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ABSTRACT Fueled by the explosive growth of edge smart IoT devices, edge storage systems (ESS)
have emerged as a new paradigm to support the efficient access of massive edge data. ESS can greatly
alleviate the burden of cloud center and enhance the Quality of Experience (QoE) for users. However,
despite the remarkable progress of ESS, it still faces the challenges of how to improve the systems fault
tolerance ability and efficiency. Therefore, designing a secure and efficient fault-tolerant storage scheme
is urgent and indispensable. Unfortunately, existing fault-tolerant schemes for ESS still retain various
drawbacks, including: high edge storage overhead, hard to protect the edge data privacy and low data
writing performance. Motivated by this, we propose a secure cloud-edge collaborative fault-tolerant storage
scheme and its data writing optimization method. Precisely, we first propose a Hierarchical Cloud-Edge
Collaborative Fault-Tolerant Storage (HCEFT) model to achieve system robustness, low edge storage
overhead, and edge data privacy security. We further optimized the writing process of HCEFT by designing
a data writing optimization method called ECWSS (Erasure Code data Writing method based on Steiner
tree and SDN) to achieve a better trade-off between the data writing time and traffic consumption. Finally,
Comprehensive comparison and extensive experiments show that our scheme can achieve better data
robustness, availability and security. Moreover, the writing optimization method can reduce 13%-67%
data write time and 20%-62% network traffic consumption while providing better network load balance
performance.

INDEX TERMS Data writing, edge storage systems, erasure coding, fault-tolerant storage, SDN.

I. INTRODUCTION
With the prosperity of the Industrial Internet of Things [1]
and the commercialization of 5G [2], an exponential growth
of data has been generated by edge devices, such as smart
IoT devices, autonomous vehicles, and VR devices [3], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehrdad Saif .

IDC has predicted that the data volume of edge IoT devices
will reach 79.5ZB by 2025 [4], and 75% of the data is
generated at the edges [5]. Within this context, the traditional
cloud storage paradigm struggles to fulfil the low-latency
requirements of numerous applications, due to the large
distance between the clouds and the end devices. To tackle
this challenge, Edge Storage System (ESS) has been proposed
as an emerging solution [6]. ESS pushes the computing power
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and data storage from the cloud to the edge, which are located
near the end devices. By storing popular data on edge servers,
leading app vendors such as Tiktok and Meta can implement
a low latency data access for their users [7].

While providing unique benefits, the availability and
reliability of ESS is widely concerned. In typical ESSs, edge
nodes are distributed in different locations for data collection
and storage [8]. These edge servers are usually owned to indi-
viduals or small institutions with limited security protection,
making the edge data vulnerable to unknown risk [9], such as
hardware failures, natural disasters, hacker attacks, or power
outages [10]. Thus, incorporating fault-tolerant techniques
to ensure the robustness and availability of edge storage
systems is essential when server failures occur. Currently,
two representatives of fault-tolerant mechanisms are used
in storage systems: On the one hand, many ESS [11],
[12], [13] deploy multiple replicas of each file, distributed
across different edge servers. When data fails from an edge
server, usable data can still be retrieved from the remaining
replicas. Certainly, the implementation of multiple replicas
inevitably triggers a significant increase in storage capacity
to guarantee data reliability. On the other hands, several
systems [14], [15], [16], [17] utilize erasure coding to
provide the same level of fault tolerance as replication while
utilizing fewer storage resources. Specifically, By encoding
the data, erasure coding allows for the creation of redundant
parity chunks that can be used to reconstruct the original
information in the event of a node failure. The cost-efficiency
of erasure coding made it widely used in today’s data
center [18].

Despite the aforementioned progress, significant chal-
lenges still persist in developing fault-tolerant storage
scheme in edge scenarios. 1) Edge servers have limited
storage capacity, and impractical fault tolerance approaches
will inevitably result in considerable storage overhead,
particularly as data volumes continue to grow rapidly.
2) Due to the inadequate protection measure in edge
node, the current fault-tolerant strategies, including both
multi-replication and erasure coding, are vulnerable to the
risk of original data leakage to untrusted third-party nodes,
thereby compromising data privacy. 3)The network resources
in edge scenarios are more heterogeneous and constrained,
which significantly restricts systems performance, making
it difficult to improve the data writing efficiency of the
system.

In summary, how to improve the fault-tolerance ability
of ESSs, with guarantee the privacy of edge user data
and improve the data writing efficiency has still an urgent
problem to be solved. Motivated by this, we proposed a
Hierarchical cloud-edge collaborative fault-tolerant storage
architecture based on Software Defined Network (SDN) and
erasure codes and its data writing optimization method. This
paper presents a novel approach to studying both the secure
fault-tolerant architecture and its performance optimization
for edge storage systems. Our major contributions include the
following:

• Weproposed the HCEFTModel based on a new segment
based cloud-edge privacy-preserving code (CEPPC,
present in section III) and SDN. Compare to the prior
scheme, HCEFT permit that a) we use CEPPC avoid
distributing the local data chunks to other edge servers,
which strengthens the protection of local original data
privacy, b) CEPPC transfer the parity chunks to cloud
center, which can reduce the edge server storage
overhead and enhance the original data availability for
user, and c) HCEFT leverages SDN to realize efficient
network management and performance optimization in
edge scenario.

• To improve the data writing efficiency of HCEFT,
we established a mathematical model that aims to
minimize the write time and traffic consumption. Then,
we design a data writing optimization method for
HCEFT, which includes two phases: a) we construct the
write topology based on SDN and Steiner tree to make a
better trade-off between data writing latency and traffic.
b) We transfer the write topology to a directed acyclic
graph (DAG), which identify relationship between each
node and the accurate write flow direction in the writing
topology, then supports the efficient deployment of the
write method.

• We conducted a comprehensive analysis of edge
fault-tolerant schemes related to HCEFT model, to eval-
uate its reliability, availability, privacy security, and
storage overhead. Then, we perform extensive exper-
iments by using containernet [19], the results show
our method can substantially reduce data writing time
and traffic consumption while providing better load
balancing performance.

The remainder of this paper is organized as follows: The
remainder of this paper is organized as follows: Section II
given the background and related work of ESS and its fault-
tolerant strategy. Section III present the design of proposed
CEPPC code and HCEFT model. Section IV formulates the
data writing problem and present a detail description of
its optimization method. Section V shows the comparison
and evaluation results. Section VI concludes our study and
suggests future research prospects.

II. BACKGROUND AND RELATED WORK
In this section, we provide the background and related work
in terms of Fault-tolerance strategy in ESSs and the basis of
Erasure Coding.

A. OVERVIEW
Taking Figure 1 as example, nine adjacent edge servers within
a specific geographical location are connected by high-speed
links to form an edge server network that constitutes an edge
storage system. However, the wide geographical distribution
and convenient access efficiency of ESS paradoxically
expose it to greater security risks [20]. Thus, many efforts
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FIGURE 1. Example of edge storage system.

have tried to improve the robustness of ESS through fault-
tolerance strategies.

B. FAULT-TOLERANT STRATEGY IN EDGE STORAGE
SYSTEM
1) REPLICA-BASED STRATEGY
A straightforward solution is used multi-replicas dis-
tributed in the edge scenario to enhance the reliability of
ESS [11], [12], [13], [21], [22], [23]. Gao et al. [11] design
a replica-based collaborative edge storage model, which
optimizes the number and location of replicas in dynamic
network topology to improve the storage reliability and
efficiency of mobile devices. Aral et al. proposed a decen-
tralized dynamic replica management scheme D-ReP [12] in
ESS. D-ReP evaluates the expenses associated with storing
replicas, as well as estimates the potential improvement
in latency, in order to determine whether to migrate or
duplicate data to one of its neighboring nodes. In [13],
Linaje et al. design a fault-tolerant scheme for wireless
sensor networks FSD that is based on data distribution and
replication storage. FSD addresses the issue of unbalanced
storage by taking into account the heterogeneity of sensor
nodes, allowing storage tasks to be allocated based on node
capabilities and load conditions, ultimately resulting in a
more equitable distribution of storage. References [21] and
[22] optimizes the placement and the number of replicas
in fog computing environment to improve the system
fault-tolerant performance. In [23], Ke et al. proposed a
priority-based multicast flow scheduling technique MDGA
for replica-based edge data centers to enhance the backup
efficiency and reliability in edge networks.

