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ABSTRACT In geosciences, micropaleontology studies the evolution of microfossils (e.g., foraminifera)
throughout geological records and utilizes such information to reconstruct past environmental and climatic
conditions. This field depends primarily on the visual recognition of various features in microfossils, which
makes it ideal for applying computer vision technology, specifically deep convolutional neural networks
(CNNs), to automate and optimize different microfossil identification and classification. In addition, the
unlabeled, low-resolution micropaleontological dataset is often available in a large volume compared to
another geosciences dataset. While the application of deep learning in micropaleontology is rapidly growing,
these efforts have been severely hampered by (i) the limited availability of high-quality and high-resolution
labeled fossil images and (ii) significant effort in manually labeling various fossils by subject matter
experts. Furthermore, previousworks primarily exploited CNNwith transfer learning to obtain high-accuracy
prediction, which may reduce the explainability and reproducibility of the model. To overcome this issue,
we propose a novel deep learning workflow that couples hierarchical vision transformers with style-based
generative adversarial network algorithms to efficiently acquire and synthetically generate realistic high-
resolution labeled datasets of micropaleontology in a large volume. Our study demonstrates that the proposed
workflow could generate high-resolution images with a high signal-to-noise ratio, achieving 39.1 dB, and
realistic synthetic images with a Fréchet inception distance similarity score of 14.88. In addition, our
proposed workflow could provide a considerable volume of self-labeled datasets that can be used for
model benchmarking and various downstream visual tasks, including fossil classification and segmentation.
We further performed, for the first time, a few-shot semantic segmentation of different foraminifera chambers
on both the generated and synthetic images with high accuracy. This novel meta-learning approach is only
possible when a high-resolution and high-volume labeled dataset is available. Therefore, our proposed deep
learning-based workflow is promising and shows a potential to advance and optimize micropaleontological
research and other visual-dependent geological analysis.

INDEX TERMS Image analysis, foraminifera, deep learning, GAN, transformer, semantic segmentation,
foraminifera, few-shot learning.

I. INTRODUCTION
Throughout geological history, foraminifera represents one of
the most exceptionally diverse groups of marine microfossils,
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with an estimated number of current species between 8,966
and an estimated number of 40,888 fossil species in the
geological record [1]. This accounts for approximately
2% of all animal species from the Cambrian to the
present [1]. The size of fossil foraminifera is very diverse,
ranging from less than 100 microns to 20 centimeters,
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and their shell can be made up of diverse compositions,
such as calcite, aragonite, agglutinated particles, and other
organic compounds. In foraminifera, factors such as their
cosmopolitan nature and evolutionary diversification make
them of particular interest to provide a paleontological and
stratigraphic record, which is of significant value in carrying
out biostratigraphic correlations and paleoenvironmental
interpretations [1], [2].

In both ancient and modern environments, the relative
abundance of specific species and their corresponding mor-
phometric characteristics are used as a proxy for (paleo) tem-
perature, (paleo) oxygen concentration, and (paleo) oceanic
salinity and paleoproductivity. In addition, foraminifera is
often used as the building block to define biofacies for paleo-
bathymetric studies as an aid in characterizing sedimentary
sub-environments. With the progressive change of different
macro- and microfossils throughout the history of the Earth,
especially planktonic foraminifera being utilized as markers
on the geological time scale and the occurrence of specific
events in the stratigraphic record [1], [2], [3]

Detailed identification of both species and morpho-
types and producing high-quality photomicrographs of
foraminifera have been primarily dependent on the avail-
ability of high-end equipment, such as advanced stereomi-
croscopes and high-resolution scanning systems. Although
some techniques have become a staple in research institutes,
some high-end equipment for digitizing specimens at high
resolution is not widely accessible to the geoscientific
community. This is exacerbated by the expertise needed to
perform species and genera classification. All of this leads
to an issue with standardization across various laboratories
and institutions, severely limiting the reproducibility of such
classification and its accessibility to non-experts. As a result,
there is an urgent need to develop an efficient, automated
approach or workflow to improve the resolution of microfos-
sil images and obtain labeled datasets without requiring high-
end equipment. Furthermore, the widespread implementation
of robust deep learning models for foraminifera classification
and morphological diversity distillation using advanced
computer vision technology, particularly deep convolutional
neural networks, has yet to be thoroughly investigated.

