
Received 11 May 2023, accepted 22 May 2023, date of publication 3 July 2023, date of current version 26 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3291412

An Incremental Optimization Algorithm for
Efficient Verification of Graph
Transformation Systems
FARANAK NEJATI1, NOR ASILAH WATI ABDUL HAMID 2,3, (Senior Member, IEEE),
SINA ZANGBARI KOOHI 2,3, AND ZAHRA RAHMANI ZADEH4
1Lee Kong Chian Faculty of Engineering and Science (LKC FES), Department of Internet Engineering and Computer Science (DIECS), Universiti Tunku Abdul
Rahman, Sungai Long, Selangor 43000, Malaysia
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
3Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
4Department of Software Engineering, University of Applied Sciences and Technology (UAST), Arak 14188-64511, Iran

Corresponding authors: Nor Asilah Wati Abdul Hamid (asila@upm.edu.my) and Sina Zangbari Koohi (zangbari@gmail.com)

This research was supported by Universiti Putra Malaysia (UPM) under Geran Putra GP/2020/9693400.

ABSTRACT This paper proposes an incremental optimization framework for verifying graph transformation
systems to overcome the state space explosion (SSE). SSE refers to the exponential growth of the number of
possible states in a system during its verification. The framework maps the verification problem to a search
problem and incrementally generates the state space. The generated increments can still be significant in size,
thus we use the Raccoon Optimization Algorithm (ROA), to non-exhaustively search through the state space.
ROA selects sequences of states with a higher potential of having deadlock in increments, which prevents
SSE and ensures that memory capacity is not exceeded. However, there is possibility that the migration
method of ROA lead to a loss of diversity in the population, reducing the algorithm’s ability to explore new
regions of the search space. To address this issue, we propose a new migration method for ROA, called
Improved ROA (IROA), which preserves diversity in the population and reduces execution time and the risk
of getting stuck in local optima. Our approach is evaluated using the Groove simulation tool and compared
with other relevant meta-heuristic algorithms in terms of computation time and memory consumption. The
experimental results show that IROA outperforms both ROA and other relevant meta-heuristic algorithms
that we compared in terms of computation time and memory consumption, with total efficiency of 1.043 and
1.02, respectively, demonstrating its effectiveness in verifyingmassive state spaces without facing state space
explosion in a reasonable time.

INDEX TERMS Artificial intelligence, raccoon optimization algorithm, software verification, model
checking, graph transformation systems, state space explosion.

I. INTRODUCTION
Graph transformation systems (GTS) have emerged as a use-
ful mathematical language for software development. GTS
are employed for various stages of software development,
such as meta-modeling [1], software architecture [2], goal
modeling [2], [3], model-based development [2], program-
ming languages [4], performance analysis [5]. To improve the

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

reliability in GTS, model checking [6] is an effective tech-
nique. However, the verification of GTS by model checking
is a challenging task, as it involves exploring the state space of
the system, which can be prohibitively large due to the state
space explosion (SSE) problem. The challenge arises when
the size of the state space, i.e., the set of all possible states of
a system, grows exponentially as a function of the system’s
size or the level of abstraction in the model. This exponential
growth makes it computationally infeasible to explore the
entire state space, even for small-sized systems. Thus, it is

75748

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-8095-7678
https://orcid.org/0000-0002-7690-8950
https://orcid.org/0000-0002-8751-9205


F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

quite valuable to propose an efficient method to mitigate the
SSE problem and successfully verify GTS.

To address the SSE problem, this paper proposes an incre-
mental optimization framework that utilizes the Raccoon
Optimization Algorithm (ROA) [7] to iteratively generate
and verify the search space. In this approach, the algorithm
incrementally generate and selects the states to explore, thus
avoiding the exhaustive verification of the entire state space.

The reason we utilized ROA is that this algorithm, in each
iteration, snatches a subset of SS to be explored and checked
which is essential for the incremental approach. Furthermore,
ROA has two different populations in two different zones of
the state solution, which makes it more efficient than other
optimization algorithms in terms of skipping local optima.
However, sticking to local optima is inevitable andmay occur.
We also present an improved version of the ROA, named
IROA, to further reduce the probability of getting stuck in
local optima.

The motivation for proposing this method is to provide
an approach to successfully verify GTS without facing the
SSE problem. Traditional model checking techniques require
exhaustive exploration of the entire state space, which is
infeasible for large and complex systems. By utilizing an
incremental approach alongwith IROA, ourmethod can over-
come the SSE problem and verify GTS models. This will
lead to higher quality and more reliable systems, making our
method a crucial tool for system development.

The paper’s key contributions are twofold. First of all,
we use GTS to map the verification process into a search
problem, apply a novel meta-heuristic algorithm to search
non-exhaustively and incrementally into the problem, and
compare the results with a set of different meta-heuristic
algorithms. In addition, we devise a strategy to improve ROA
and find deadlock-freedom with efficiency and accuracy. The
proposed method has been implemented in GROOVE [8]
which is a simulation tool for the GST specification and
generating its state space [9]. It has been applied to non-
trivial case studies to demonstrate the feasibility, efficiency,
and accuracy. The verification properties that is address in
this paper is deadlock freedom.

To provide a roadmap for the paper, in Section II, we pro-
vide a background and preliminary findings related to the
research. Section III presents related work and compares our
approach with existing methods. In Section IV, we explain
our proposed method in detail, including the extension of
ROA and the mapping of the verification problem into a
search problem. Section V describes the evaluation of our
method through case studies. In Section VI, we discuss the
results, limitations, and future work. Finally, in Section 7,
we conclude the paper.

II. PRELIMINARIES
A. MODEL-CHECKING
Model checking is a renowned method for ensuring the cor-
rectness of a system. It clarifies the system specification

FIGURE 1. Model checking approach.

and ensures accuracy. Model-checking can be defined as the
following.
Definition 1: Model checking is a tuple (M ,m, S), where:
• M is a conceptual model for expressing and representing
a system requirement with m states;

• S is formal specification of a system properties;
Figure 1 represents the model checking approach. The

system’s models are represented by a Kripke structure [10],
however, they can be represented by any graph-like visu-
alization, such as GTS [11] or Petri Net [12]. The formal
specification of the system is formulated by propositional
temporal logic. This kind of logic is for describing and rea-
soning about the system’s properties in terms of time. Some
common system properties are reachability, safety, liveness,
fairness [13]. In this paper, we aim to check deadlock free-
dom, which is a kind of safety property. The safety property
guarantees that under particular circumstances, a violation
(e.g.deadlock state) will not happen in any way. To check
safety or other properties through model checking, all the SS
should be generated and checked. However, the generation of
the entire SS of the systems faces the state space explosion
(SSE). To explain the severity of SSE, let’s consider a system
with n processes, where each process has m states. Then, the
calculation of the size of SS can reach up tomn. It obtains that
by a large number of n and m the amount of state space in
the system increases exponentially, therefore surplusing the
memory volume. For more information about the methods of
model checking, interested researchers can refer to [13].

B. GRAPH TRANSFORMATION SYSTEM
Graph transformation system is a graphical representation for
system modeling with a formal and accurate mathematical
foundation [14]. GTS has been advanced to deal with non-
linear structures since the first protocols were made in the late
1960s and early 1970s [15]. Since GTS can comprehensively
define the behavior of the system and describe the concepts
of all of its components along with their relationships with
graphs, it can also be used to check the system’s correctness
through model checking. A formal definition of GTS is pro-
vided below.
Definition 2: Graph transformation is a triple GTS =

(TG,HG,R), which are examining each other.
• HG is a host graph;
• TG is a type graph;
• R is a set of rules.