The aforementioned replica-based strategy [11], [12], [13],
[21], [22], [23] can indeed improve system reliability while
maintaining low access latency and high data availability.
However, distributing replicas in such systems can incur
significant storage overhead. Additionally, if any of the
replica servers are hacked, it may result in the leakage of
the entire original data, which undermines the protection of
sensitive information at the edge. While it is true that some

of the confidential data may be pre-encrypted, the additional
computational burden and the potential risk of the encryption
key being cracked cannot be ignored. Consequently, it is
essential to prevent malicious actors from accessing the entire
data or the ciphertext comprehensively.

2) ERASURE CODE-BASED STRATEGY
Another solution is to enhance the fault-tolerance capability
of ESS by utilizing erasure coding techniques. Taking
the commonly used RS (Reed-Solomon) codes [24] as an
example, RS (k+r , r) encodes k data blocks (D1, D2, . . . ,
Dk ) into r parity blocks (P1, P2, . . . , Pr ) using Formula (1),
where Ci,j represents the coefficients for encoding Dj to Pi,
1 ≤ i ≤ r ,1 ≤ j ≤ k . These k+r chunks are then distributed
across various nodes to form an erasure code stripe S. As long
as any k chunks in the S are alive, the entire stripe can be
reconstructed.

Pi =
k∑
j=1

Ci,j ∗ Dj (1)

In comparison with multi-replica schemes, erasure coding
can not only provide high level of fault tolerance but also
significantly reduce storage overhead [25]. Thus, emerging
research efforts have been tried on exploring the application
of erasure coding for fault tolerance in edge scenarios.
Liang et al. [14] conducted extensive performance testing of
erasure coding applications in edge scenarios. By leveraging
multi-core CPUs and accelerating the process with OpenMP,
they successfully improved the performance of erasure
coding in 5G and WiFi6 use cases. Kim et al. [26] have
presented a coding framework utilizing error-correcting data
encoding and computation decoding to enhance edge data
reliability. Wu et al. [15] designed a hybrid fault-tolerant
strategy called MobileRE for mobile distributed system,
which balances data fault-tolerant capability and storage
cost by dynamically adjusting erasure coding and replica
fault-tolerant modes based on network status. Reference [16]
proposed a security and trust-oriented edge storage mode
(TDOA). TDOA designed a new variant of Local Recon-
struction Codes (LRC) called TLRC to enhance the data
robustness and adaptability of ESS in IoT environment.
Jin et al. [17] considered the efficient data layout strategy of
erasure codes in ESS and modeled the problem as an integer
programming problem to minimize the cost of fault-tolerant
strategy. Lin and Tzeng [27] proposed a secure erasure
code storage model by combining the threshold public key
encryption scheme, which improves the storage security by
setting storage servers and key servers. Similarly to the
previouslymentioned erasure code schemes, this schememay
harm the availability of the original file since it still needs
to split the original file into data chunks and distribute them
among other nodes.

Moreover, the efficiency of data writing is a core issue in
fault-tolerant storage and a critical factor in the deployment
of ESS. Based on Formula (1), we can observe that
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FIGURE 2. RS and LRC class code distribute the chunks to other nodes,
where D represents the data chunk and P represents the parity chunk.

unlike replica fault-tolerance mode, erasure coding involves
more encoding computation and network transmission dur-
ing data writing. If the writing process takes too long
and data loss occurs, the stripe may face the situation
where data cannot be recovered. The current mainstream data
writing methods and problem analysis were introduced in
Section IV.

Compared with the replica-based strategy, existing erasure
code-based strategy [14], [15], [16], [17], [24], [25], [26],
[27] can greatly reduce storage overhead and avoid complete
data leakage, since each edge node only retains a small
fragment of the entire file. However, as slices of the original
data are distributed across multiple nodes, users are required
to download a certain amount of data fragments from other
nodes to access the complete data, which compromises
the data availability. Furthermore, the additional encoding
overhead and network traffic caused by erasure coding
operations may significantly impair its writing efficiency and
system load balancing. Therefore, it is essential to propose
corresponding data writing optimization schemes to enhance
the deployment efficiency of erasure coding-based fault-
tolerant solutions in edge storage systems.

III. DESIGN OF HIERARCHICAL CLOUD-EDGE
COLLABORATIVE FAULT-TOLERANT STORAGE MODEL
In this section, we first propose a new variant of erasure
code, called CEPPC. We show that even without encryption,
CEPPC can effectively enhance the system’s fault-tolerance
capability and ensure the privacy of edge data, while
using low storage resources consumption. Then, we present
a secure cloud-edge collaborative storage model named
HCEFT based on CEPPC. We describe the specific function
of each layer in HCEFT and how they work together to ensure
the secure and efficient storage of edge data.

A. SEGMENT BASED CLOUD-EDGE PRIVACY-PRESERVING
CODE
As shown in Figure 2, in both RS or LRC class coding
schemes, regardless of their encoding algorithms, the data

FIGURE 3. The CEPPC(4,3,2) code reserve the data chunks D in own edge
nodes and place the generated parity chunks P in the cloud.

blocks obtained from the original data segmentation and
the parity blocks generated during the encoding process
must be distributed to different nodes to ensure high fault
tolerance. However, these typical encoding schemes have
several drawbacks. First, they harm the availability of the
original file. Since the original file is split into data chunks
and distributed among other nodes, accessing the original file
requires downloading the distributed data chunks from many
nodes. Second, distributing these data and parity chunks
increases distribution traffic and imposes additional storage
burdens on other edge servers. Third, distributing data and
parity chunks to other servers still poses a privacy and security
risk, as the original data can be easily recovered if any
k servers containing an RS (k+r , r) stripe are dishonest.
To address these challenges, we propose a new erasure code
construction called CEPPC that achieves data robustness in
ESS with higher privacy and security, improved availability
of the original file, and lower storage overhead for edge
servers.

CEPPC uses cross-node segments to encode the original
file from different nodes. Specifically, for encoding CEPPC
(k , l, r), we need to select k original file of the same size
from each of the k different nodes. Each original file is sliced
in to l data chunks, and then the k •l data chunks are linearly
encoded to generate l strips. These l stripes form a group,
each stripe has r parity chunks. A group has l •r parity
chunks. Compared to traditional RS and LRC class coding
methods, CEPPC does not need to distribute the data chunks
of the local original file to other servers, and also does not
need to store the other server data chunks. This balances
the storage load while reducing the delay of data chunks
distribution and improving the security of the local original
file. CEPPC (k , l, r) has a total of m=k • l data chunks and
l • r parity chunks. The total number of chunks in CEPPC (k ,
l, r) is n=k • l + l • r . Therefore, the fault tolerant storage

overhead is n
k •l =

k •l+l•r
k •l . In our example, CEPPC (4,3,2)

with storage overhead of 4•3+3•2
4•3 =1.5x, as illustrated in

Figure 3.
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FIGURE 4. The architecture of HCEFT.

In summary, the CEPPC scheme ensures privacy and secu-
rity of the original data by dividing data into chunks and only
allowing each server to store the parity segments, without
access to other servers’ raw data chunks. The placement of
parity chunks in the cloud center reduces storage overhead
in edge nodes, making CEPPC highly efficient in storage
space utilization. In the event of a complete loss of an edge
node, data can still be recovered through all sub-stripes,
ensuring data fault tolerance. Furthermore, CEPPC has the
same maximum distance separable property [28], [29] as RS
codes, making it able to tolerate the failure of any r nodes.