In the current literature, numerous works leverage com-
puter vision technology to classify and segment micro-
fossil specimens [3], [4]. From seminal implementations
in which the algorithms used did not achieve human
accuracy [4], [5], [6] to recent works in which the algo-
rithms exceed human accuracy and speed when classifying
microfossils [4], [7]. Recently, the use of Deep Convolutional
Neural Networks (CNNs) has been notable in this research
corpus, with CNNs having several advantages for these tasks
given the reduced need for feature engineering, the scalability
to larger datasets, and the exceptional ability to process grid-
like data [4], [8], [9], [10], [11], [12]. This is further supported
by the accessibility to powerful pre-trained architectures as
backbones for a starting point during the training of new
models [10], [12], [13], [14].

In geosciences, recent advances in Generative Adversarial
Networks (GANs) enable geoscientists to generate additional
synthetic data as a novel augmentation technique to con-
ventional ones, assisting in the improvement of machine
learning model performance [15], [16]. In addition, GANs
are effective at balancing the distribution of data within a
particular geological dataset, ensuring a better representation,
and reducing the risk of bias during training [15], [17], [18].

In recent research trends, Vision Transformers (ViT)
have emerged from the Natural Language Processing
(NLP) corpus as a powerful technique for tackling visual
tasks [19], [20]. Unlike traditional CNNs, ViTs employ
a transformer architecture to address global and local
relationships in an image, resulting in more effective feature
extraction and representation. Image Super-Resolution (SR)
is a field of Computer Vision that focuses on enhancing low-
resolution images, making them more visually appealing and
informative. Recent improvements in CNN and ViT-based
architectures have become state-of-the-art for upscaling and
restoring images [21], [22]. This application could be helpful
in preserving fine-grained details and textural information for
micropaleontological image analysis.

Additionally, we explored Few-shot Learning, a machine
learning subfield that focuses on training models to recognize
new classes with very limited labeled data, typically only
a few examples per class. This approach is particularly
relevant in micropaleontological research, where obtaining
a large volume of labeled samples can be time-consuming
and labor-intensive, as in many other areas of geosciences.
Few-shot learning techniques can be broadly categorized
into two main approaches: Non-Meta-Learning (Transfer
Learning) and Meta-Learning (Siamese Networks, CAN,
Meta-Networks) [23] [24]. On the other hand, approaches like
transfer learning leverage knowledge learned from one task
and apply it to a related but different task. Meta-Learning
aims to approximate a function with optimal performance
on a task randomly sampled from a distribution. This
approach is divided into metric-based, model-based, and
parameter-based techniques [24]. In our study, we explore
the potential of few-shot learning techniques to improve a
segmentation task of foraminifera images, even when only a
small number of labeled examples are available (i.e., less than
five labeled samples). By incorporating few-shot learning
into our deep learning workflow, we aim to enhance the
efficiency and generalizability of our models, making them
more applicable to real-worldmicropaleontological scenarios
[3], [4], [5], [6].

The primary goals of this research were to create and
suggest new approaches to traditional microfossil image
scaling methods and to investigate the application of end-to-
end deep learning for enhancing the quality and accurately
representing the morphological diversity of foraminifera
images [15] successfully showcased this in their study using
petrographic datasets (Fig. 1a and b). Such tools can poten-
tially expand the variety of micropaleontological datasets and
provide synthetic digital counterparts for confidential data.
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FIGURE 1. Examples of the use of deep learning architectures in petrography (a) super-resolution imaging of sandstones [35] (b)
generation of thin sections [15].

FIGURE 2. Image samples from the three databases used (a) Globigerina bulloides from Endless Forams, (b) Uvigerina peregrina from MD02-2508 (c)
Globigerinoides ruber from MD97-2138. Selected from the compilation by [3].

II. METHODOLOGY
A. DATASET
In this study, three open-source machine learning-ready
databases of foraminifera are used. These datasets were
curated and preprocessed before being used in classi-
fication tasks using CNNs [3]. All three sources are
being preprocessed further in preparation for implement-
ing the workflow proposed in this study to generate a
high-resolution and realistic synthetic micropaleontological
dataset.

The first source is the Endless database Forams which
is a compilation of more than 34000 foraminifera [25]
(Fig. 2a). The second dataset is obtained from the set MD02-
2508 compiled by the RV Marion Dufresne oceanography

mission MD126 MONA during 2002 in the Northeast Pacific
Ocean [3] (Fig. 2b). Lastly, the MD97-2138 dataset, these
images were collected from the IHPIS mission of the
RV Marion Dufresne to analyze the last climatic cycle in
sediment cores [3] (Fig. 2c).