VOLUME 11, 2023 75749



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

The primary purpose of HG is to display the system’s initial
configuration. The reason is that in the initial phase, a uniform
graph from HG to TG is required so that every edge and node
in the host graph are mapped to single edge types and single
node types in the TG. The type graph TG can be defined
formally as follows:
Definition 3: Type graph is a tuple AGT = (TN ,TE, src,

des) in which:

• TN is the set of node types;
• TE is the set of edge types;
• src is the source of a node;
• des is the destination of a node.

Each TE links a TN as a source to another TN as the
destination by two different functions src and des. R is a set of
rules which each rule can be define formally as the following.
Definition 4: Rule in GTS is a triple AGT =

(LHS,RHS,NAC) in which:

• LHS referred the left hand side of the rule which served
as the prerequisite for the rule to be valid;

• RHS referred to the right hand side of the rule;
• NAC referred to the Negative Application Condition.

Numerous tools have been created to manipulate and
model GTS. Among the existing tools, the only one that
supports model checking is Groove [16]. Additionally, the
Groove is also an open-source tool, which enables researchers
to easily add new features.

C. RACCOON OPTIMIZATION ALGORITHM
Meta-heuristic algorithms have found widespread applica-
tions across various fields [17], [18]. ROA is one such
algorithm that distinguishes itself by having two distinct
populations in two different zones of the state solution. This
unique feature makes it more efficient than other optimiza-
tion algorithms in terms of skipping local optima. Given
this advantage, we have selected ROA as the basis for our
proposed method to improve verification in GTS.

The remarkable hunting ability of raccoons, coupled with
their sharp claws and keen eyesight, has served as the inspira-
tion behind a new approach to achieving the global optimum
in optimization problems, known as the ROA method [7].
In this method, the fitness function domain is modeled after
the natural habitat of the raccoon, where food sources are
scattered throughout, offering a variety of potential options
to explore. The goal is to identify the most optimal solution
among all the possibilities available.

The ROA process comprises three distinct phases: param-
eter definition, initialization, and the main loop. To simplify
the overall computational procedure of the ROA, a pseu-
docode has been developed (see Pseudocode 1), outlining
each of the individual stages of the algorithm.

To ensure optimal performance, the parameters of an
algorithm should be tailored to the specific problem at hand.
In the case of ROA [7], there are six distinct parameters,
which are summarized in Algorithm 1. Once these param-
eters have been established, the next step is initialization,

Algorithm 1 ROA
1: Parameters Definition:
2: RZR← Radius of Reachable Zone (RZ)
3: Nreachable← No. of RZ Candidates
4: VZR← Radius of Visible Zone (VZ)
5: Nvisible← No. of VZ Candidates
6: NI ← No. of Iterations
7: MF ← Factor of Migration
8: Initialization:
9: pos0← Random Initial Location
10: Gopt ← pos0
11: RZP0← Initial Reachable Population (RP)
12: Rbest0 ← Best Candidate in RZP0
13: VZP0← Initial Visible Population (VP)
14: Vbest0 ← Best Candidate in RZP0
15: npersev← 0
16: Main Loop:
17: if f (posNI ) > f (Gopt ) then
18: Return posNI
19: else
20: Return Gopt
21: end if
22: for i = 1 to NI do
23: posi ←best position in posi−1, RPbesti−1 , and

VPbesti−1
24: if f (posi) > f (Gopt ) then
25: Gopt ← posi
26: end if
27: if posi = posi−1 then
28: npereserv ++
29: else
30: npereserv = 0
31: end if
32: if npereserv = MF then
33: posi ←new position (random) not inside of

VZPi−1
34: npereserv = 0
35: end if
36: RZPi← RP closed posi
37: Rbesti ← Best Candidate in RZPi
38: VZPi← VP closed posi
39: Vbesti ← Best Candidate in VZP
40: end for
41: Return Vbesti

which can have a significant impact on the algorithm’s overall
performance. Algorithm 1 provides an overview of the initial-
ization phase in ROA.

ROA involves two distinct populations: the zone of reach-
able population (RZP), which is accessible from the raccoon’s
paws, and the zone of visible population (VZP), which is
accessible from the raccoon’s eyes. The final phase of ROA is
the main loop, which consists of several processes that work
together to achieve the optimal solution. These processes

75750 VOLUME 11, 2023



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

include changing the raccoon’s position, migration, and gen-
erating the next generation. During each iteration of the main
loop, the following values are selected:
• posi−1: the raccoon’s current position;
• RPbesti−1 : refers to the reachable population (the preced-
ing iteration);

• VPbesti−1 : refers the best value in the visible population
(the preceding iteration).

Then, the raccoon changed its position to the best position
among the aforementioned values.

In particular circumstances, preservation of the result may
happen. The preservation occurs when the raccoon gets stuck
in a local optima. After a user defined number of iterations,
called the ‘‘Factor of Migration’’, the condition for preserva-
tion will be checked.

In the event that preservation occurs, the raccoon migrates
to a new position. For this reason, new posi and Gopt are
computed, and the one with best fitness will be the next
position.

Gopt = (f (Gopt ) > f (posi))→ (Gopt )∧

¬(f (Gopt ) > f (posi))→ (posi) (1)

III. RELATED WORK
Model checking has proven to be an effective method for
ensuring the correctness of complex systems. However, the
state space explosion problem (SSE) remains a major chal-
lenge, limiting the scalability and applicability of model
checking to verification of models such as GTS. To overcome
this challenge, researchers have developed a range of meth-
ods, include scaling down the state space [19], compositional
verification [20], memory handling [21], bottom-up verifi-
cation [22], and heuristics and probabilistic [23], [24], [25],
[26], [27] approaches. In this section, we review the strengths
and drawbacks of some of the improved optimization algo-
rithms in improving the performance of graph transform
systems (GTS).

Probabilistic algorithms can be considered a type of
optimization algorithm because they use probability or ran-
domness to explore the search space and find the optimal
solution or an approximation of it. In probabilistic algo-
rithms, the solution is not found with certainty, but instead,
the algorithm tries to find the solution with a high probability.
This approach can be useful when the search space is large
or complex, and deterministic algorithms are not feasible or
efficient. Therefore, probabilistic algorithms can be useful for
optimization problems, including those in model checking
and verification. One of the basic probabilistic algorithms
is random walk [28], which specifies a path in the state
space that contains a sequence for finding defects in model-
checking. The algorithm has minimal memory requirements,
but its complexity is not superior to existing methods for
solving SSE [29]. Another basic probabilistic approach is the
breadth-first search algorithm, which is utilized for protocol
validation and makes significant improvements over depth-
first search [29]. However, for larger systems, it may still

not be practical to exhaustively search the entire state space
using this approach. Additionally, the use of other techniques
may still be necessary to make the verification process more
efficient.
Bloom filter is another probabilistic approach for verifi-

cation purposes [30], employed in two basic schemes for
probabilistic verification: hash compaction and bit-state hash-
ing. Bloom filtering saves compressed values in a data hash
table instead ofmaintaining complete state descriptors. In this
method, states with a non-zero probability will be eliminated
throughout the verification process. As a result, some attain-
able states may get unchecked during the verification process,
which may lead to false-positive results.
The continuous-time Markov chain (CTMC) [31], [32] is

also used in model checking as a probabilistic approach to
deal with SSE. CTMC models are an extension of Markov
chains that enable the modeling of continuous-time events.
These models are widely used to model and analyze the
performance and reliability of systems with random behav-
ior. CTMCs have been applied in various domains, such as
communication networks, manufacturing systems, and bio-
logical systems. However, CTMCs have some limitations that
should be considered when using them for verification and
model checking. For example, the analysis of CTMCs can
be computationally expensive, especially when the system
has a large number of states. Therefore, researchers need to
develop efficient algorithms and techniques to mitigate these
limitations when using CTMCs for verification and model
checking.
One class of methods used in probabilistic approaches

are meta-heuristic algorithms, which are designed to pro-
vide approximate solutions to optimization problems. Among
the various meta-heuristic algorithms, the Genetic Algorithm
(GA) has been widely applied in the field of model-
checking [33], [34]. However,GA can suffer from premature
convergence, where the algorithm terminates before finding
the optimal solution. Additionally, the computational com-
plexity of the genetic algorithm can be high for large-scale
problems, making it less suitable for massive verification
tasks. In an effort to improve the efficiency of GA, a hybrid
approach combining Genetic Algorithms with Assume-
Guarantee reasoning, a subset of compositional verification,
is proposed in [35].
Another popular meta-heuristic technique is the Ant