B. THE ARCHITECTURE OF HCEFT
In this section, we propose a hierarchical cloud-edge collabo-
rative fault-tolerant scheme based on CEPPC called HCEFT.
Firstly, we use CEPPC codes to achieve fault-tolerant storage
of edge data blocks, while enhancing the availability and
security of edge servers’ sensitive data. Additionally, the
generated parity blocks are stored in the cloud data center
to alleviate the storage burden on the edge servers. We also
leverage SDN technology to efficiently manage and flexibly
configure the cloud-edge storage network, providing support
for optimized data writing

As shown in Figure 4, HCEFT consists of 4 layers:
the cloud center layer, the network control layer, the edge
computing layer, and the infrastructure layer. Specifically:

• The cloud layer refers to a remote large-scale cluster
of cloud servers with powerful computing and storage
resources.

• The network control layer is composed of SDN con-
trollers that centrally manage and flexibly configure
the cloud-edge collaborative network to reduce data

distribution delay and provide support for optimizing
network performance.

• The edge storage layer mainly consists of edge network
devices such as routers, switches, base stations, and edge
servers with certain storage and computing capabilities.
Edge servers form a distributed storage system to
enhance edge computing storage capacity and security.

• The infrastructure layer includes edge data acquisition
devices, industrial IoT devices, intelligent lathes, and
other edge facilities.

In particular, HCEFT alleviates the edge storage overhead
by utilizing a hierarchical multi-level edge storage model.
The storage capacity and network stability of the entire
hierarchical storage model gradually increase from bottom
to top. Thus, the local edge nodes focus on real-time
feedback and temporary data storage, while the cloud data
center focuses on high performance and permanent storage.
This hierarchical storage architecture not only meets the
requirements of real-time data, but also reduces the loss of
important data by solving the problem of limited storage
space at the lower levels.

Furthermore, the data stored in the edge storage server
nodes are likely to be accessed by users efficiently, requiring
high data availability. Therefore,we adopt the CEPPC encod-
ing method, which can provide high data availability while
ensuring data fault tolerance and privacy security. Finally,
HCEFT leverages SDN technology to effectively manage
and flexibly configure the cloud-edge storage network,
offering optimized support for data writing during HCEFT
deployment. Since the SDN control plane enables centralized
management and configuration of the network, as well as
collecting node and network status information in real-time,
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FIGURE 5. Example of different types structure of write topology.

providing essential data support for path planning, topology
management, and flow table distribution.

IV. DATA WRITING OPTIMIZATION
In this section, we present a mathematical model that
minimizes data writing latency and traffic. we propose a
data write topology construction method based on SDN load
awareness and Steiner trees. Then, we present WriteDAG
transfer the write topology to a directed acyclic graph
supports the efficient deployment of the write method. These
methods enhance system deployment efficiency and ensure
its performance and security.

A. PROBLEM ANALYSIS
The efficiency of data writing is a core issue in fault-tolerant
storage and a critical factor in the deployment of HCEFT,
as it directly impacts the system’s performance and security.
Particularly for fault-tolerant systems that use erasure coding
strategies, data writing involves more coding calculations and
path selection than replica-based fault tolerance, making it
difficult to improve efficiency. According to Section III, due
to the characteristic of CEPPC encoding, data blocks are
retained in the local node, reducing the distribution latency.
Therefore, the entire writing process can be considered as
edge nodes encoding and writing data to the cloud center.
However, in the edge storage scenario, network resources
are dynamic and scarce, constructing an efficient encoding
topology is critical to improving data writing efficiency [30].

There are currently three typical writing topologies for
erasure coding: centralized star, linear topology, and tree
topology, as illustrated in Figure 5(a), 5(b), and 5(c),
respectively. Compared to the star [31], [32]and linear [33]
topology, organizing the write topology in a tree-structure
not only effectively disperses the computational pressure of
the nodes but also makes full use of the network’s bandwidth
resources, reducing the time and traffic consumption during
the write process [34]. Here, we focus on the construction
problem of the tree-type write topology.

In the cloud-edge collaborative fault-tolerant storage sys-
tem shown in Figure 6, it contains 14 edge nodes and a cloud
center, the number next to the edge indicates the bottleneck
bandwidth of the edge, the unit of bandwidth is MBps.
Assume that there are 6 data chunks in CEPPC code denotes
A,B,C,D,E,F, and the parity chunk P=A⊕B⊕C⊕D⊕E⊕F
located in the cloud center. According to literature [35],
90% of the time for data writing and repairing time of
erasure coding is transmission time, thus, We focus on

FIGURE 6. A cloud-edge fault-tolerant storage system consists of 14 edge
nodes and a cloud center, where A,B,C,D,E and F are the edge nodes that
provide data chunk. R1,R2,R3, and R4 are the edge nodes responsible for
coding. The bottleneck bandwidth of a link is denoted by the number next
to the tree edge.

improving data writing efficiency by optimizing the data
writing topology in the edge network environment. In this
context, based on the encoding and forwarding principle
of erasure codes, each encoding node can encode only
after receiving all the corresponding source data chunks.
In the example of Figure 6, the data writing time of
encode A,B,C,D,E,F to P, is determined by the largest
cumulative bottleneck bandwidths from the leaf node to the
root node. Specifically, The encoding completion time for
A⊕B is determined by the latest arrival time of A and
B at computing node R1. Then, the encoding completion
time for (A⊕B)⊕(E⊕F) is determined by the latest arrival
time of (A⊕B) and (E⊕F) at computing node R2. Finally,
the encoding completion time for (A⊕B⊕C⊕D⊕E⊕F) is
determined by the latest arrival time of ((A⊕B)⊕(E⊕F))
and (C⊕D) at the cloud center. Assuming the data chunk
size is 10MB and using the write topology depict in
Figure 6, the write finish time of P can calculate by
10MB/4MBps+10MB/8MBps+10MB/8MBps=5s, and the
write traffic consumption is 10MB*10= 100MB for the write
topology occupy 10 links in the network graph.

According to the description above, the time of data writing
is determined by the largest delay from leaf node to root node,
and the consumption of data writing traffic is determined by
the number of tree edges. Therefore, it is essential to construct
a data writing topology that minimizes the data write time and
traffic consumption to optimize the data writing efficiency in
fault tolerant storage system.

B. MATHEMATICAL MODEL
The network topology of an ESS system can be modeled
by an undirected graph G(VG,EG), in which VG denotes
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TABLE 1. Symbols in the mathematical model.

the set of edge servers and EG indicates the set of links
between adjacent edge servers. According to the analysis
in section IV-A, constructing a data writing topology for a
parity chunk can be transformed into finding the Steiner tree
[36], [37] T (VT ,ET ) that contains all data chunks provider
nodes D and cloud center C , which is an NP-hard problem.
Furthermore, we need to ensure that the write topology has
the lowest write latency and traffic consumption to improve
the data writing efficiency and network load balancing
performance. For easy reference, the symbols used in this
section are listed in Table 1.

1) THE WRITE TRAFFIC CONSUMPTION
Firstly, the write traffic is proportional to the number of
the network links occupied by the write topology and
proportional to the size of the write traffic on each link.
Therefore, the objective function that minimizes the sum
of write traffic of encoding blocks, can be expressed as
Formula 2:

min ftraffic = β
∑
i,j∈VT

xi,j (2a)

s.t.

xi,j = {0, 1}, ∀{i, j} ∈ VG, i ̸= j (2b)

In Constraint (2b), xi,j denotes a binary variable: it is 1 if
edge (i, j) add to T , and 0 other wise.

2) THE WRITE TIME CONSUMPTION
Furthermore, the transmission delay of writing data is
proportional to the write data size and inversely proportional
to the bottleneck bandwidth of the write path. The network
traffic on each link is represented by the size of the data

chunk β. According to section IV-A, the longest scheduling
and forwarding delay from the leaf node to the root node is the
write delay. The objective function for minimizing the writing
delay of coding blocks can be expressed as Formula 3:

min ftime = max
,

∑ β

be

∣∣e ∈ PTL ,TR (3a)

s.t.