These databases are selected for their previous applica-
tion in training a CNN for classification and for having
numerous foraminifera specimens and samples. Furthermore,
the datasets vary in terms of backgrounds, illumination,
fragmentation of the specimen, and number of foraminifera
per species. These features are useful for robustly training
deep learning models by presenting different potential
variations and conditions of foraminifera images acquired
from real-world datasets. This would help deep learning
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FIGURE 3. Schematic of the adopted SwinIR architecture used to extract
features and upscale images (a) Low-resolution image input to the model
(b) Generalized schematic of SwinIR (c) Image upscaled using
super-resolution (d) RSTB block, Residual Swin Transformer Block
(e) Transformer Layer Swin, Swin transformer Layer. MSA: Multi-head
Self-Attention. MLP: Multi-Layer Perceptron, LayerNorm: Layer
Normalization. Modified from [21].

models realistically and aesthetically restore and generate the
foraminifera dataset.

B. TRANSFORMER-BASED IMAGE SUPER-RESOLUTION
For the multiscale image restoration task (i.e., image super-
resolution), 3,563 specimens are selected from the three
databases that meet the condition of having a dimension
greater than 800 × 800 px. This threshold was applied to
ensure that the datasets are above high-definition quality
(> 720px) and have enough samples to train the mod-
els successfully. The collected images are divided into
a training set with 3,263 images and a test set with
300 randomly selected images. The images were reduced
to half, a quarter, and an eighth of their original resolution
of 800px2, using a Lanczos interpolation kernel to preserve
the best possible features of the image to be reconstructed.
In such a case, the dimensions to be restored are from
(i) 400px2 to 800px2 (2x time super-resolution task); (ii)
200px2 to 800px2 (4x time super-resolution task); and
100px2 to 800px2 (8x time super-resolution task). The
algorithms were trained until reaching 50000 iterations
for comparison. The training was done using 25 hours
of GPU with an NVIDIA RTX 5000 of 16Gb of video
RAM in a Cloud Linux environment, with eight CPU cores
and 30 Gb of RAM.

For the foraminifera microphotograph image super-
resolution task, our study adopted the SwinIR (Shifted

Windows Transformers for Image Restoration) [21] (Fig. 3)
architecture which is an extension of the Swin transformer
algorithm [26]. This architecture is based on the hierarchical
neural attention mechanism concept. It has positioned
itself as the state-of-the-art deep learning algorithm across
standardized datasets used in computer vision tasks. This
trend, combined with their combination with CNNs for
architectural improvements, has been seen since the original
implementation of the transformers for vision tasks, Vision
Transformers (ViT) [20].

After serving as the backbone of several architectures
due to its SoTA results, ViT was implemented in the
Shifted Window Transformer (Swin) [26] and applied to
image restoration and super-resolution. This architecture uses
stacked residual Swin transformer blocks that are windows
using a shifted window attention coupled with convolutional
layers for further feature extraction (Fig. 3). These archi-
tectural improvements allow the model to achieve better
results than current methods by both reducing the number of
parameters needed and capturing long-range relationships in
the image, allowing in contrast with approaches solely based
in CNNs [21], [26].

In geosciences, the implementation of ViTs, a recent
development in computer vision, has shown promising
results in various image analysis tasks [19], [20], [27], [28].
Unlike traditional Convolutional Neural Networks (CNNs),
ViTs use a transformer architecture based on self-attention
mechanisms to capture global and local relationships in
an image. This allows ViTs to effectively extract and
represent features from images, even when dealing with
large datasets or complex visual patterns [19], [20]. In our
study, we employ ViTs to enhance the quality of image
foraminifera by leveraging the transformer architecture.
With this approach, we can capture fine-grained details
critical for accurately identifying foraminifera species and
morphotypes. Additionally, ViTs have the advantage of
being more interpretable than traditional CNNs, as the self-
attention mechanism allows us to visualize which parts of the
image are most important for classification [27]. This makes
ViTs a valuable tool for micropaleontological research,
where accurate and interpretable image analysis is crucial
for understanding the paleoenvironmental and paleoclimatic
conditions of the past. Overall, the use of ViTs in our study
represents a significant advancement in micropaleontolog-
ical image analysis and has the potential to significantly
improve the accuracy and efficiency of foraminifera image
analysis [27].

C. STYLE-BASED IMAGE GENERATION
The generative model was trained by selecting the nine
species with the most images (Globigerina bulloides, Glo-
bigerinita glutinata, Globigerinoides ruber, Globigerinoides
sacculifer, Globorotalia inflata, Globorotalia menardii,
Globorotalia truncatulinoides, Neogloboquadrina incompta,
and Neogloboquadrina pachyderma). In addition, these
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FIGURE 4. On the left, diagram of a GAN and how it works by taking a latent vector (z), that can be random or
conditioned, and a sample from the real dataset. It then learns to replicate this image distribution using a
style-based generator (G). These generated are then discriminate from the real ones using a discriminator (D). The
goal of the two neural networks competing in a minimax game in which the goal of G is to deceive D and the goal of
D is to discriminate the real samples from the synthetic ones generated by D. On the right, the main Style block used
for style extraction on given image datasets by StyleGAN2, with modulation, convolution, normalization, A – Affine
transforms, B – Noise broadcast operation, w - learned weights and b – biases [31], [32].