Colony Algorithm, which has been utilized for identifying
optimal pathways in graph-like models [36]. This method
has also been successfully applied to verification and model
checking problems. One advantage is its ability to identify
optimal pathways in graph-like models, which makes it suit-
able for solving problems in various domains. It has been
successfully applied to verification andmodel checking prob-
lems. However, one of its drawbacks is the lack of diversity in
its solutions, which can result in premature convergence and
suboptimal solutions. Another disadvantage is its sensitivity
to parameter settings, which can lead to different results
for different parameter values. In a similar vein, to improve

VOLUME 11, 2023 75751



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

the efficiency of Ant Colony Algorithm, a study presented
in [37] introduces the use of randomized selection mecha-
nisms through an ant colony algorithm to diversify solutions.

Themeta-heuristic algorithm is also used in the verification
of GTS [38]. A framework has been devised in [39] for
applying a non-exhaustive search to investigate system prop-
erties modeled by GTS. They present a heuristic method for
reducing the verification effort and providing faster results.
R. Yousefian et al. [40] investigated the application of GA for
model checking through GTS. They claim that the problem
of SSE can be mitigated by creating an incomplete SS each
time and searching for deadlock in that partial path. The
Bayesian optimization algorithm (BOA) [41], [42] is another
of the successful algorithms that has been used to verify GST-
specified systems for deadlock freedom. Although the studies
mentioned above demonstrate the potential of meta-heuristic
methods to tackle the SSE problem, it is important to note that
such methods may not always provide the optimal solution,
and the quality of the obtained solution may be influenced
by the choice of algorithm and its parameters. Furthermore,
the efficiency and effectiveness of these methods are highly
dependent on the characteristics of the problem instance.
Hence, there is always scope for further improvement in the
design and application of heuristic algorithms.

In light of these limitations, our study introduces an incre-
mental optimization algorithm that generates and verifies the
search space iteratively, rather than all at once. It strategically
choosing the states to explore by using an improved version
of raccoon optimization algorithm named IROA. The IROA
can efficiently verify the state space without encountering
the SSE. Therefore, our study contributes to the ongoing
efforts to design and apply meta-heuristic algorithms that can
overcome the limitations of existing methods and provide
more accurate and efficient solutions.

IV. PROPOSED APPROACH
Software verification can be limited due to the state space
explosion (SSE) problem, where the software’s state space
grows exponentially and surpasses the memory capacity dur-
ing the verification process. Traditionally, a model checker
generates the entire state space from a unique initial state
s0 and starts checking from s0. Every state is checked, and
the model checker determines whether the state satisfies the
desired system properties or not. However, generating the
whole state space at once leads to the state space explosion
problem.

To overcome this problem, an incremental optimiza-
tion framework can be used. This section presents such a
framework that uses an improved version of the Raccoon
Optimization Algorithm (ROA) called IROA to iteratively
generate and verify the search space. The framework employs
a non-exhaustive search on the state space using the Groove
tool. The main aim of the method is to generate and check a
partial state space in multiple iterations until the entire state
space is verified, instead of generating the entire state space
at once. This is known as incremental verification. The partial

FIGURE 2. Proposed model checking based on IROA in Groove.

state space, as it still is massive, thenwill be checked by IROA
to determine whether there is a property violation on any of
the paths. In our scenario, the property violation is considered
a deadlock.

By using IROA in the verification process, we can effi-
ciently skip local optima, which makes it more efficient than
other optimization algorithms. This leads to faster verifica-
tion of the entire state space, which would not have been
possible using traditional methods. Therefore, the proposed
incremental optimization framework provides an efficient
solution to the SSE problem in software verification.

The verification process of improved ROAwith the Groove
tool has several steps which are described in the subsections.
The overview of the proposed verification process is dis-
played in 2. The figure does not contain the migration part.
The following subsections explain the proposed framework
in details.

A. MODELING THE SYSTEM USING GTS IN GROOVE TOOL
To verify a system based on GTS, firstly, the system under
test should be modeled based on the syntax and semantics of
the GTS and the Groove tool. A graph transform is used to
model the system’s behavior and the modeled system graphs
are used to represent the SS of the systems.

75752 VOLUME 11, 2023



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

FIGURE 3. Attribute type.

FIGURE 4. Host graph for dining philosopher in Groove.

Throughout this section, we use the dining philosopher
problem as a running example to describe the proposed
method clearly and demonstrate its suitability. The din-
ing philosophers provide an example of how the SS might
grow enormously as the number of philosophers grows. This
conundrum features a group of philosophers (two or more)
sitting at a table, who each think and become hungry for a
while. To start, one of themmay use the left fork first, then the
right fork, and eat with both. The philosopher then enters deep
thinking mode while placing the left and right forks on the
table. This method can be repeated numerous times. Because
there are several philosophers seated around the table and
each fork is shared by the two philosophers next to them,
they struggle to pick up the forks. The system will grind to a
deadlock in some situations, such as when every philosopher
chooses the left fork.

Figure 3, shows the Type graph of this problem in Groove
tool with two type node TN = {Phil,Fork} and three differ-
ent type edge TE = {left, right, hold}. Figure 4, presents the
host graph of this problem in the Groove tool. Philosophers
in thinking status are in the initial state of the host graph. The
next in GTS is defining rules for example the right-hand side
of rules is RHS = {left, right, release}.
The SS of a system model represents its possible states

during running the system, and in order to generate it, all the
defined rules must be applied repeatedly to the initial state.
In this research, a transition system is used to display the SS.

Definition 5 (transition system) A transition system (TS)
can be defined as a tuple S = (b0,B,E,P), where:

• B is a set of system’s states (b0 is initial state);
• E indicates a set of edges (e ∈ E) for changing system’s
state which labeled by the set of rules R;

• 1 indicates a set of steps from one state to another by an
edge, 1 ⊆ S × E × S.

B. GENERATING POPULATION
In this paper, we propose a novel approach to verify graph
transformation systems (GTS) by mapping the verification
process into a search problem. Specifically, we represent
the state space of the GTS model as a set of individuals
in the population, with each individual generated by a trace
function that can explore all possible states of the GTSmodel.
We consider each trace as an individual in the population,
and input this population into an optimization algorithm for
searching for deadlock. To address the exponential growth
of state space, our approach proposes generating the pop-
ulation incrementally. This involves generating a limited
number of individuals in successive increments based on the
memory capacity of the system by using the trace function.
The generated population is then checked by IROA, and all
unwanted population before generating the next increment
will be deleted from memory. The next population is then
generated and checked until the entire state space is covered.

