s neighborhood to obtain rich data representations,
ensuring the trade-off between exploration and exploita-
tion, which is essential in graph-optimization problems [47].
Node2Vec is a method used to embed graphs, which converts
nodes in a graph into low-dimensional and dense attribute
representations. In Node2Vec, each node in the graph acts
as an initial point, and a certain number of random walks
are generated from these points, forming a structure that
serves as input to the Word2Vec model. The objective of
training Word2Vec is to exploit the probability of accurately
predicting context nodes given the central node. The output of
the Word2Vec model is the embedding vectors of predefined
sizes that belong to each node in the graph. The embedding
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process is illustrated in Figure 8. Five parameters are involved
in the Node2Vec embedding process, including the feature
embedding size, the number of random walks for each node,
the maximum number of nodes visited for each walk, and the
p and q parameters, which are used to determine the alpha
value [48]. Table 6. provides the hyper-parameters used in the
Node2Vec technique. The embedding process is diagrammat-
ically explained in Figure 8.

FIGURE 8. NOD2VEC embedding process.

TABLE 6. Hyper-parameters of the Node2Vec model.

M. DETECTION LAYER
The process of detecting APT infiltration in smart I-IoT
devices includes constructing a fully connected graph layer
through the use of a GAN. This graph layer can identify APT
infiltration and categorize data traffic as either APT, Benign,
or Non-APT.

N. PERFORMANCE EVALUATION LAYER
The system suggested is assessed by utilizing standard met-
rics for evaluation, which comprise the detection Accuracy,
Precision, Recall, F Score, False Positive Rate, and the dura-
tion of Train and Test Execution Time. These metrics are
defined as follows: -

TABLE 7. Specifications for hardware/software for proposed framework.

O. MODEL TESTING ACCURACY
Accuracy is a metric used as a reference to evaluate the
number of correct predictions made by a classificationmodel,
relative to the total number of input samples. The equation
provided in Eq 13 best describes how accurately the model is
performing [49]:

Accuracy =
Number of correct predictions
Total number of predictions

(13)

P. PRECISION, RECALL, F-SCORE, AND FPR
Precision is a metric used to evaluate the accuracy of positive
predictions made, specifically for the minority class. It is
a benchmark that quantifies the number of correct positive
predictions made. Eq 14 and 15 provide the definitions of
precision and recall, respectively [50]:-

Precision =
TP

TP + FP
(14)

The resulting value of precision is between 0.0, representing
no precision, and 1.0, indicating full or ideal precision. The
recall is a metric that measures the number of correct positive
predictions made out of all possible positive predictions. It
indicates the number of missed positive predictions, unlike
precision, which identifies the number of accurate positive
predictions out of all positive predictions made. Eq 15 can be
used to calculate the recall metric.

Recall =
TP

TP + FN
(15)

The result of the recall metric ranges from 0.0, indicating no
recall, to 1.0, representing full or ideal recall.

Q. F SCORE
The F-measure or F1 score is a single metric that incorporates
both precision and recall, combining the two properties into
a single value. It is calculated as the harmonic mean of
the two fractions, and Eq 16 can be used to compute the
F1 score [51]: -

F Measure = 2 ×
Precision+ Recall
Precision× Recall

(16)

R. FALSE POSITIVE RATE (FPR)
The accuracy of machine learning can be evaluated using a
metric called False Positive Rate (FPR). FPR is calculated
as the proportion of negative cases in the dataset that were
wrongly classified as positive. Eq 17 provides a description
of FPR [52]:-

FPR =
FP

(FP + TN)
(17)

S. MODEL TRAIN AND TEST EXECUTION TIME
The measure of a classification system’s effectiveness is not
solely based on its accuracy in correctly classifying network
traffic, but also on its ability to process the data quickly. If
processing takes too long, there is a higher chance that APT
packets may be missed. In our research, we have evaluated
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FIGURE 9. Testbed for proposed APT adversarial system.

TABLE 8. Evaluation results: Deep learning algorithms on DAPT2020 malware dataset.

the execution times for the training and testing phases of the
algorithms that have been applied.

V. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed architecture is evaluated on a system with
a standard configuration, and Table 7 shows the hardware
and software specifications used for the evaluation of our
adversarial framework.

The proposed APT adversarial framework is developed
on a windows machines and tested and evaluated on a
Linux virtual machine using a generic end-to-end I-IoT secu-
rity testbed, which simulates real-time I-IoT enabled CPS
deployment scenarios [53]. The testbed can be easily mod-
ified to support new processes and security scenarios and

is a standardized and realistic system for evaluating secu-
rity solutions in I-IoT networks. It can also analyses I-IoT
attack landscapes and provide valuable threat intelligence.
Furthermore, the functionality of the proposed testbed is
exhibited on various connected devices, communication pro-
tocols, and applications. The adversarial APT framework is
setup, assessed, and tested on a testbed that simulates I-IoT
environment. The testbed layout can be seen in Figure 9.
The wired and wireless devices connected to the testbed

are both successfully tested. The performance of the testbed
was evaluated by focusing on the edge gateway network and
system activities, which are the central points connecting the
physical and cyber systems in the I-IoT environment. For
the development and evaluation of the proposed system, the
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TABLE 9. Evaluation results: DL algorithms on edge-IIoT dataset.

TABLE 10. Input parameters for random decision forest.

TABLE 11. Input parameters for decision tree.

TABLE 12. Input parameters for SVM.

Pytorch Geometric module of the Pytorch framework is used
to build the GAN [54]. The Pytorch framework offers tem-
poral geometric DL for researchers and ML practitioners in a

TABLE 13. Input parameters for logistic regression.

TABLE 14. Input parameters for GNB.

FIGURE 10. Comparison results of GAN with DNN algorithms - DAPT2020
malware dataset.

user-friendly and integrated environment, making it a better
option compared to other DL libraries. During the training
stage, different experimental configurations were applied to
the GANmodels of the proposed system by varying the num-
ber of hidden units in the convolutional layers. Specifically,
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TABLE 15. Evaluation results: Conventional ML algorithms on DAPT2020 dataset.

TABLE 16. Evaluation results: Conventional ML algorithms on edge IIoT dataset.

FIGURE 11. Comparison results of GAN with DNN algorithms – Edge-IIoT
dataset.

the experimental setup included hidden units of 16, 32,
54, and 128. To assess the statistical significance of these
experimental setups, the Wilcoxon Signed Rank Test [55] is
used with a significance level of 0.05. The results obtained
from applying various hidden units on GAN with Node2Vec
embedding are shown in Tables 8-9 on the DAPT2020
Malware and Edge-IIoT datasets respectively. A graphical
comparison of the results is shown in Figures 10-11.
We evaluated our models on the DAPT2020 and edge

IIoT datasets, and our adversarial models perform excep-
tionally well in terms of accuracy, recall, and precision with
very low FPR (0.013%). The results demonstrate that the
GAN algorithm stands out with the highest accuracy rate
of 96.97% when using 128 hidden units in its convolutional
layers on the DAPT2020 malware dataset. Moreover, it takes
about 10.45s to compile the model and 20.56s to predict the
results. The same model also achieves a prediction accuracy
of 95.97%with FPR of 0.0109% and train and prediction time
of 15.01s and 21.65s to detect APT assaults respectively on
the Edge IIoT dataset when using the same hidden parame-
ters. Although the CNN-LSTM model also obtains excellent

prediction accuracy of 95.93% (Accuracy, Precision, Recall,
F1-score) on the DAPT2020 dataset, however, its FPR stands
high at 2.45% with the model requiring 125s during the train-
ing phase and 102s during the prediction phase onDAPT2020
datasets. Likewise, the outcomes of the model on the Edge-
IIoT dataset are almost indistinguishable.