FIGURE 5. The proposed workflow for coupling GANs with Super-Resolution algorithms to train GANs at lower resolution and upscale the
generated images.

species were selected because they share some similarities
and distinct characteristics across species simultaneously.
A total of 18166 images were taken at a resolution
of 256px2 to obtain the largest number of images and
satisfy the requirement of the minimum dataset to prop-
erly train generative adversarial network (104 - 105

images) [26], [29], [30], [31], [32].
Another training was conducted using a 512px2 upsam-

pling of this same dataset to further experiment with
the associated latent space at that scale and evaluate the
convergence of the model during training with different
dataset resolutions. The idea for this is to combine the training

of GANs and Super-resolution for image generation at higher
resolutions with limited data and reduced training time
(Fig. 5). Various architectures take advantage of the zero-sum
game between two neural networks, constituting the core of
Generative Adversarial Nets [29]. Recently, these architec-
tures have been able to deceive the human eye for both face
recognition [34], [35] and even for the recognition of specific
datasets in geology [15]. In this study, the style-based GAN
architecture (StyleGAN2) was adopted and implemented
to reconstruct and generate realistic synthetic foraminifera
images that are realistic to the human eye [26], [29], [30],
[31], [32]. (Fig. 4).
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FIGURE 6. Flowchart to calculate the FID score, taken from [15].

FIGURE 7. PSNR results for a 4x upscaling (200px2 to 400px2).
Comparison between SwinIR and the interpolations using the Lanczos
kernel, bicubic bilinear and Nearest Neighbors interpolation.

This assumption was based on the Frechet Inception
Distance (FID) Score achieved by this architecture and its
variations, with the StyleganXL being the current state-of-
the-art implementation for image generation tasks [33], [36].
Among other unconditional and style-based GAN models,
the StyleGAN2 architecture has a more robust and flexible
implementation that allows experimenting with the model
and its associated latent space, allowing not only to generate
but also to model synthetic images. For such a case, the
algorithm extracts styles of interest in the dataset of images
from which it is trained. These styles can be interpreted in

faces as hair color, face orientation, or skin tone [30], while
for petrographic datasets, it translates into grain size and color
of minerals in the thin section [15].

D. METRICS
In evaluating the models, several metrics were used in this
study. We use Peak Signal-To-Noise ratio, PSNR (eq. 1),
to evaluate the super-resolution model as a standard metric
for assessing super-resolution models and scaling algorithms.
This metric has been calculated in the literature for both
standard computer vision datasets [21], [22] and in datasets
of geological interest [37], [38].

In addition, this metric calculates the logarithm of the ratio
between the maximum value of a signal, the 255-pixel value
for a grayscale image, and the mean squared error of the
image

(MSE), eq. 1. In this metric, the higher value indicates
a better image reconstruction, with values greater than
40 expected from standard image compression algorithms
and undefined when the images are the same, as the MSE
goes to zero (refer to eq.1).

PSNR = 10 × log10

(
2552

MSE

)
(1)

Values obtained in the literature for geological datasets
ranging from 25 to 45 PSNR for different image
datasets, from petrographic to micro-computed tomography
images [34], [38], [39].
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FIGURE 8. 4x magnification of foraminifera specimens, PSNR: Peak Signal-to-Noise Ratio SSIM: Structural Similarity Index.

FIGURE 9. FID score for foraminiferal species, indicating the best score obtained, 14.88.

The generative algorithm is evaluated using the FID Score
using InceptionV3 [40], [41]. For this metric, the images are
sampled, real and fake, and sent as input to the InceptionV3
architecture [41]. The activation results of the last layers
of this classification architecture are calculated for both
populations, generating a distribution for the synthetic and
real images.

The Fréchet distance between these two distributions is
calculated where the smaller the value, the closer the two
distributions are, i.e., the more the synthetic images resemble
the actual population (Fig. 6). This is a standard metric used
for the evaluation of generative models, FID score values
below 5 expected in face generation using 105 image datasets
and values around 10 obtained in the generation of synthetic
petrographic images [15], [32], [40].