To generate the initial trace, we first define the initial
position of the Raccoon pos0 based on the GTS model. Then,
by tracing the TS at a fixed depth, we generate individuals
for the population. Our trace function is defined as a process
of exploring the TS by visiting each node and generating all
possible states.

Definition 6 (trace) A trace of a TS which indicated
by ζ is a sequence of steps attached with its edges. ζ =

(bi, (ei), bi+1), (bi+1, (ei+1), bi+2), . . . , (bn, (en), bn+1) ∈ 1.
In this research we use the notation ζ = bi

ei
−→

bi+1, bi+1
ei+1
−−→ bi+2, . . . , sn

en
−→ bn+1. Also, we may use the

notation ζ = b
e1,e2,...,en
−−−−−−→ bn+1 to show the trace path from b

to b′.
Based on the algorithm strategy in this phase, the global

optimum is the initial position, Gopt = pos0. A set of random
candidate solutions around the pos0 that are considered the
initial reachable population will be assigned to the RZP0.
This set is an increment from the whole state space. The
candidate solutions are selected based on the sequence of
transitions starting from s0 generated by the trace function
defined in definition 6. Every potential solution is regarded
as an individual within the reachable population. The depth
(length) of each trace are problem-dependent, and the user
should define it based on the problem. The depth is measured
by the number of states (NS) in each trace. The process of
generating an initial population for reachable zone is used to
provide an initial population for the visible zone. In Figure 5,
the sequence of ‘‘b0, b6, b25, b23, b5’’ can be considered an
individual in the initial population. For the next iterations, the
same strategy will be used to provide the random candidate
solutions (increments).

C. FITNESS FUNCTION
For every individual candidate solution in RZP0, the number
of potential outgoing transitions (POT) will be calculated.

VOLUME 11, 2023 75753



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

FIGURE 5. State space of dining philosophers.

By using POT, the model checker can evaluate whether the
current path is a deadlock or not. As POT is a problem-
dependent number, it is not trivial to find its maximum. For
example, in the dining philosophers, each state could have
a maximum up to N number of POT where N refers to the
number of philosophers. The maximum POT of each problem
is called the MPOT.

The aim is to find deadlock in the SS. A deadlock occurs
when there is no POT in a given individual. In this circum-
stance, the system is stuck in one of the states and will not
progress. Thus, an obvious fitness function can be the paths
with a lower total POT in comparison with the MPOT of the
current path POTcurrent path < MPOT . Thus, we have a min-
imization problem in which the algorithm should minimize
the total POT of the path.

F(x) = 6NS
i=1 POTi

where NS is the number of allowed states in a trace. The
best individuals in the population will be the ones with a
lower POT number, named POTrisk . Once a population is
created, if its total fitness function is not satisfying, then some
of the individuals with higher POT will be replaced by new
POTrisks.

Once evaluating the population is completed, the POTrisk
inside the population will be selected as the initial best solu-
tion, Rbest0 = POTrisk . Then, a visible zone based on s0 will
be calculated. An initial visible population will be assigned to
VZP0. The method of population evaluation for the VZP0 is
the same as that RZP0. After completing the evaluation of
both populations, the next generation will be produced. This
process will be repeated until the desired number of iterations
is reached.

D. IMPROVED MIGRATION PROCESS
While ROA is effective at avoiding local optima due to its use
of two different populations, migration can still be an issue.
If migrated solutions are too similar to existing solutions in
the target subpopulation, it can limit the algorithm’s ability
to explore new regions of the search space and find the
global optimum. To address this issue, we propose a new
method for escaping local optima that preserves diversity in
the population. We discuss our proposed method in detail

and show that it outperforms other methods in escaping local
optima without sacrificing diversity.

In the proposed algorithm, the candidate solutions are gen-
erated incrementally. However, to monitor if a local optima
has occurred, a number of increments will be buffered. If the
similarity between the increments is greater than a pre-
defined amount, then it will be determined as a local optima.

Once it has been determined that the Raccoon needs to
migrate, a set of new individuals is given to a small group
of randomly selected individuals in the population based on
their outgoing transitions.

Three outcomes during raccoon migration should be fol-
lowed. (1) to avoid choosing random states for the sequence.
It is so that the selected random states are not a sequence of
states with transitions to each other and (2) move in the same
direction as the current individual. It means that using the
transition of the provided individual to migrate will result in a
series of states connected by transitions and the proper edge;
(3) calculate the migration individuals for both reachable and
visible zones. Themigration will be decided based on the best
option for both populations.

To start the migration process, we select a set of best indi-
viduals from visible zone and update its position according
to the transitions in its states. The new individual can be
calculated using the following formula.

CS = CS +6n
i=0(ϵ.(bi)− bi,CS ) (2)

where CS is the current position of the individual, ϵ is a
random number produced by a function controlled by the
Gaussian distribution to choose the transition for each state
bi, bi,Cs is the current position of the ith state, and bi is the
new position of the ith state in the new individualCS. A small
set of individuals for migration will be provided, and the best
one based on the fitness function will be selected to migrate.

E. THE PSEUDO-CODE AND COMPUTATIONAL
COMPLEXITY
The basic structure of the Improved ROA algorithm is iden-
tical to the ROA presented in Algorithm 1. However, the
migration phase has been modified. The pseudo-code for
IROA, including the updated migration method, is provided
in Algorithm 2. It should be noted that the input to this
algorithm is not the entire state space. Instead, the state space
will be created incrementally based on the method defined
in section (B). The number of increments required depends
heavily on the problem and memory capacity. Therefore,
if the problem has a vast state space and limited memory, the
number of increments containing candidate solutions will be
higher.

The computational complexity of the Improved ROA
algorithm has been analyzed and found to be O(NS ·
NP logNP), where NS is the number of allowed states in a
trace and NP is the population size. The analysis considered
the initialization, evaluation, selection, migration, elitism,
and termination phases of the algorithm. The initialization
phase involves creating the initial populations and offspring,

75754 VOLUME 11, 2023



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

Algorithm 2 IROA
Require:

RZR: Radius of Reachable Zone (RZ)
Nreachable: No. of RZ Candidates
VZR: Radius of Visible Zone (VZ)
Nvisible: No. of VZ Candidates
NI : No. of Iterations
MF : Factor of Migration
K : Number of Migration candidate

Ensure:
Gopt: Best Solution found

1: Randomly initialize pos0 and set Gopt ← pos0
2: Initialize RZP0, Rbest0, VZP0, Vbest0, and npersev
3: for i = 1 to NI do
4: posi ← best position in posi−1, RPbest,i−1, and
VPbest,i−1

5: if f (posi) > f (Gopt) then
6: Gopt ← posi
7: end if
8: if posi = posi−1 then
9: npersev← npersev+ 1

10: else
11: npersev← 0
12: end if
13: if npersev = MF then
14: Migration :
15: Choose a set of individuals S from VZPi
16: for each s in S do
17: Choose a random state bi from s
18: Calculate the new individual CS using:
19: CS = CS +

∑n
i=0(ϵ.(bi)− bi,CS )

20: Evaluate the fitness of CS
21: if CS is better than s then
22: Replace s with CS
23: end if
24: end for
25: end if
26: RZPi← RP closed to posi
27: Rbesti← Best Candidate in RZPi
28: VZPi← VP closed to posi
29: Vbesti← Best Candidate in VZPi
30: end for
31: return Gopt

which takes O(NP) time. The evaluation phase calculates the
POT and fitness function for each individual in the popula-
tion, requiring O(NS ·NP) time. The selection phase chooses
NP individuals from the population based on fitness func-
tion, which takes O(NP logNP) time. The evaluation phase
is repeated for the selected individuals, taking anotherO(NS ·
NP) time. The migration phase selects NP individuals from
the selected individuals in VZP and requires O(NP logNP)
time. The elitism phase keeps the best individual from the

initial population, taking O(1) time. The termination phase
checks the stopping criteria, which takes O(1) time. Overall,
the Improved ROA algorithm has a computational complexity
of O(NS · NP logNP), which is dominated by the evaluation
and selection phases. However, the number of increments in
the state space creation process and the memory capacity may
impact the number of increments and candidates, affecting
the performance of the algorithm.

