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ABSTRACT Smart contracts are software systems that monitor, automate, and control the execution of a pro-
cess, react to violations, and enforce process terms and conditions. There is tremendous interest in developing
smart contract applications in banking, finance, insurance, government, and supply chain markets. Many
of these applications operate in a cyber-physical environment and adopt architectures based on Internet-of-
Things (IoT) and blockchain technologies to support monitoring and ensure data integrity. To investigate how
cyber-physical smart contracts are realized for compliance monitoring, together with associated challenges
and research opportunities. Amapping review of the literature that surveys underlying architectures and their
evaluation. The publications considered came from four databases (Scopus, Web of Science, IEEE Xplore,
and Google Scholar), supplemented by manual snowballing. All publications considered are peer-reviewed,
written in English, and published in non-predatory venues. A total of 368 publications were considered,
with a final selection of 50 papers (all published between 2018 and 2023) that were analyzed along
three dimensions: Cyber-physical architectures, infrastructure failures, and technical challenges. Blockchain
technologies are the most commonly used platform for smart contracts as they provide decentralized
architectures deploying interesting communication patterns, as well as multiple technologies to simplify
communication for producing and consuming events. Moreover, such architectures can lead to many types
of infrastructure failures including sensor/actuator attacks, network outages, and hardware/software failures,
resulting in five important technical challenge areas related to security, availability, robustness, privacy, and
legal aspects. Key insights and directions for future research are also reported. This reviewwill inform readers
about how cyber-physical smart contracts are being built and deployed and the challenges that are faced by
their builders and users.

INDEX TERMS Smart contracts, cyber-physical systems, blockchain, compliance monitoring, events,
platforms, mapping review.

I. INTRODUCTION
Smart contracts are software systems that monitor, automate,
and control the execution of a process, often of a business or
legal nature [1]. There is tremendous interest in developing
smart contract applications in diverse markets, including

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

banking, finance, insurance, government, agriculture, and
supply chains.1 Such systems require special attention to their
security and complexity as they often monitor legal trans-
actions and compose components dynamically [2]. Some
smart contracts, such as those monitoring bitcoin transac-
tions, operate fully in a cyber environment. Others, such as

1https://tinyurl.com/b8sk3jnk
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smart contracts that monitor meat sale transactions to ensure
that delivery complies with perishable food transportation
standards, operate in a cyber-physical environment. Our study
focuses on this latter class of smart contracts, referred to
herein as cyber-physical smart contracts (CPSCs).
CPSCs typically deploy Internet-of-Things technologies

to monitor and control the execution of a process, often a
business process or a legal contract execution. In addition,
CPSCs often adopt Distributed Ledger Technologies (DLTs),
including blockchain, to ensure integrity and immutability of
their data in an environment that handles high-risk transac-
tions without requiring trusted third-parties. However, CPSCs
may also involve trusted parties and centralized databases
instead of, or in addition to, DLTs.

As CPSC applications multiply, it is important to under-
stand how they are being built and used for supporting
compliance monitoring and control. Through a mapping
review, this paper identifies and analyses relevant academic
literature that is focused on event-based monitoring, includ-
ing its architectures, platforms, interactions, infrastructure
failures, and technical challenges.

As for any literature review, it is important to determine
its need and originality. Several literature reviews involving
blockchains and smart contracts exist, but with purposes
and research questions different from those explored here.
Dhaiouir and Assar [3] systematically analyzed the litera-
ture to identify blockchain-based smart contract applications
focusing on languages, consensus, and choice criteria, but
without mentioning cyber-physical systems (CPSs). Also,
Parjuangan and Suhard [4] conduct a review of smart con-
tract platforms and their characteristics in electronic trading.
The study of Leka et al. [5] focuses on recent knowledge
about smart contract challenges, specifically security vul-
nerabilities. In a similar work, Vacca et al. [6] conduct a
systematic literature review of the current state of the art
of smart contract open challenges and available tools and
techniques. Furthermore, some studies, such as those from
Hasan et al. [1] and Niya et al. [7], have developed systems
that utilize smart contracts as software to monitor contract
events in CPSs where physical objects are used to report
sensor data and events of the environment that is being mon-
itored. Many of these existing studies mention some relevant
architectures, work mechanisms, and challenges. However,
none of them provides a comprehensive analysis that sum-
marizes existing studies and classifies existing architectures,
platforms, trends, infrastructure failures, and challenges of
smart contracts for event-based monitoring.