III. RESULTS
A. SUPER-RESOLUTION ALGORITHM
The SwinIR architecture was used to train it and compare its
performance to traditional interpolation methods, as detailed

TABLE 1. PSNR values obtained for each scaling task and the iteration in
which it was reached.

by [42] and Liang et al. [21]. The best PSNR value within
50000 iterations of each of the models (2×,4×,8×) is chosen
and compared, for the case of the 4× scale, it is also compared
with other conventional algorithms (Fig. 7). The Average
PSNR values obtained for the test set in each of the training
shown in Table 1, together with the iteration of the model in
which it was obtained.

In addition, a visual comparison is conducted for
foraminifera and its magnifications, both done by SwinIR and
by bicubic interpolation and nearest neighbors interpolation
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FIGURE 10. Generation of species-specific foraminifera (a) Real foraminifera of the species Globigerina bulloides (b)
Generated specimens of G. bulloides.

FIGURE 11. Few-Shot segmentation of Globigerina bulloides using the pretrained GAN and five specimes labelled (a)
sample of specimens labelled (b) model inferences.

(Fig. 8). The results showed that SwinIR outperformed these
traditional approaches, demonstrating its potential to surpass
conventional methods for image restoration.

B. GENERATIVE ALGORITHM
The StyleGAN2 architecture was also trained to generate
synthetic foraminifera specimens and explore their associated
latent space [34], [35]. The performance of the generative
model was evaluated both quantitatively, with the FID score
(Fig. 9), and qualitatively with a visual inspection of the
generated foraminifera (Fig. 10). This was done to ensure
that the model converged (Fig. 9) as well as that the model
did not collapse generating a single foraminifera specimen
(Fig. 10). The FID score achieved for the generator at the
species level was 14.88. The score at the unconditioned level
is 32.32, suggesting that the model performs better when
conditioned to generate specific foraminifera species than
unconditioned.

IV. DISCUSSION AND CONCLUSIONS
In addition to the fossil classification and segmentation tasks,
the current development of deep learning architectures in
using generative adversarial networks (GAN) and Vision
Transformers (ViT) to generate and restore geological image
datasets automatically has fueled the interest to explore
and unravel the potential of these models in geosciences.
One of the major tasks is image super-resolution (i.e.,
upscaling image resolution with deep learning), which is
instrumental in accurately classifying various geological
analyses. Hence, it is essential to devise a workflow that could
bring low-resolution images or images with a considerable
amount of noise to better quality, directly translating into
saving resources when obtaining datasets. In addition, this
allows legacy datasets to be re-used and accessible for
newer algorithms. On the other hand, generating synthetic
data allows for replicating both aesthetic and statistical
characteristics of a set of geoscientific datasets, allowing data
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to be modeled, visualized, and augmented for subsequent
geological workflows [15], [37], [38], [39], [43], [44].

This work seeks to find alternatives to classical microfossil
image scaling algorithms, managing to train for the first
time a specific architecture, SwinIR. For this purpose, its
performance is better than classical interpolations such as
Lanczos, bicubic, and bilinear when compared using standard
metrics such as PSNR. This demonstrates the potential of
this our proposed model to surpass traditional approaches
for image restoration, even when this algorithm is trained
with a dataset of moderate size, 3263 images, by computer
vision standards [45], while also being of specific scientific
importance.

In addition, the StyleGAN2 architecture is trained, opening
the possibility of generating foraminifera specimens and
experimenting with the associated latent space, obtaining
a model that reaches FID scores less than 20, being close
to the values reported for other geological datasets, which
are capable of being indistinguishable from natural images
to the trained eye [15]. These foraminifera were visually
compared between some selected species. However, more
detailed analysis with experts in the field is required to know
howwell it replicates morphotypes between different species.
The trained model can generate images of foraminifera at
the species level, and also, another model is trained for the
unconditional generation of foraminifera. A possible use of
this tool is increasing the diversity of micropaleontological
datasets and releasing confidential information as a synthetic
copy of the original dataset.

The model’s ability to generate synthetic samples can also
be applied to few-shot segmentation tasks and learning how to
generate weights that can be used for other downstream tasks,
such as semantic segmentation [46], [47]. Our study demon-
strated the potential of using the proposed workflow for
automatically segmenting foraminifera chambers (Fig. 11).

For this task, the segmentation of foraminifera chambers
was performed by only labeling five samples which allowed
a Few Shots CNN to learn and segment both the aperture
and the contour of a specimen, in this case, a synthetic
Globigerina bulloides.

APPENDIX A
DATA AVAILABILITY
The data used are available from the cited publication
Marchant et al. [3], the preprocessed dataset and the synthetic
self-labeled datasets are available upon reasonable request
from the authors.

The models, sample synthetic images, and images used
to evaluate the super-resolution model are available upon
request.
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