V. IMPLEMENTATION AND EVALUATION
This section aims to comprehensively evaluate the per-
formance of the proposed meta-algorithms on four varied
and well-known case studies, namely the dining philoso-
phers [43], PacMan Game evaluation [44], N-Queen [39],
Vehicle Platoon Evaluation [45]. Moreover, this section pro-
vides a detailed comparison of our proposed method with
five other popular meta-heuristics methods. The evaluation is
based on an average of different runs, and the summary of the
parameters for each algorithm, including the improved ROA,
is presented in the following section.

In order to verify each model, we have computed the aver-
age execution time for verifying the state space in the total
execution runs. Additionally, we have analyzed the memory
usage for each algorithm and monitored the occurrence of the
SSE problem.

The execution time, memory usage, and occurrence of SSE
problem are the primary evaluation metrics of the solutions
generated by the proposed meta-algorithms on the four case
studies. Therefore, we have not included a convergence dia-
gram in this section as it is not necessary for the evaluation
of the proposed meta-algorithms. The incremental deadlock
identification process is the main focus of our study.

We also calculate the out-performance of IROA compared
to ROA to demonstrate the effectiveness of the proposed
approach. To find the average out-performance of IROA over
ROA for all case studies, we use the speedup metric. The
speedup metric measures the relative performance improve-
ment of a new algorithm (in this case, IROA) compared to an
existing algorithm (standard ROA) on the same problem. The
formula for calculating speedup is:

speedup = P(R)/P(I ) (3)

where T(R) is the execution time of standard ROA, and T(I)
is the execution time of IROA.

After calculating the speedup for all case studies, the effi-
ciency of the IROA is found by adding up all the speedup
values and dividing by the number of case studies. The for-
mula for calculating speedup is:

efficiency = 6speedup/No. of case studies (4)

A. BENCHMARK
To evaluate the suggested algorithm, we examined four dis-
tinct, non-trivial known case studies. We used these case
studies to examine other proposed optimization algorithms
for solving SSE in GTS verification. There are multiple

VOLUME 11, 2023 75755



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

optimization algorithms that provide a range of advan-
tages and applications. However, most of them are highly
problem-dependent and difficult to apply for GTS verifica-
tion. As a result, we selected the generalized version of a
few well-known algorithms to apply them in our incremental
framework. These algorithms are ROA, GA [46], PSO [47],
ABC [48], BOA [49]. We also compare the results with one
of the famous model checkers named NuSMV [6].

The comparison of IROA has been conducted with the
original versions of other popular algorithms. This serves as
a baseline to demonstrate the effectiveness of the improve-
ments made in IROA, showing how it outperforms the
original ROA, GA, PSO, ABC, and BOA in terms of con-
vergence rate, accuracy, and robustness. Additionally, the
original versions of these algorithms have been widely used
and bench-marked in various optimization problems, mak-
ing a comparison with them a fair assessment of IROA’s
performance. Furthermore, the recent improvement on the
meta-heuristic algorithms may have been for specific prob-
lem or data types. It may not provide a precise comparison as
it may not perform well on other types of data or problems.

In our experimental approach, we utilized an initial param-
eter set to explore the state space, which was carefully
selected based on the commonly used values in the literature.
Given the crucial role of parameter selection inmeta-heuristic
algorithms and its potential impact on the accuracy and effec-
tiveness of our proposed method, we conducted extensive
testing to investigate the sensitivity of our results to dif-
ferent parameter configurations. Specifically, we tested by
systematically varying one parameter at a time while keep-
ing the others fixed, and measuring the resulting impact on
the algorithm’s performance. Our findings demonstrate that
modifying these parameters had an insignificant impact on
the experiment’s results. To ensure consistency and fairness
across all benchmarks, we fixed these parameter values for all
evaluations. This approach allowed us to eliminate potential
confounding factors and obtain reliable results.

The final parameters are listed below.
• ROA

- RZR: 5
- No. RZ Candidate: 10
- VZR: 10
- No. VZ Candidate: 3
- No. Iterations: 30
- Migration Factor: 3

• Improved ROA
- RZR: 5
- No. RZ Candidate: 10
- VZR: 10
- No. VZ Candidate: 3
- No. Iterations: 30
- Migration Factor: 3

• GA
- Population Size: 100
- Crossover Percentage: 0:7

- Mutation Percentage: 0:2
- Mutation Rate: 0:03
- Tournament Size: 5

• PSO
- Swarm Size: 100
- Inertia Weight (IW): 0.99
- IW Damping Ratio: 1.0
- Global Learning Coefficient: 3:0
- Personal Learning Coefficient: 2:0

• ABC
- Colony Size: 100
- Number of Onlooker Bees: 100
- Abandonment Limit Parameter: 200
- Acceleration Coefficient Upper Bound: 1

• BOA
- Beam Size: 10
- Selection Percentage: 40%
- Replacement Percentage: 50%

1) THE DINING PHILOSOPHERS CASE STUDY EVALUATION
The present paper employs the Dinning philosopher problem
as a reference case to evaluate our proposed enhanced ROA
against other meta-heuristic algorithms. In order to evaluate
the performance of each algorithm, we have summarized and
compared the results in Tables 1 and 2. To verify each case
study, we have calculated the maximum memory usage and
the average time required to verify the whole state space.
The findings from our analysis demonstrate that our proposed
algorithm achieves a better results among the compared algo-
rithms in the best-case scenario. This is primarily attributed
to the state-space explosion issue, which occurs in NuSMV
and other meta-heuristics algorithms when dealing with a
larger number of philosophers. These algorithms need to
generate and explore the entire state space, which poses a
challenge to their efficiency. The results for the standard
ROA is also acceptable as it is able to verify the state space
in a reasonable time without facing the memory overflow.
However, we tested a strategical migration method and the
results improved. The reason is likely due to the fact that
IROA’s migration method helps to preserve diversity in the
population, which reduces the risk of getting stuck in local
optima. In contrast, ROA’s migration method can sometimes
lead to a loss of diversity in the population, which reduces the
algorithm’s ability to explore new regions of the search space.
By improving the migration method, IROA is able to explore
the search space more effectively, specially when the number
os state space is high, leading to better results. The time and
memory usage improve 1.09% and 1.03%, respectively.

2) PacMan GAME CASE STUDY EVALUATION
Our model, in particular, differs and begins with a field
dimension of 4. The game features two agents: Pac-Man and
Ghost.In every stage of the game, both entities have the ability
to move to adjacent boxes while adhering to a predetermined
set of guidelines. In the event that Pac-Man moves to a box

75756 VOLUME 11, 2023



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

TABLE 1. Execution time of running dining philosophers.