M = TL ∪ TR (3b)

be = min
(i,j)∈e

b(i,j),∀i ̸= j (3c)

where PTL ,TR represents the path from leaf node TL to root
node TR, P consists of multiple edges e in the tree. Edge
e is defined as the path between two adjacent endpoints
in the tree, which is composed of multiple links (i, j). be
is the bandwidth of edge e. Constraints (3c) indicates that
the bandwidth of paths e is determined by the bottleneck
bandwidth of the link (i, j) contained in e.

3) OBJECTIVE FUNCTION
Our goal is to achieve low write time and traffic consumption
as much as possible. The overall optimization goal can be
defined as Formula 4:

min f = [ftraffic, ftime] (4)

However, due to the inherent trade-offs and interde-
pendence between the ftraffic and ftime, it is difficult to
simultaneously achieve optimality for both. To deal with this
problem, we can use the component weight to transform
the objective Formula 4 into the optimization problem in
Formula 5, where ctraffic and ctime represent the weight
coefficients of traffic and time respectively.

min f = ctraffic

β
∑
i,j∈VT

xi,j


+ ctime

(
max

,

∑ β

be

∣∣e ∈ PTL ,TR

)
(5a)

s.t.

ctraffic + ctime = 1 (5b)

be = min
(i,j)∈e

b(i,j),∀i ̸= j (5c)

M = TL ∪ TR,M ∈ VG (5d)∏
k,l∈M

λk,l ̸= 0, ∀k ̸= l (5e)∑
i,j∈VT

xi,j = |VT | − 1 ,∀VT ∈ VG, VT ̸= φ, i ̸= j (5f)

xi,j = {0, 1}, ∀{i, j} ∈ VG, i ̸= j (5g)

λk,l = {0, 1}, ∀{k, l} ∈ VG, k ̸= l (5h)

where the constraint (5d) and (5e) ensures that the nodes in
the tree are connected to all terminal nodes in M , thereby
guaranteeing that the generated Steiner tree is a connected
graph. Constraint (5f) ensures that the constructed write tree
topology T is acyclic. In Constraint (5f) and (5g), xi,j denotes
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FIGURE 7. The architecture of data writing optimization method, which
consists of a data plane, a control plane, and an algorithm plane.

a binary variable: it is 1 if edge (i, j) is added to T , and 0 other
wise. λi,j denotes a binary variable: it is 1 if path Pk,l is added
to T , and 0 other wise.

C. METHOD DESIGN
Based on the mathematical model we have described,
we propose a new erasure code data writing method, named
ECWSS-BA (Erasure Code data Writing method based
on Steiner tree and SDN Bandwidth Aware). ECWSS-BA
utilizes SDN to acquire the global network state, and consider
both network bandwidth and hop to construct a minimum
Steiner tree-based writing topology. The goal of ECWSS-BA
is to minimize both write traffic and write latency.

Then, we proposed a node function recognition and write
path partitioning method called Write-DAG to convert the
Steiner tree-based write topology produced by ECWSS-BA
into a directed acyclic graph. Write-DAG identifies the
specific functions of each node involved in data writing,
as well as the accurate data flow path, thereby facilitating
policy deployment in the control layer of HCEFT.

Figure 7 illustrates the overall architecture of the data
writing optimization method. It mainly consists of a data
plane, a control plane, and an algorithm plane.

• Data plane

The data plane mainly consists of storage and network
devices such as edge storage nodes, cloud center nodes,
and SDN switches. The storage nodes and cloud center
nodes are responsible for data reception, transmission,
and encoding/decoding, while the SDN switches act as

forwarding units, forwarding data according to the SDN flow
tables issued by the controller.
• Control plane

The control plane serves as a bridge between the algorithm
plane and the data plane, providing the algorithm layer with
global network status information and node information, and
delivering control policies to the data layer. It consists of a
network state awareness module, a flow table deployment
module, and a storage node control module.

The network state awareness module adopts the
SDN-based network state measurement method proposed
in the previous works [38], [39] to update and maintain
real-time global network topology information and network
link state information, which provides fundamental support
for constructing the data writing topology.

The routing control module obtains the directed transmis-
sion path of data writing between nodes from the algorithm
layer and deploys the SDN flow table according to this
information. The storage node control module transfers the
erasure-coded storage stripe information to the algorithm
layer and instructs each storage node to prepare for data
transmission, reception, or encoding/decoding based on
the node metadata solved by the algorithm layer. These
metadata include the functional partition of nodes during
data writing, the next hop position, and source node
information.
• Algorithm plane

The algorithm plane comprises the ECWSS-BA module
and the Write-DAG module. Specifically, the ECWSS-BA
module is utilized to construct a write topology that
maximizes the bottleneck bandwidthwhileminimizing traffic
consumption. On the other hand, the Write-DAG module
transforms the generated tree topology into a Directed
Acyclic Graph (DAG) [40]. It identifies the specific functions
and accurate data flow directions of each node during data
writing based on their degree, position, and category, thereby
providing support for the deployment of control strategies in
the control layer.

1) GENERATE THE STEINER TREE-BASED WRITE TOPOLOGY
Firstly, we consider a network topology denoted as G(V ,E)
and a terminal node setM , whereM comprises the data node
set D and the cloud center set C . To connect the terminal
node set M , we employ the ECWSS-BA algorithm, which
constructs a Steiner tree with larger bottleneck bandwidth
and lower network traffic consumption. ECWSS-BA ensures
efficient and optimal connectivity among the nodes in the
network topology, thus enhancing the overall data writing
performance of the system.

Step 1. Initialize the parameters, including the set of nodes
to be connected: Wait; the set of edges to be added to the
tree topology: TreeEdge; the set of nodes already added
to the topology: TreeNode; Adding a new weight attribute
bw_weight =1/edge.bw to the links based on the current
network state. bw_weight is proportional to the number
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Algorithm 1 ECWSS-BA
Input:
global network topology of ESS G (V , E);
data node set D;
cloud center set C ;

Output:
undirecte steiner tree-based write topo TreeGraph

1: Initialization: Wait ←< D + C >, TreeNode ←<

D + C >, TreeEdge ←< ∅ >. edge.bw_weight ←
1/edge.bw

2: while Wait != < ∅ > do
3: t1← get_Farest_Node(G,C,Wait)
4: t2← get_Nearest_Node(G, t1,C, bw_weight)
5: edge← get_Shortest_Path(G, t1, t2, bw_weight)
6: TreeEdge.append(edge)
7: add the TreeEdge.Node to TreeNode
8: Wait .Remove(t1, t2)
9: end while

10: component_list ← get connected components from
TreeEdge

11: if component_list is not connected then
12: connect_path ← getMinCombinePath(component

_list , bw_weight)
13: TreeEdge.append(connect_path)
14: end if
15: TreeGraph=CreateGraph(TreeEdge)/*construct steiner

tree topology
16: return TreeGraph

of hops and inversely proportional to the residual network
bandwidth: (Refer to line 1)

Step 2. Constructing edges to form the TreeGraph for
writing data until all nodes in the Wait set are added to the
TreeEdge.

Initially, the algorithm selects a node t1 from the Wait set
that has the maximum hop count distance from the cloud
center C (Refer to line 3). Then, the algorithm selects a node
t2 from the TreeNode set that has the smallest accumulated
bw_weight value with t1. If there are multiple nodes that
have the same accumulated bw_weight value, the node that is
closer to the cloud center is chosen as t2 (Refer to line 4). The
algorithm constructs an Edge by connecting the minimum
bw_weight path between t1 and t2. If there are multiple paths
that have the same bw_weight between t1 and t2, we select
the path with the minimum bw_weight closer to the cloud
center as Edge(Refer to lines 5). Then added The Edge to the
TreeEdge set (Refer to lines 6).
Next, the algorithm adds all nodes in the TreeEdge to the

TreeNode set, in preparation for constructing a new Edge
in the next iteration(Refer to lines 7). Finally, the algorithm
removes t1 and t2 from the Wait set and proceeds to the next
iteration. (Refer to line 8) The algorithm repeats this process
until the Wait is empty, indicating that all nodes in the Wait
set have been added to the TreeEdge.