This mapping review is intended for researchers and practi-
tioners who are interested in advancing the engineering tools
and methods for building CPSCs, or want to apply them to
their professional environment to realize value-adding prod-
uct and service opportunities.

This review is structured on the basis of four research
questions (detailed in section III) that focus on existing archi-
tectures, event-based interactions, infrastructure failures, and
challenges. Section II first provides background information

FIGURE 1. Bird’s eye view of a typical cyber-physical system architecture.

on CPSCs, while section III covers the methodology used in
this mapping review. Then, section IV presents the architec-
tures that have been proposed for CPSCs and shows different
patterns and components involved in interacting with their
environment to receive and process events. As CPSC archi-
tectures may experience infrastructure failures and other
challenges, section V highlights such failures and mitigations
thereof. Section VI further describes technical challenges
while section VII provides explicit answers to the research
questions that scoped this study and discusses threats to
validity. Finally, section VIII concludes and provides insights
into possible future research.

II. BACKGROUND
A. CYBER-PHYSICAL SYSTEMS
The foundational idea behind the concept of CPS is to keep
an eye on and exert control over the physical world by
incorporating cyber world capabilities (e.g., computation and
communication) into aggregations of hardware [8], often
composed of IoT devices. Thus, CPSs can be considered as
an integration of physical elements, computing systems, and
networks within a larger system where they can be controlled
and monitored intelligently. Fig. 1 shows a typical CPS archi-
tecture in its most abstract terms.

CPS applications include energy systems, smart systems,
automotive systems, aerospace systems, robotic systems,
industrial systems, IoT applications, and many more. Each of
these applications is expected to adapt to changes that come
from the outside world and react differently based on the
requirements in a safe, secure, efficient, and (ideally) real-
time manner [8].

Typically in CPSs, the cyber and physical worlds are
exposed to each other through the use of application program-
ming interfaces (API) where the physical devices contain
sensors that report actions and states of the environment being
monitored [2], [9].

VOLUME 11, 2023 65873



S. Alfuhaid et al.: Mapping Review on Cyber-Physical Smart Contracts

FIGURE 2. Centralized smart contract vs. decentralized smart contract
(blockchain).

B. SMART CONTRACTS AND BLOCKCHAINS
The term ‘‘smart contract’’ was first proposed by Szabo in the
mid-90’s [10]. It represents the contractual terms of a legal
agreement in the real world, but in a completely digital way.
These terms are translated and embedded in smart contracts
in the form of code that dictates what can and cannot be done,
and that is executed automatically based on the terms of the
contract. The general goal here is that smart contracts will
self-enforce these terms and minimize the need for (trusted)
third parties between transnational or transorganizational par-
ties, while obtaining better monitoring and verification where
terms must be satisfied [10].

Smart contracts often represent terms or conditions of a
legal agreement using functions and events [1], possibly with
rule-based patterns to recognize those events [11]. For exam-
ple, if a contract’s terms specify that if the shipment exceeds
the expected arrival date, then fees must be triggered against
the shipping company, then the arrival of the shipment on a
given date must be a recognizable event.

As observed by Niya et al. [7], blockchain is the decentral-
ized ledger technology most commonly used in recent years.
Blockchain is a peer-to-peer technology that enables storing
and monitoring data in a distributed and decentralized man-
ner [12]. The venue of blockchain platforms has revived the
concept of smart contract (Fig. 2) while providing decentral-
ized execution and additional benefits such as immutability
and transparency.

Smart contract implementations have capabilities for stor-
ing, sending, and receiving data [13]. Implementations can
rely on a trusted centralized, decentralized, or some hybrid
model [14], [15]. Buterin [16] created a leading DLT

platform, called Ethereum2), that features smart contract
capabilities allowing the creation of distributed applications
in many areas. Bitcoin,3 which is the first and likely the
best-known blockchain platform, supports smart contracts
that can process simple transactions. In contrast, Ethereum
and other blockchain platforms such as Hyperledger Fabric4

can process complex transactions and store records of any
data.