TABLE 2. Memory consumption of dining philosophers.

containing a marble, it will consume the marble. However,
if Ghost moves to a box that is already occupied by Pac-Man,
the latter will be killed. The game concludes when either Pac-
Man devours all the marbles, resulting in a win, or when the
Ghost kills Pac-Man, resulting in a loss. In both scenarios,
a deadlock situation may arise. The state space of the problem
under investigation is not particularly extensive due to the
presence of multiple error states. This is a result of the signif-
icant number of potential error states that may arise, which
constrains the size of the state space. Despite the relatively
smaller state space, the problem presents unique challenges
and complexities that require an effective and efficient solu-
tion. We deliberately selected the Pac-Man game as our case
study to evaluate the performance of our proposed algorithm
in comparison to other methods, as it presents a less complex
state space compared to other benchmark problems, such
as the dining philosopher’s problem. This strategic selection
allowed us to better isolate the key factors that influence the
performance of our algorithm, while providing a meaningful
comparison with existing methods. Through this approach,
we were able to gain deeper insights into the strengths and
limitations of our proposed approach and assess its potential
for real-world applications.

Our experimental results, as shown in Tables 3 and 4,
indicate that all the algorithms were able to successfully
verify the case study. However, IROA demonstrated superior
performance compared to the other methods. Despite the
relatively small state space, all the methods were able to
complete the verification process within the memory capacity
constraints. Nevertheless, the incremental approach and ver-
ification of two different sets of candidate solutions (visible
and reachable zones) in IROA allowed for faster verification
with lower memory consumption. The improvement in time

TABLE 3. Execution time of running Pac-Man.

TABLE 4. Memory consumption of Pac-Man.

TABLE 5. Execution time of running N-Queen.

and memory usage of IROA over ROA is marginal, with
a difference of only 1.01% and 1.003%, respectively. This
could be attributed to the fact that the proposed migration
strategy shows significant improvement in scenarios where
the state space is large and complex.

3) N-QUEEN CASE STUDY EVALUATION
The NxN refers to the challenge of positioning eight chess
queens on an NxN chessboard. The rule is no two queens are
allowed to fight each other. As a result, no two queens can be
in the same column, row, or square in a solution. Any move
in these circumstances will consider as a deadlock.

Our experimental results, presented in Tables 5 and 6,
demonstrate that IROA is capable of detecting deadlocks in
the N-Queen problem for large N. In contrast, the Pac-Man
game, similar to the dining philosopher’s problem, presents
a more complex state space that posed significant chal-
lenges for NuSMV and other meta-heuristic algorithms. As a
result, thesemethods were unable to complete the verification
process due to the state space explosion (SSE) problem.
By contrast, IROA’s incremental approach and verification
of visible and reachable zones enabled it to effectively tackle
the complexities of the problem domain and provide a robust
and efficient solution. The improvement in time and memory
usage of IROA over ROA is marginal, with a difference of
only 1.04% and 1.023%, respectively.

VOLUME 11, 2023 75757



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

TABLE 6. Results of N-Queen.

TABLE 7. Execution time of running Vehicle platoon.

TABLE 8. Results of vehicle platoon.

I intend to showcase your project to Dr. Sugu as the top-
performing assignment.

4) VEHICLE PLATOON CASE STUDY EVALUATION
The vehicle platoon (VP) concept was developed to showcase
the potential of vehicle automation technologies in allevi-
ating traffic congestion. The VP system involves multiple
vehicles traveling at a consistent speed and maintaining a
fixed distance from each other on a highway, with one vehicle
designated as the Leader and the rest as Followers. Our study
focuses on a VP system comprising 25 vehicles, represented
as processes, linked through a channel. Specifically, we aim
to determine if the channel can be established between two
followers, which requires identifying cases where a process
submits a join request to a follower but receives no response,
or when a follower sends a join request to another follower
or recognizes a join request already sent by a leader. Our
approach detects incorrect states and identifies deadlocks
when either of the above scenarios occurs.

Table 7 and 8 showcase the results obtained from running
all the meta-heuristic algorithms for the Vehicle platoon case
study. It is observed that our proposed method, IROA, out-
performs the other algorithms in terms of speed and absence
of the SSE problem during verification. The speed of our
proposed method can be attributed to the generation and
checking of two different populations in parallel and the new
migration method. Furthermore, GA and BOA demonstrate
acceptable results when compared to the other approaches.
The reason behind GA and BOA not facing the SSE problem

in this case study can be attributed to the definition of the
deadlock, which leads to a smaller state space. These results
demonstrate the effectiveness of our proposed approach in
verifying GTS and overcoming the limitations of the exist-
ing meta-heuristic algorithms. The improvement in time and
memory usage of IROA over ROA is marginal, with a differ-
ence of only 1.03% and 1.015%, respectively.

By applying the efficiency formula presented in equation
4 to all case studies, the overall efficiency of IROA over ROA
has been computed as 1.043 for execution time and 1.02 for
memory usage.

VI. CONCLUSION
In this paper, we presented an incremental optimization
framework based on a novel meta-heuristic algorithm for
detecting deadlocks in large-scale software systems while
overcoming the challenge of state space explosion. This chal-
lenge has persisted over time and continues to pose a major
challenge for professionals in this field. Our approach incre-
mentally generated and verified the state space to ensure the
absence of deadlocks. We demonstrated the efficacy of our
methodology through several complex case studies and found
that it outperformed existing methods and tools like NuSMV.
Our experiments showed that IROA is more efficient and
effective than ROA for deadlock verification tasks, especially
in scenarios with a large number of states where the state
space explosion problem is likely to occur. The improved
migration strategy in IROA helps maintain diversity in the
population, allowing the algorithm to explore new regions of
the search space and avoid getting stuck in local optima. The
total efficiency of IROA over ROA was 1.043 for execution
time and 1.02 for memory usage. Although our methodology
is capable of completing the verification process and detect-
ing deadlocks within a reasonable time without encountering
the state space explosion problem, it is not able to guarantee
complete accuracy of deadlock free-dome results. It is due
to the stochastic nature of meta-heuristic algorithms that
makes them that have the potential for producing incorrect
results. Additionally, the proposed method’s effectiveness is
limited by the nature of the GTS verification problem itself,
as this problem is known to be NP-hard in the worst case.
However, when our algorithm does find an counter example,
we can be confident that there is deadlock in the model.
Moreover, our research has limitations in that IROA has
primarily been tested on benchmark optimization problems,
and its performance on real-world problems, like, is not
yet well-established. For example, the correctness of GTS
model of communication protocols, control systems, or the
systems that provided in [50] and [51]. Future research is
needed to assess the effectiveness of IROAon real-world opti-
mization problems, especially those with high-dimensional
and nonlinear search spaces. Addressing these two limitations
could be part of our future work. Additionally, we plan to
identify appropriate CEC benchmark tests to further evaluate
and compare our IROA with the recent advancements in
optimization algorithms.

75758 VOLUME 11, 2023



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

REFERENCES
[1] E. Kerkouche, K. Khalfaoui, and A. Chaoui, ‘‘A rewriting logic-based

semantics and analysis of uml activity diagrams: A graph transforma-
tion approach,’’ Int. J. Comput. Aided Eng. Technol., vol. 12, no. 2,
pp. 237–262, 2020.

[2] R. Heckel and G. Taentzer,Graph Transformation for Software Engineers.
Cham, Switzerland: Springer, 2020.

[3] M. Bachras and K. Kontogiannis, ‘‘Goal modelling meets service chore-
ography: A graph transformation approach,’’ in Proc. IEEE 24th Int.
Enterprise Distrib. Object Comput. Conf. (EDOC), Oct. 2020, pp. 30–39.