Step 3. Build TreeGraph based on TreeEdge.
First, obtain a list of connected components formed

by TreeEdge according to the connectivity of each edge
in TreeEdge, and get k-1 connect_path through a greedy
approach to connect k connected components between all
connected components. Then, add connect_path to TreeEdge
(Refer to lines 10-13).

Step 4. Build Steiner Tree Topology TreeGraph based on
all TreeEdges (Refer to line 15).
Step 5. Return Steiner Tree Topology TreeGraph T (V ,E)

(Refer to line 16).
Since the cumulative bw_weight of an edge is pos-

itively correlated with the hop count and negatively
correlated with the link bandwidth, ECWSS-BA takes
bw_weight=1/edge.bw as the main indicator for constructing
the tree-like topology. Through a greedy approach to
construct TreeEdge and connect each component based on the
smallest cumulative bw_weight , ECWSS-BA ensures that the
path with the smallest hop count and the largest bandwidth
is selected during topology construction, avoiding selected
links with low bottleneck bandwidth when constructing the
topology. ECWSS-BA achieves a good balance between
write flow and write latency. Moreover, the computational
complexity of ECWSS-BA is O(|D| + |C|)2.

2) TRANSFER THE WRITE TOPOLOGY TO DIRECTED ACYCLIC
GRAPH
Algorithm 2 utilizes the TreeGrpah’s attribution, which
includes the degree, location, and type of each node,
to identify the specific function of each node during data
writing and determine the data flow path. Then, generate
the NodeMetaData, and transforms the TreeGraph into a
Directed Acyclic Graph (DAG). The control layer then
utilizes NodeMetaData and the DAG to ensure data encoding
at the designated node and transmission along the designated
path.

Step 1: Initialize the parameters, including some node
role lists: onlyDataNode and encodeNode, the set of node
metadataNodeMetaData, and the flow table delivery path list
DirectedFlowPath (Refer to line 1-2)
Step 2: Based on the degree and type of each node in the

input TreeGraph T (V ,E), we divide the nodes into different
roles. There are three cases: A) If a node is not the cloud cen-
ter node and has a degree of 1, it is only a data node and should
be added to the onlyDataNode list. (Refer to lines 4-5); B) If a
node is in the data node set D and has a degree of 2, it should
be added to the encodeNode list(If it has a degree of 2 but
is not a data node, it is just a passing node and does not
participate in encoding.) (Refer to lines 6-7); C) If a node has
a degree≥ 3 and node /∈ C , it is an encoding node and should
be added to the encodeNode list. (Refer to lines 8-9)
Step 3: Determine the set of FunctionNode that partici-

pate in the data writing process, including onlyDataNode,
encodeNode, and the Cloud . FunctionNode are closely
involved in the data writing process, while other nodes are
non-functional nodes. (Refer to line 12)
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Algorithm 2Write-DAG
Input:
global network topology of ESS G (V , E);
write topology T (V ,E);
data node set D;
cloud center set C ;

Output:
NodeMetaData, DirectedFlowPath;

1: Initialization:
2: onlyDataNode ←< ∅ >, encodeNode ←< ∅ >,
NodeMetaData ←< ∅ >, DirectedFlowPath ←<

∅ >.
3: for node in T .nodes do
4: if T .degree(node) = 1 and node /∈ C) then
5: onlyDataNode.append(node)
6: else if T .degree(node) = 2 and node ∈ D) then
7: onlyDataNode.append(node)
8: else if T .degree(node) ≥ 3 and node /∈ C) then
9: encodeNode.append(node)

10: end if
11: end for
12: FunctionNode← onlyDataNode ∪ encodeNode ∪ C
13: for node ∈ FunctionNode do
14: if node ∈ C then
15: node.src← Get_Connect_functionNode(node)
16: else if node ∈ onlyDataNode then
17: node.dst ← Get_Connect_functionNode(node)
18: else if node ∈ encodeNode then
19: tempList ← Get_Connect_functionNode(node)
20: node.dst ← Get_Nearst_Cloud(tempList)
21: node.src← tempList - node.dst
22: end if
23: NodeMetaData.append(node)
24: end for
25: for node in NodeMetaData do
26: if node.dst! =< ∅ > then
27: path=nx.shortest_path(T , node, node.dst)
28: DirectedFlowPath.append(path)
29: end if
30: end for
31: return NodeMetaData,DirectedFlowPath

Step 4: Determine the source and destination nodes of each
FunctionNode to construct NodeMetaData. There are also
three cases: A) If a node ∈ C , it has no dst and only has
source node src, and its src are the Functionnodes which
is directly connected to it. (Refer to lines 14-15); B) If a
node is an onlyDataNode, it has only one directly connected
FunctionNode, which is also its destination node dst . (Refer
to lines 16-17); C) If a node is an encodeNode, its destination
node dst is the nearest FunctionNode connected to it, and
its source node src is all directly connected functional nodes
except for the destination node. (Refer to lines 18-21)

Step 5: Build the NodeMetaData (Refer to lines 23)

Step 6: Based on the src and dst relationships of
FunctionNode in the NodeMetaData, we can determine the
data writing flow direction and form a directed acyclic graph
(DAG). Then add the directed data transmission paths in
DAG to the DirectedFlowPath. The DirectedFlowPath is the
basis for SDN controller to install flow tables. (Refer to
lines 25-30)

Step 7: Return NodeMetaData and DirectedFlowPath.
(Refer to lines 31) The time complexity of the Write-DAG is
O(|D|+|C|). Finally, theNodeMetaData andDirectedFlowPath
are forwarded to the control layer by the algorithm layer.

V. SYSTEM ANALYSIS AND PERFORMANCE EVALUATION
In this section, we first analyze the robustness and security of
the proposed HCEFT and then evaluate the performance of
the proposed writing optimization methods ECWSS-BA.

A. SYSTEM ANALYSIS
The robustness and security of HCEFT are compared with
those of related scheme, as shown in Table 2.

1) FAULT-TOLERANT
The schemes mentioned above [11], [12], [13] are all replica-
based fault-tolerant storage schemes, while [14], [16], [17],
and HCEFT are erasure-coded-based fault-tolerant storage
schemes. Reference [15] is a hybrid fault-tolerant storage
scheme based on both replica and erasure codes. All these
schemes provide high storage reliability and support data
fault tolerance. Additionally, the fault-tolerant capability of
these schemes depends on the number of their replicas and
encoding parameters.

2) STORAGE OVERHEAD
Replica-based schemes [11], [12], [13] typically require
several times the storage cost of the original data to
ensure fault-tolerant capabilities, resulting in the highest
overhead.MobileRE [15] adopts a hybrid approach of erasure
coding and replication to reduce some of the overhead
and achieve a comparatively cost-efficient solution. Other
coded-based schemes including HCEFT can provide lower
storage space consumption while ensuring the same fault
tolerance capabilities with replica-based schemes, but they all
face serious challenges in terms of data write load and write
traffic amplification, requiring optimization.

3) DATA AVAILABILITY
Replica-based schemes [11], [12], [13] ensure high data
availability as users can directly read replica data without
downloading it from other edge nodes. MobileRE [15] adopts
a hybrid fault-tolerant scheme using replicas and erasure
codes, which also achieves high data availability.

However, the other encoding-based schemes [14], [16],
[17] require downloading data blocks or parity blocks from
third-party nodes to generate the required original data for
reading, resulting in lower data availability. In particular,
our HCEFT scheme employs CEPPC code to achieve data
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TABLE 2. Comparison between the proposed scheme and other related schemes.

fault-tolerant storage without the need to distribute the
original data blocks to other nodes, thereby we can ensure
the privacy and security of the original data blocks while also
providing high data availability.

4) PRIVACY SECURITY
The Replica-based schemes [11], [12], [13] require distribut-
ing the entire original data to other edge nodes to ensure
system fault tolerance, which poses a serious privacy risk.
Similarly, MobileRE [15] may also have replica data placed
on non-local nodes, making privacy protection challenging.
Other erasure coding schemes such as [14] and [17] also
require distributing local data blocks and generated parity
blocks to other nodes, leading to increased risk of leakage of
original data blocks, and difficulty in ensuring that malicious
recovery of the original data does not occur if the number of
lost coding blocks exceeds the threshold. Therefore, they also
face privacy challenges.