There are different types of smart contracts that exist on
such decentralized platforms, and they are often developed
using different languages:

1) Bitcoin-style smart contracts: Use simple instructions
as the Bitcoin platform features limited support for
conditions, basic arithmetics, logical operations, and
cryptography operations (e.g., for verifying digital sig-
natures) on the blockchain [17].

2) General-style smart contracts: Use advanced scripts,
written in common high-level languages, which are
hosted on virtual machines (e.g., deployed using
Docker) in order to support the execution of smart con-
tracts on the blockchain. For example, a smart contract
for the Hyperledger platform can be written in Java,
JavaScript (Node.js), or Go [18].

3) Domain-specific smart contracts: Use programming
languages that exploit domain-specific knowledge
to support contract-related concepts. For exam-
ple, Ethereum supports Solidity, which features
a Turing-complete scripting language for a vari-
ety of smart contract applications [19], as well as
many other domain-specific programming languages
(e.g., LLL, Serpent, and Vyper). Furthermore, many
approaches [20], [21], [22] have introduced new spec-
ification languages for modeling smart contracts.

There are also three types of blockchain-based ledgers:
private, public, and consortium. These differ on the ability
of parties to read and write from a ledger, the ability of
nodes to join the blockchain network, the ability of nodes to
validate and publish a block, and the type of consensus mech-
anism. For example, only assigned nodes can join the network
and validate transactions in a private ledger. However, in a
public ledger, anyone can enter the network and publish a
new block. Consortium ledgers are in between private and
public ledgers [12], [19], [21]. Both Bitcoin and Ethereum are
examples of public blockchains, and their respective ledger
is available to anyone. Hyperledger Fabric is an example of
a private blockchain where the ledger is kept concealed and
access is restricted [19].

III. RESEARCH METHODOLOGY
A mapping review is designed to provide an overview
of the literature relevant to research questions by exploit-
ing academic research databases and complementary search

2https://ethereum.org/
3https://bitcoin.org/
4https://www.hyperledger.org/use/fabric
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approaches, selecting and analyzing the relevant articles, and
synthesizing answers to the research questions. A mapping
review also helps identify research gaps and is more oriented
towards answering questions than a scoping review, the latter
being usually more topic-based and used to scope and char-
acterize the existence of the literature.

To provide explicit and reproducible systematic literature
reviews (including mapping reviews), Okoli [23] defined a
four-phase methodology that this mapping review follows:

1) Planning: Planning the review by identifying the
review purpose and the research questions.

2) Selection: Searching and screening the literature for
relevant studies.

3) Extraction: Extracting from the papers the data that is
relevant to the research questions, and appraising their
quality.

4) Execution: Answering the research questions by syn-
thesizing answers from the extracted data and reporting
the results.

Fig. 3 illustrates the phases involved in the performed
mapping review. Also, as done in most literature reviews,
a PRISMAdiagram [24], [25] is used to summarize the results
of various inclusion and exclusion steps of the selection and
extraction phases.

A. PLANNING PHASE
This review aims to describe the state-of-the-art for CPSCs.
Towards this purpose, the following four research questions
have been framed:

• RQ1: What are the current platforms that support the
implementation of CPSCs for event-based monitoring?

• RQ2: How do CPSCs produce and consume events
from/to the outside world for monitoring?

• RQ3: What are current techniques for mitigating CPSC
execution failures in event-based monitoring?

• RQ4: What are the main technical challenges faced in
the development of CPSCs for event-based monitoring?

B. SELECTION PHASE
To answer the four review questions, an abstract search query
that composes the four essential concepts related to this
review (smart contract, CPS, monitoring, and event) and their
synonyms/variants was designed to find relevant academic
papers. The * truncation operator enables matching different
variants of a keyword (e.g., for plural forms).

‘‘smart contract*’’
AND

(
architectur* OR cyberphysical
OR ‘‘cyber-physical" OR "cyber physical’’
OR CPS OR platform*

)
AND

monitor*
AND

event*

TABLE 1. List of databases used in the mapping review.

TABLE 2. Exclusion and inclusion criteria.

This abstract query was tailored for several databases pre-
sented in Table 1. Scopus and Web of Science were included
as they are broad-scope, curated databases that cover over
100 million records, and IEEE Xplore (which contains many
CPS and smart contract papers) and Google Scholar (again,
very broad in scope) were included for their full-text search
capabilities.