[4] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, ‘‘Hoppity:
Learning graph transformations to detect and fix bugs in programs,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–17.

[5] R. Groner, L. Beaucamp, M. Tichy, and S. Becker, ‘‘An exploratory
study on performance engineering in model transformations,’’ in Proc.
23rd ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst., Oct. 2020,
pp. 308–319.

[6] M. Bozzano and A. Villafiorita, ‘‘Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform,’’ in Proc.
Int. Conf. Comput. Saf., Rel., Secur. Cham, Switzerland: Springer, 2003,
pp. 49–62.

[7] S. Z. Koohi, N. A. W. A. Hamid, M. Othman, and G. Ibragimov, ‘‘Raccoon
optimization algorithm,’’ IEEE Access, vol. 7, pp. 5383–5399, 2019.

[8] A. Rensink, ‘‘The GROOVE simulator: A tool for state space generation,’’
in Proc. 2nd Int. Workshop Appl. Graph Transf. With Ind. Relevance
(AGTIVE), Charlottesville, VA, USA. Springer, 2004, pp. 479–485.

[9] A. Rensink, ‘‘The GROOVE simulator: A tool for state space generation,’’
inApplications of Graph Transformations with Industrial Relevance. Char-
lottesville, VA, USA: Springer, Sep. 2004, pp. 479–485.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, ‘‘Symbolic model checking
without BDDs,’’ in Proc. Int. Conf. Tools Algorithms For Construction
Anal. Syst. Cham, Switzerland: Springer, 1999, pp. 193–207.

[11] J. Dyck, ‘‘Verification of graph transformation systems with k-inductive
invariants,’’ Ph.D. dissertation, Hasso-Plattner-Inst., Dept. Digit. Eng.,
Potsdam, Germany, 2020.

[12] E. G. Amparore, S. Donatelli, and F. Galla, ‘‘A CTL∗ model checker for
Petri nets,’’ in Proc. Int. Conf. Appl. Theory Petri Nets Concurrency, 2020,
pp. 403–413.

[13] F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, ‘‘Handling state
space explosion in component-based software verification: A review,’’
IEEE Access, vol. 9, pp. 77526–77544, 2021.

[14] B. König, D. Nolte, J. Padberg, and A. Rensink, ‘‘A tutorial on graph trans-
formation,’’ in Graph Transformation, Specifications, and Nets. Springer,
2018, pp. 83–104.

[15] U. G. Montanari, ‘‘Separable graphs, planar graphs and web grammars,’’
Inf. Control, vol. 16, no. 3, pp. 243–267, May 1970.

[16] A. Rensink, I. Boneva, H. Kastenberg, and T. Staijen, ‘‘User man-
ual for the GROOVE tool set,’’ Dept. Comput. Sci., Univ. Twente,
Enschede, The Netherlands, 2010. [Online]. Available: https://groove.
ewi.utwente.nl/wpcontent/uploads/usermanual1.pdf

[17] N. A. Khan, M. Sulaiman, C. A. T. Romero, and F. S. Alshammari,
‘‘Analysis of nanofluid particles in a duct with thermal radiation by using
an efficient metaheuristic-driven approach,’’ Nanomaterials, vol. 12, no. 4,
p. 637, Feb. 2022.

[18] N. A. Khan, M. Sulaiman, P. Kumam, and A. J. Aljohani, ‘‘A new soft
computing approach for studying the wire coating dynamics with Oldroyd
8-constant fluid,’’ Phys. Fluids, vol. 33, no. 3, Mar. 2021, Art. no. 036117.

[19] Y. Zhang, K. Chakrabarty, Z. Peng, A. Rezine, H. Li, P. Eles, and J. Jiang,
‘‘Software-based self-testing using bounded model checking for out-of-
order superscalar processors,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 3, pp. 714–727, Mar. 2020.

[20] Y. Phyo, C. M. Do, and K. Ogata, ‘‘Toward development of a tool support-
ing a 2-layer divide & conquer approach to leads-to model checking,’’ in
Proc. Int. Conf. Adv. Inf. Technol. (ICAIT), Nov. 2019, pp. 250–255.

[21] L. Wu, H. Huang, K. Su, S. Cai, and X. Zhang, ‘‘An I/O efficient model
checking algorithm for large-scale systems,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 5, pp. 905–915, May 2015.

[22] R. Patel, K. Patel, and D. Patel, ‘‘On-the-fly symmetry reduction of explic-
itly represented probabilistic models,’’ in Proc. Int. Conf. Distrib. Comput.
Internet Technol. Cham, Switzerland: Springer, 2015, pp. 203–206.

[23] W. Zhu, H. Wu, and M. Deng, ‘‘LTL model checking based on binary clas-
sification of machine learning,’’ IEEE Access, vol. 7, pp. 135703–135719,
2019.

[24] E. Pira, ‘‘A new heuristic for deadlock detection in safety analysis of
software systems,’’ Nashriah Muhandesi Barq va Muhandesi Kamputer,
Tehran, Iran, 2022.

[25] T. Kumazawa, M. Takimoto, and Y. Kambayashi, ‘‘A safety check-
ing algorithm with multi-swarm particle swarm optimization,’’ in Proc.
Genetic Evol. Comput. Conf. Companion, Jul. 2022, pp. 786–789.

[26] K. Gaaloul, C. Menghi, S. Nejati, L. C. Briand, and Y. I. Parache, ‘‘Com-
bining genetic programming and model checking to generate environment
assumptions,’’ IEEE Trans. Softw. Eng., vol. 48, no. 9, pp. 3664–3685,
Sep. 2022.

[27] N. Pourkhodabakhsh, M. M. Mamoudan, and A. Bozorgi-Amiri, ‘‘Effec-
tive machine learning, meta-heuristic algorithms and multi-criteria deci-
sion making to minimizing human resource turnover,’’ Applied Intelli-
gence, vol. 53, no. 12, pp. 16309–16331, 2022.

[28] S. Lazreg, M. Cordy, and A. Legay, ‘‘Verification of variability-
intensive stochastic systems with statistical model checking,’’ in Proc. Int.
Symp. Leveraging Appl. Formal Methods. Greece: Springer, Oct. 2022,
pp. 448–471.

[29] A. Valmari, ‘‘A stubborn attack on state explosion,’’ in Proc. Int. Conf.
Comput. Aided Verification. Cham, Switzerland: Springer, pp. 156–165,
1990.

[30] U. Stern and D. L. Dill, ‘‘Improved probabilistic verification by hash
compaction,’’ in Proc. Adv. Res. Work. Conf. Correct Hardw. Design
Verification Methods. Cham, Switzerland: Springer, 1995, pp. 206–224.

[31] L. Bortolussi, L. Cardelli, M. Kwiatkowska, and L. Laurenti, ‘‘Central
limit model checking,’’ ACM Trans. Comput. Log., vol. 20, no. 4, pp. 1–35,
Oct. 2019.

[32] S. Donatelli, ‘‘Markov regenerative processes solution and stochastic
model checking: An on-the-fly approach,’’ in Proc. 12th EAI Int. Conf.
Perform. Eval. Methodologies Tools, Mar. 2019, pp. 1–5.

[33] T. Zheng and Y. Liu, ‘‘Genetic algorithm for generating counterexample
in stochastic model checking,’’ in Proc. VII Int. Conf. Netw., Commun.
Comput., Dec. 2018, pp. 92–96.

[34] K. Gaaloul, C. Menghi, S. Nejati, L. C. Briand, and Y. I. Parache, ‘‘Com-
bining genetic programming and model checking to generate environment
assumptions,’’ 2021, arXiv:2101.01933.