In particular, RoSES [16] protects edge data privacy
through a novel edge access control method and generates
non-global parity blocks. Moreover, our HCEFT adopts
CEPPC code to provide fault tolerance for edge data without
the need to distribute original data blocks to other nodes,
thereby we can ensure the privacy of original data blocks
while offering high data availability.

B. DATA WRITING PERFORMANCE EVALUATION
To evaluate the data writing performance of proposed the
ECWSS-BA in edge scenario, we deployed a prototype
system based on Containernet [19], [41], which provided a
more realistic environment for distributed storage systems
using Docker containers instead of the single file system
limitation of Mininet hosts. We utilized the Ryu [42] SDN
controller to implement network measurement, Steiner tree
topology generation, and Write-DAG modules. Additionally,
we added coding and decoding modules for erasure coding to
the dataNode in Containernet, enabling the system to perform
actual coding and decoding operations.

The methods we compared include a centralized write
approach Cent_Star [31], [32], a distributed star-based write
method Dis_Star, and a linear pipeline write approach
IncEncoding [33]. ECWSS-NX is a simplified version of
ECWSS-BA that constructs a Steiner tree topology using
the approximate method based on the Minimum Spanning
Tree from the NetworkX [43]. Its time complexity is
O(|D| + |C|)2. Additionally, we compared these methods
with four other erasure coding writing methods. The core

FIGURE 8. The experiment edge storage system’s topology.

source code of our data writing method can be accessed via
https://github.com/cookiecookiechen/ECWSS

1) EXPERIMENTAL SETUP
The experimental prototype system based on Containernet
was built on the Dawning A840r-G server, which has a
64-core * 2.1GHz processor, 128GB of memory, 2TB of
HDD, and runs Ubuntu 18.04 as the operating system. The
ESS network topology is based on the Equinix edge data
center topology located in New York City [44], which has
been extended to include 22 nodes as shown in Figure 8.
The nodes in the topology were implemented using Docker
in Containernet. During the data writing process, a random
node was selected as the cloud center node, and the remaining
nodes were used as edge nodes. The experimental setup
was conducted under limited link resources, with each link
bandwidth set to 300Mbps.

To validate the effectiveness of our data writing method
in various network load scenarios, we simulated different
network loads using the background traffic measured in our
previous work [39] which was measured on a real-world dis-
tributed storage system. Specifically, we simulated multiple
network loads by adjusting the number of background flows
of different types. This approach allowed us to evaluate our
proposed data writing method’s performance in challenging
network environments where network resources are more
heterogeneous and scarce. We set three different scenarios:
a late-night-time scenario with little network load, a middle
network load scenario, and a heavy network load scenario.
• Free Load Scenario (FL): 10 heart beating flows, 0 user
data flows, and 0 migration flows
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FIGURE 9. Influence of different encoding parameters on write completion time under different loads.

TABLE 3. Statistical Characteristics of Different Type Flows in Distributed
Storage Systems.

• Middle Load Scenario (ML): 20 heart beating flows,
20 user data flows, and 20 migration flows

• High Load Scenario (HL): 40 heart beating flows,
40 user data flows, and 40 migration flows

For both user flows and migration flows, the traffic
reproduction rate is consistent with the values presented in
Table 3. For heartbeat data streams, the replay rate is set
to 1 Mbps to mitigate the impact of packet loss in the
experimental environment, according to [45]. All background
flow is set to exist throughout the experiment to ensure that
the network load during data writing remains stable across
the different scenarios.

We compared the performance metrics of different writing
methods under different loads and parameters during the
data writing process. The performance metrics included the
standard deviation of network link bandwidth utilization
during data writing, network resource consumption, and
the average write completion time. Each experiment was
conducted 10 times, and the average value of the experimental
results was taken. The experimental parameters are shown in
Table 4.

2) COMPARISON OF AVERAGE WRITE TIME UNDER
DIFFERENT LOADS
Figure 9 presents the write time of each data writing method
as the size of the data chunk increase under varying load
scenarios. As the total number of chunks increases, there is
a corresponding increase in the amount of data that needs to

TABLE 4. Parameters in Experiments.

be encoded and transmitted. Therefore, the data writing time
also increases.

Figure 9 also illustrates that ECWSS-BA and ECWSS-
NX write topologies based on Steiner tree write topology
construction takes less time to complete compared to
Dis_Star, Cent_Star, and IncEncoding writing schemes. This
is because ECWSS-BA and ECWSS-NX built write topology
with a larger bottleneck bandwidth, avoiding traditional star
and pipeline approaches that tend to select congested links
and lead to a significant increase in write time.

Moreover, under high load scenarios depicted in
Figure 9(c), ECWSS-BA reduced the completion time of data
writing by 37%-67% compared to other schemes. Because
ECWSS-BA considers link bandwidth a crucial parameter
when constructing the data writing topology. As a result,
it becomes easier to avoid congested links in high load
scenarios, resulting in higher data writing efficiency.

Figure 10 depicts the impact of varying the number of
data chunks and parity chunks on write time consumption
under different load scenarios. As the total number of chunks
increases, there is a corresponding increase in the amount
of data that needs to be encoded and transmitted, resulting
in longer data writing time. Notably, similar to Figure 9,
ECWSS-BA and ECWSS-NX exhibit lower writing time
consumption than other schemes, and ECWSS-BA reduced
the completion time of data writing by 13%-62% compared
to other schemes, when the number of chunks changes.

3) COMPARISON OF AVERAGE NETWORK RESOURCE
CONSUMPTION UNDER DIFFERENT LOADS
Figure 11 presents the network traffic consumption of each
data writing method as the size of data chunk increase under
varying load scenarios.
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FIGURE 10. Influence of different chunk sizes on write completion time under different loads.

FIGURE 11. Influence of different block size on network flow consumption under different loads.

We can found that in Figure 11, in contrast to the
star-shaped and linear writing schemes, ECWSS-BA and
ECWSS-NX based on Steiner tree writing topology construc-
tion exhibit a reduction in writing traffic consumption by
28%-64%. Additionally, it is worth noting that Cent_Star,
Dis_Star, IncEncoding, and ECWSS-NX exhibit writing
traffic sizes that are independent of and insensitive to network
load. This is due to these schemes’ failure to consider link
bandwidth during link construction, making them incapable
of sensing changes in network load. Consequently, thewriting
traffic of these schemes remains relatively constant across
different loads.

Moreover, it is worth noting that the traffic consump-
tion lines of ECWSS-NX and ECWSS-BA coincide in
the free load scenario depicted in Figure 11(a). This is
because in free load scenario, the network bandwidth’s
impact on writing topology construction is limited, resulting
in ECWSS-BA achieving similar traffic consumption to
ECWSS-NX. However, in high-load scenarios depicted in
Figure 11(c), ECWSS-BA tends to select idle links to
improve the network load balancing performance, thereby
avoiding links with less hops but heavier network loads
during topology construction. Consequently, ECWSS-BA
exhibits slightly higher network traffic consumption than
ECWSS-NX under high load scenarios.

Figure 12 illustrates the impact of varying the number of
data chunks and parity chunks on network traffic consump-
tion under different load scenarios. As the total number of

FIGURE 12. Influence of different encoding parameters on network flow
consumption under different loads.

chunks increases, there is a corresponding increase in the
amount of data that needs to be encoded and transmitted,
leading to higher network consumption. Notably, in contrast
to other schemes, ECWSS-BA and ECWSS-NX exhibit
a reduction in writing traffic consumption by 35%-62%.
Additionally, except for ECWSS-BA, other schemes exhibit
insensitivity to load, with their traffic consumption remaining
relatively stable across the three load scenarios due to their
inability to sense load changes.