A. EXPERIMENTATION WITH CONVENTIONAL ML
ALGORITHMS
ConventionalML algorithms for classification problems have
been developed and compared to the proposed DL approach.
A similar structure of DL was used for conventional classifi-
cation to make an objective evaluation and compare its results
with other classifier algorithms. Standard data transforma-
tion techniques, application of the classification algorithm,
and the evaluation of results were carried out, including
nominalization and elimination of unnecessary features. The
algorithms tested were LinearSVC with 500 iterations, Ran-
domForestClassifier, DecisionTreeClassifier from sklearn,
GaussianNB from NumPy, and LogisticRegression from the
Sklearn ML libraries. Standard evaluation metrics such as
Accuracy, Precision, Recall, and F-score are used to evaluate
the traditional ML algorithms. Input parameters of selected
algorithms are provided in the following Table 10-14.
The experimental results showed the highest accuracy of

87.39%, a precision of 88.67%, recall of 87.76%, f1-score,
and 87.32% respectively, with the RDF algorithm outper-
forming other conventional algorithms in the DAPT2020
malware and Edge-IIoT datasets. the results of the tradi-
tional MLalgorithms using the same datasets are shown in
Tables 15-16.
In summary, based on the evaluation results, it can be con-

cluded that GAN performs better than otherML algorithms in
accurately classifying complexmalware signatures, including
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TABLE 17. Comparison of proposed methodology with existing state-of-the-art.

APT data signatures. A comparative analysis with other tech-
niques for APT detection and classification is presented in
Table 17, which demonstrates the superior performance of the

proposed GAN approach in terms of accuracy for detection
and classification with minimal processing time, well suited
for I-IoT enabled CPS domain. Various researchers in the
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field have proposed ML and independent system approaches
that exhibit exceptional detection rates. For example, Kumar
and Thing [25] and Hnamte et al. [57] presented an indepen-
dent and DL based methods that achieved high end accuracy
of 0.99% and 100% prediction rate, respectively. However,
their scope is restricted to a small set of APT attack phases,
and their effectiveness is assessed using a simulated dataset
that may not provide a precise representation of APT char-
acteristics in IoT-enabled CPS systems. On the other hand,
the adversarial method outlined in the aforementioned tables
requires minimal computation time for processing APT data
packets, leading to better overall performance by reducing the
duration of training and prediction and minimizing compu-
tation power consumption during all phases of APT attacks.
Furthermore, scalability can be further enhanced and it can be
quickly deployed. Additionally, the system is built in a modu-
lar and portable way increasing its flexibility and adaptability.

VI. CONCLUSION AND FUTURE WORK
I-IoT-enabled CPSs control the infrastructure in our society.
In recent years, there have been instances of vulnerabilities
being exploited in these mission-critical systems, which have
a larger attack surface compared to traditional IT systems.
The poor security measures of different I-IoT devices and
prevalent conditions make them vulnerable to APT attacks.

The current security systems in I-IoT-enabled CPSs are
keeping pace with technological advancements, but they are
not effective and far from adequate in protecting sensitive
systems. This study presents a DL-based APT campaign
detection system for I-IoT-enabled CPSs that uses GAN
algorithms for APT attack detection and compensation. The
experiment results show that the GAN approach is most
suitable for a mission-critical robust system of I-IoT-enabled
CPSs and effectively detects complex APT attacks with a
prediction accuracy and time of 96.97% (20.56s) and 95.25%
(21.65s) on the DAPT2020 malware and Edge I-IoT datasets
respectively. The comparison of the proposed approach with
the state of the art suggests that the DL approach is superior
in detecting complex APT malware in the hazardous domain
of I-IoT-enabled CPSs. Overall, the proposed DL-based
approach is superior in detecting complex APT malware in
the hazardous domain of I-IoT-enabled CPSs. Future and
further aspects that could be explored include the viability of
other NN variants, such as RNN, MLP, GRU, etc. in the sub-
ject domain with higher computational resources for better
performance in detection. Secondly, leveraging the attention
mechanism to conduct a comprehensive analysis of model
interpretability. Finally, incorporating edge features into the
model would enable us to address a wide range of problems
by capturing relationships among nodes in the subject domain
can also be explored.
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