[35] Y. Ma, Z. Cao, and Y. Liu, ‘‘A probabilistic assume-guarantee rea-
soning framework based on genetic algorithm,’’ IEEE Access, vol. 7,
pp. 83839–83851, 2019.

[36] L. M. Duarte, L. Foss, F. R. Wagner, and T. Heimfarth, ‘‘Model checking
the ant colony optimisation,’’ in Distributed, Parallel and Biologically
Inspired Systems. Berlin, Germany: Springer, pp. 221–232, 2010.

[37] T. Kumazawa, M. Takimoto, and Y. Kambayashi, ‘‘Exploration strategies
for balancing efficiency and comprehensibility in model checking with
ant colony optimization,’’ J. Inf. Telecommun., vol. 6, no. 3, pp. 341–359,
Jul. 2022.

[38] R. Yousefian, S. Aboutorabi, and V. Rafe, ‘‘A greedy algorithm versus
metaheuristic solutions to deadlock detection in graph transformation sys-
tems,’’ J. Intell. Fuzzy Syst., vol. 31, no. 1, pp. 137–149, Jun. 2016.

[39] N. Rezaee andH.Momeni, ‘‘A hybridmeta-heuristic approach to copewith
state space explosion in model checking technique for deadlock freeness,’’
J. AI Data Mining, vol. 8, no. 2, pp. 189–199, 2020.

[40] R. Yousefian, V. Rafe, and M. Rahmani, ‘‘A heuristic solution for model
checking graph transformation systems,’’ Appl. Soft Comput., vol. 24,
pp. 169–180, Nov. 2014.

[41] E. Pira, V. Rafe, and A. Nikanjam, ‘‘Deadlock detection in complex
software systems specified through graph transformation using Bayesian
optimization algorithm,’’ J. Syst. Softw., vol. 131, pp. 181–200, Sep. 2017.

[42] V. Rafe, S. Mohammady, and E. Cuevas, ‘‘Using Bayesian optimization
algorithm for model-based integration testing,’’ Soft Comput., vol. 26,
no. 7, pp. 3503–3525, Apr. 2022.

[43] A. Schmidt, ‘‘Model checking of visual modeling languages,’’ in Proc.
Conf. PhD Students Comput. Sci., 2004, p. 102.

[44] R. Heckel, ‘‘Graph transformation in a nutshell,’’ Electron. Notes Theor.
Comput. Sci., vol. 148, no. 1, pp. 187–198, Feb. 2006.

[45] D. Swaroop, ‘‘String stability of interconnected systems: An application to
platooning in automated highway systems,’’ Ph.D. dissertation, California
Partners Adv. Transit Highways (PATH), Richmond, CA, USA, 1994.

[46] Y.-G. Gao and D.-Y. Song, ‘‘A new improved genetic algorithms and
its property analysis,’’ in Proc. 3rd Int. Conf. Genetic Evol. Comput.,
Oct. 2009, pp. 73–76.

VOLUME 11, 2023 75759



F. Nejati et al.: Incremental Optimization Algorithm for Efficient Verification of GTS

[47] A. R. Jordehi, ‘‘Enhanced leader PSO (ELPSO): A new PSO variant
for solving global optimisation problems,’’ Appl. Soft Comput., vol. 26,
pp. 401–417, Jan. 2015.

[48] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[49] M. Pelikan, D. E. Goldberg, and S. Tsutsui, ‘‘Hierarchical Bayesian opti-
mization algorithm: Toward a new generation of evolutionary algorithms,’’
in Proc. SICE Annu. Conf., vol. 3, 2003, pp. 2738–2743.

[50] N. AhmadKhan andM. Sulaiman, ‘‘Heat transfer and thermal conductivity
of magneto micropolar fluid with thermal non-equilibrium condition pass-
ing through the vertical porous medium,’’Waves Random Complex Media,
vol. 32, pp. 1–25, Aug. 2022.

[51] N. A. Khan, M. Sulaiman, and F. S. Alshammari, ‘‘Heat transfer analysis
of an inclined longitudinal porous fin of trapezoidal, rectangular and dove-
tail profiles using cascade neural networks,’’ Structural Multidisciplinary
Optim., vol. 65, no. 9, p. 251, Sep. 2022.

FARANAK NEJATI received the M.Sc. degree in
computer science from Tabriz University, Tabriz,
Iran, and the Ph.D. degree in computer sci-
ence (software engineering) from the University
of Putra Malaysia, Serdang, Malaysia. With a
remarkable industry experience of nearly eight
years, she has been actively involved in providing
software solutions for critical systems, particularly
in the domain of remote control systems. She cur-
rently holds the position ofUniversity Lecturer and

continues to contribute to academia. Her research interests include various
cutting-edge areas, including artificial intelligence, machine learning, opti-
mization algorithms, mathematical software specification and verification,
and component-based software development. Throughout her career, she
has demonstrated a strong commitment to interdisciplinary collaboration,
actively engaging with researchers from diverse disciplines within the field
of computer science.

NOR ASILAH WATI ABDUL HAMID (Senior
Member, IEEE) received the Ph.D. degree from
The University of Adelaide, in 2008. She has
been a Visiting Scholar with the High Performance
Computing Laboratory, George Washington Uni-
versity, USA, for two years. She is currently an
Associate Professor with the Department of Com-
munication Technology and Network, Faculty of
Computer Science and Information Technology,
Universiti PutraMalaysia, Malaysia. She is also an

Associate Professor with the Distributed and High Performance Computing
(DHPC) Group, working on high-performance distributed and parallel com-
puting technologies and applications. She is also an Associate Researcher
and the Coordinator of high-speed machines with the Institute for Mathemat-
ical Research (INSPEM), Universiti Putra Malaysia. Her research interests
include parallel and distributed computing, cluster computing, distributed
information systems, and other applications of high-performance computing.

SINA ZANGBARI KOOHI received the B.Sc.
degree in computer science fromMazandaran Uni-
versity, theM.Sc. degree in computer science from
Tabriz University, and the Ph.D. degree in parallel
and distributed computing from the esteemed Uni-
versity of Putra Malaysia. He is a highly accom-
plished individual. With a career spanning over
15 years, he has demonstrated exceptional exper-
tise in the field of computer science. His research
interests include a diverse range of cutting-edge

areas, including distributed systems, parallel computing, graph theory, and
artificial intelligence. Notably, his contributions extend beyond academia,
as he has gained hands-on experience in the field of robotics, excelling in
national robotic tournaments, and earning several prestigious accolades.

ZAHRA RAHMANI ZADEH is a dedicated pro-
fessional who holds a Bachelor of Science (B.Sc.)
degree in software engineering from Arak Univer-
sity of Applied Sciences and Technology (UAST),
Arak, Iran. She further pursued her academic aspi-
rations and successfully completed her Master of
Science (M.Sc.) degree in software engineering
at Shahab Danesh University, Qom, Iran. Follow-
ing her graduation, she joined the Technical and
Vocational High School in Qom, Iran, where she

assumed the role of a Lecturer. She also work as a part-time researcher in
collaboration with Department of Software Engineering, UAST. In recent
years, her endeavours have primarily centred around the development and
application of artificial intelligent algorithms. She has actively collaborated
with researchers from various disciplines within computer science, show-
casing her commitment to interdisciplinary research and collaboration. Her
research interests encompass a diverse range of topics within the field of
computer science. She has a keen focus on artificial intelligence, machine
learning, optimisation algorithms, software specification, and verification.

75760 VOLUME 11, 2023