Furthermore, under high load scenarios illustrated in
Figure 12, ECWSS-BA exhibits slightly higher network
traffic consumption than ECWSS-NX. This can be attributed
to ECWSS-BA’s preference for avoiding links with fewer
hops but higher network loads to improve the system’s load
balancing performance. Consequently, this leads to a slightly
increased traffic consumption during the data writing process.
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FIGURE 13. Influence of different block size on standard deviation of link utilization under different loads.

FIGURE 14. Influence of different encoding parameters on standard deviation of link utilization under different loads.

4) COMPARISON OF SYSTEM BALANCING PERFORMANCE
UNDER DIFFERENT LOAD
In Figure 13, the impact of different data writing methods
on the standard deviation of network link utilization is
presented under varying load scenarios as the data chunk
size increases. Larger data chunks correspond to increased
amounts of written data, which in turn leads to higher
standard deviation of network link utilization and poorer load
balancing performance of the system.

Upon comparing the results presented in Figure 13, we can
found that Cent_Star, Dis_Star, and IncEncoding data writing
methods have a substantial impact on the on the load
balancing performance of the system as the data chunk size
increases. In contrast, ECWSS-BA and ECWSS-NX exhibit
minimal impact on network load balancing due to their ability
to achieve lower traffic consumption and avoid traditional star
and pipeline approaches that tend to select congested links
and lead to unbalanced network load.

Additionally, as presented in Figure 13(b) and 13(c),
ECWSS-BA exhibits superior load balancing performance
compared to ECWSS-NX. This can be attributed to the
fact that ECWSS-BA takes into account both the topology
hop count and network bandwidth as essential factors when
constructing the Steiner tree-based topology.

Figure 14 presents the impact of different number of
chunks (data chunks, parity chunks) on the standard deviation

of network link utilization in different load scenarios. As the
total number of chunks increases, there is a corresponding
increase in the amount of data that needs to be encoded and
transmitted. Therefore, the standard deviation of network link
utilization also increases, which means that the load balance
of the system becomes worse.

Figure 14 also illustrates that ECWSS-BA andECWSS-NX
solutions, which utilize Steiner tree write topology configura-
tion, exhibit superior load balancing performance compared
to traditional star and pipelined approaches that often lead
to unbalanced network load due to the selection of congested
links. ECWSS constructs the write topology with larger write
bandwidth and lower traffic consumption, thereby avoiding
congestion. Moreover, similar to the results analyzed in
Figure 13, when the data chunks ECWSS-BA also achieves
better load balancing performance than ECWSS-NX, when
the number of chunks changes.

VI. CONCLUSION AND FUTURE WORK
In this paper, we discussed the secure fault-tolerant and data
writing problems in ESS. The motivation of this work is to
provide a secure fault-tolerant storage scheme and improve
the data writing efficiency for ESS. Specifically, we proposed
a novel and secure cloud-edge collaborative fault-tolerant
storage scheme, called HCEFT, which utilizes our designed
CEPPC code. It can provide high fault-tolerant capability
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while maintaining the edge node data privacy security
and high availability. Then, the data writing optimization
method for HCEFT was future proposed, which can reduce
writing time and minimizes writing traffic. Comprehensive
comparative analysis and extensive experimental results show
the effectiveness of the HCEFT scheme and the improvement
of the data writing optimization method.

In the future, our research will focus on addressing data
repair and data update problems in dynamic network envi-
ronments for ESS. Additionally, researchers investigating
general erasure coding data writing problems for ESS can
draw on the core ideas presented in this study for opti-
mization, and adapt them to meet the specific requirements
of their scenarios. Moreover, with the scale of the edge
storage network continuing to expand, it is crucial to study
the collaborative management of multiple SDN controllers in
ESS, including cooperative communication, control domain
partitioning, and other related strategies. These research all
hold the potential to enhance the scalability, efficiency, and
reliability of the edge storage systems.

ACKNOWLEDGMENT
The authors would like to thank the associate editor and the
anonymous reviewers for their valuable comments.

REFERENCES
[1] T. Wu, G. Jourjon, K. Thilakarathna, and P. L. Yeoh, ‘‘MapChain-

D: A distributed blockchain for IIoT data storage and communica-
tions,’’ IEEE Trans. Ind. Informat., early access, Jan. 6, 2023, doi:
10.1109/TII.2023.3234631.

[2] S. H. A. Kazmi, F. Qamar, R. Hassan, and K. Nisar, ‘‘Routing-based
interference mitigation in SDN enabled beyond 5G communication
networks: A comprehensive survey,’’ IEEEAccess, vol. 11, pp. 4023–4041,
2023.

[3] B. W. Nyamtiga, A. A. Hermawan, Y. F. Luckyarno, T. Kim,
D. Jung, J. S. Kwak, and J. Yun, ‘‘Edge-computing-assisted virtual reality
computation offloading: An empirical study,’’ IEEE Access, vol. 10,
pp. 95892–95907, 2022.

[4] M. Carrie and R. David, The Growth in Connected IoT Devices
is Expected to Generate 79.4ZB of Data in 2025, According to a
New IDC Forecast. Accessed: Apr. 8, 2023. [Online]. Available:
https://www.businesswire.com/news/home/20190618005012/en/The-
Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-
Data-in-2025-According-to-a-New-IDC-Forecast

[5] R. van der Meulen. What Edge Computing Means for Infrastructure
and Operations Leaders. Accessed: Apr. 8, 2023. [Online]. Avail-
able: https://www.gartner.com/smarterwithgartner/what-edge-computing-
means-for-infrastructure-and-operations-leaders

[6] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, ‘‘A survey on mobile edge
computing infrastructure: Design, resource management, and optimization
approaches,’’ IEEE Access, vol. 10, pp. 27591–27610, 2022.

[7] H. Zhang, Y. Yang, X. Huang, C. Fang, and P. Zhang, ‘‘Ultra-low latency
multi-task offloading in mobile edge computing,’’ IEEE Access, vol. 9,
pp. 32569–32581, 2021.

[8] S. Li and T. Lan, ‘‘HotDedup: Managing hot data storage at network edge
through optimal distributed deduplication,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun., Jul. 2020, pp. 247–256.

[9] L. Yuan, Q. He, F. Chen, J. Zhang, L. Qi, X. Xu, Y. Xiang, and Y. Yang,
‘‘CSEdge: Enabling collaborative edge storage for multi-access edge
computing based on blockchain,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 8, pp. 1873–1887, Aug. 2022.

[10] S. Kisseleff, S. Chatzinotas, and B. Ottersten, ‘‘Reconfigurable intelligent
surfaces in challenging environments: Underwater, underground, industrial
and disaster,’’ IEEE Access, vol. 9, pp. 150214–150233, 2021.

[11] X. Gao, W. Bao, X. Zhu, G. Wu, and L. Liu, ‘‘An edge storage acceleration
service for collaborative mobile devices,’’ IEEE Trans. Services Comput.,
vol. 15, no. 4, pp. 1993–2006, Jul. 2022.

[12] A. Aral and T. Ovatman, ‘‘A decentralized replica placement algorithm
for edge computing,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 2,
pp. 516–529, Jun. 2018.

[13] M. Linaje, J. Berrocal, and A. Galan-Benitez, ‘‘Mist and edge storage:
Fair storage distribution in sensor networks,’’ IEEE Access, vol. 7,
pp. 123860–123876, 2019.

[14] L. Liang, H. He, J. Zhao, C. Liu, Q. Luo, and X. Chu, ‘‘An erasure-
coded storage system for edge computing,’’ IEEE Access, vol. 8,
pp. 96271–96283, 2020.

[15] Y. Wu, D. Liu, X. Chen, J. Ren, R. Liu, Y. Tan, and Z. Zhang, ‘‘MobileRE:
A replicas prioritized hybrid fault tolerance strategy for mobile distributed
system,’’ J. Syst. Archit., vol. 118, Sep. 2021, Art. no. 102217.

[16] J. Xia, G. Cheng, S. Gu, and D. Guo, ‘‘Secure and trust-oriented edge
storage for Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 5,
pp. 4049–4060, May 2020.

[17] H. Jin, R. Luo, Q. He, S. Wu, Z. Zeng, and X. Xia, ‘‘Cost-effective
data placement in edge storage systems with erasure code,’’ IEEE Trans.
Services Comput., vol. 16, no. 2, pp. 1039–1050, Mar. 2023.

[18] A. Datta and F. Oggier, ‘‘Concurrency control and consistency over erasure
coded data,’’ IEEE Access, vol. 10, pp. 118617–118638, 2022.

[19] Containernet. Accessed: Apr. 8, 2023. [Online]. Available:
https://containernet.github.io/

[20] B. Ali, M. A. Gregory, and S. Li, ‘‘Multi-access edge computing
architecture, data security and privacy: A review,’’ IEEE Access, vol. 9,
pp. 18706–18721, 2021.

[21] H. Sun, H. Yu, G. Fan, and L. Chen, ‘‘QoS-aware task placement with
fault-tolerance in the edge-cloud,’’ IEEE Access, vol. 8, pp. 77987–78003,
2020.

[22] M. I. Naas, L. Lemarchand, P. Raipin, and J. Boukhobza, ‘‘IoT data
replication and consistency management in fog computing,’’ J. Grid
Comput., vol. 19, no. 3, pp. 1–25, Sep. 2021.

[23] W. Ke, Y. Wang, M. Ye, and J. Chen, ‘‘A priority-based multicast flow
scheduling method for a collaborative edge storage datacenter network,’’
IEEE Access, vol. 9, pp. 79793–79805, 2021.

[24] P. Liu, Z. Pan, and J. Lei, ‘‘Parameter identification of reed-solomon codes
based on probability statistics and Galois field Fourier transform,’’ IEEE
Access, vol. 7, pp. 33619–33630, 2019.

[25] K. Liu, J. Peng, J. Wang, Z. Huang, and J. Pan, ‘‘Adaptive and scalable
caching with erasure codes in distributed cloud-edge storage systems,’’
IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1840–1853, Apr./Jun. 2022.

[26] K. Taik Kim, C. Joe-Wong, and M. Chiang, ‘‘Coded edge computing,’’ in
Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020, pp. 237–246.

[27] H.-Y. Lin and W.-G. Tzeng, ‘‘A secure decentralized erasure code for
distributed networked storage,’’ IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 11, pp. 1586–1594, Nov. 2010.

[28] H. Q. Dinh, B. T. Nguyen, A. K. Singh, and W. Yamaka, ‘‘MDS
constacyclic codes and MDS symbol-pair constacyclic codes,’’ IEEE
Access, vol. 9, pp. 137970–137990, 2021.

[29] A. Zhang and K. Feng, ‘‘A unified approach to construct MDS self-dual
codes via reed-solomon codes,’’ IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp. 3650–3656, Jun. 2020.

[30] H. Bao, Y. Wang, and F. Xu, ‘‘A cross-datacenter erasure code writing
method based on generator matrix transformation,’’ J. Comput. Res.
Develop., vol. 57, no. 2, pp. 291–305, 2020.

[31] B. Calder, ‘‘Windows azure storage: A highly available cloud storage
service with strong consistency,’’ inProc. 23rd ACMSymp. Operating Syst.
Princ., 2011, pp. 143–157.

[32] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
‘‘Atlas: Baidu’s key-value storage system for cloud data,’’ in Proc. 31st
Symp. Mass Storage Syst. Technol. (MSST), May 2015, pp. 1–14.

[33] F. Xu, Y. Wang, and X. Ma, ‘‘Incremental encoding for erasure-coded
cross-datacenters cloud storage,’’ Future Gener. Comput. Syst., vol. 87,
pp. 527–537, Oct. 2018.

[34] M. Ye, H. Qiu, Y. Wang, Z. Zhou, F. Zheng, and T. Ma, ‘‘A method of
repairing single node failure in the distributed storage system based on
the regenerating-code and a hybrid genetic algorithm,’’ Neurocomputing,
vol. 458, pp. 566–578, Oct. 2021.

[35] H. Zhou, D. Feng, and Y. Hu, ‘‘Bandwidth-aware scheduling repair
techniques in erasure-coded clusters: Design and analysis,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 12, pp. 3333–3348, Dec. 2022.

66520 VOLUME 11, 2023

http://dx.doi.org/10.1109/TII.2023.3234631


J. Chen et al.: Secure Cloud-Edge Collaborative Fault-Tolerant Storage Scheme

[36] H. Tang, G. Liu, X. Chen, and N. Xiong, ‘‘A survey on Steiner tree
construction and global routing for VLSI design,’’ IEEE Access, vol. 8,
pp. 68593–68622, 2020.

[37] L. Martins, D. Santos, T. Gomes, and R. Girão-Silva, ‘‘Determining the
minimum cost Steiner tree for delay constrained problems,’’ IEEE Access,
vol. 9, pp. 144927–144939, 2021.

[38] Y. Wang, M. Ye, Q. He, Y. Huan, and W. Kang, ‘‘A new node selecting
approach in Ceph storage system based on software defined network and
multi-attributes decision-making model,’’ Chin. J. Comput., vol. 42, no. 2,
pp. 93–108, 2019.

[39] W. Ke, Y. Wang, and M. Ye, ‘‘GRSA: Service-aware flow scheduling
for cloud storage datacenter networks,’’ China Commun., vol. 17, no. 6,
pp. 164–179, Jun. 2020.

[40] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, ‘‘Multitask
offloading strategy optimization based on directed acyclic graphs for edge
computing,’’ IEEE Internet Things J., vol. 9, no. 12, pp. 9367–9378,
Jun. 2022.

[41] M. Peuster, H. Karl, and S. van Rossem, ‘‘MeDICINE: Rapid prototyping
of production-ready network services inmulti-PoP environments,’’ inProc.
IEEE Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-
SDN), Nov. 2016, pp. 148–153.

[42] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, ‘‘Performance
analysis of floodlight and ryu SDN controllers under mininet simulator,’’ in
Proc. IEEE/CIC Int. Conf. Commun. China (ICCCWorkshops), Aug. 2020,
pp. 85–90.

[43] A. A. Hagberg, D. A. Schult, and P. J. Swart. The NetworkX Docu-
mentation. Accessed: Apr. 8, 2023. [Online]. Available: https://networkx.
org/documentation/stable

[44] New York Metro IBX Data Center Data Sheet. Accessed: Apr. 8, 2023.
[Online]. Available: https://www.equinix.com/resources/data-sheets/nyc-
metro-data-sheet

[45] K. Wenlong, W. Yong, Y. Miao, and C. Junqi, ‘‘Priority differentiated
multicast flow scheduling method in Ceph cloud storage network,’’
J. Commun., vol. 41, no. 11, pp. 40–51, 2020.

JUNQI CHEN received the B.Eng. degree in
networking engineering from the Changshu Insti-
tute of Technology, Suzhou, China, in 2019. He
is currently pursuing the Ph.D. degree with the
School of Computer Science and Information
Security, Guilin University of Electronic Technol-
ogy, Guilin, China. His current research interests
include edge storage systems, erasure coding, and
software-defined networks.

YONG WANG received the Ph.D. degree from
the East China University of Science and Tech-
nology, Shanghai, China, in 2005. He is currently
a Full Professor and a Ph.D. Supervisor with
the Guilin University of Electronic Technology.
His current research interests include cloud/edge
computing, distributed storage systems, software-
defined networks, and information security.

MIAO YE received the B.S. degree in theory
physics from Beijing Normal University, in 2000,
and the Ph.D. degree from the School of Com-
puter Science and Technology, Xidian University,
in 2016. He is currently a Full Professor and
a Ph.D. Supervisor with the Guilin University
of Electronic Technology. His current research
interests include software-defined networks, edge
computing and edge storage, wireless sensor
networks, and deep learning.

QIUXIANG JIANG received the master’s degree
from the Guilin University of Technology, Guilin,
China, in 2005. She is currently a Senior
Engineer with the Guilin University of Elec-
tronic Technology. Her current research interests
include software-defined networks, wireless sen-
sor networks, and edge computing.

VOLUME 11, 2023 66521