The concept of ‘‘event’’ in the query was too restrictive
when limited to title/abstract/keyword information for Sco-
pus and Web of Science. Therefore, ‘‘events’’ was removed
from their query, and a manual full-text search for ‘‘events’’
was conducted. However, as IEEE Xplore supports full-text
search, ‘‘events’’ was kept in the full-text search field. For
Google Scholar, given the severe limitations of its search
engine, a simpler query containing the main keywords was
used, and its results were only considered up to a prede-
termined depth based on Scholar’s ranking of the papers’
relevance.

The review followed an automatic search from the four
databasesmentioned in Table 1. Additionally, several relevant
papers have been found by exploring the referenced works
through a complementary backward snowballing strategy (as
suggested by Mourão et al. [26]).

The literature search was performed in April 2023. The
retrieved papers were first screened using Covidence [27]
based on the inclusion and exclusion criteria shown in
Table 2. For that part of the screening, title, keywords,
abstract, introduction, and conclusion of each papers were
reviewed. Articles that met any of the exclusion criteria were
excluded and the reasons were noted.

Although there are related patents that exist in that space,
e.g., for general contract monitoring [28], smart contract
compliance monitoring [29], or the monitoring of smart
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FIGURE 3. Overview of the mapping review methodology.

FIGURE 4. Summary of selection results, shown as a PRISMA diagram.

contracts themselves [30], patents were not included as they
are not peer-reviewed according to scientific criteria.

C. EXTRACTION PHASE
After completing the first screening iteration mentioned ear-
lier, a second iteration that combined screening and data
extraction was conducted, this time using a full-text review.
Some articles were excluded based on the quality assessment
conducted by the first author. Only articles coming from a
non-predatory source of information and meeting at least one
of the following assessment criteria were included:

1) Clarified the architecture(s) where the smart contract
can be used for event-based monitoring.

2) Clarified how smart contracts interact, consume, and
produce events.

3) Discussed infrastructure failures.

4) Discussed challenges faced by developers when
embedding smart contracts in CPSs.

5) Evaluated the architecture(s).
Many studies were excluded because there was neither a

clear description of a proposed architecture nor a discussion
related to failures or challenges. Some of these papers are
however cited in the previous sections and in the discussion
as they still provided some useful information to support the
content of the review.

A PRISMAdiagram [24] summarizing the selection results
is presented in Fig. 4.

The analysis was done using Microsoft Excel and is
available on Zenodo.5 A table was created with different
columns used to extract relevant data, including the article

5https://zenodo.org/record/8000387
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FIGURE 5. CPSC research distribution per year.

information (title, authors, year); the location of the smart
contract, its data, and its events in the architecture (on-
chain, off-chain, hybrid); the platform used; the deployment
technology; the smart contract languages used; the overall
approach to event production and consumption; the types of
infrastructure observed; and the types of technical challenges
faced.

D. EXECUTION PHASE
Answers to the research questions were synthesized by man-
ually clustering the extracted data into different categories
related to architecture, failures, and challenges, which are
presented in the next sections.

The results overview, presented in Fig. 5, shows that the
research on CPSCs started in 2018 with its first publications,
and that the highest number of selected publications was in
2022. Note that the queries were run in April 2023, so the
results from 2023 are partial.

IV. ARCHITECTURE
In this section, the first and second research questions are
answered. The answer to RQ1 on platforms is spread over
sections IV-A and IV-C while the answer to RQ2 on events
is provided in section IV-B. The first question demands
a detailed description of existing architectures for CPSCs,
while the second question demands details on how data and
events from the environment are produced and consumed
while monitoring for compliance.

A. OVERVIEW
Typically, CPSCs consist of several physical (IoT) com-
ponents that are responsible for collecting data from the
outside world and controlling the environment. IoT devices
are usually deployed as IoT components that include mul-
tiple devices and come in some sort of architecture. These
components are networked and controlled by cyber compo-
nents (e.g., by smart contracts) [2]. Fig. 6 illustrates such
physical components, cyber components, and the network.
The physical components are usually sensors and actua-
tors [9]. The sensors collect and transmit sensor data through
a wired/wireless network to the cyber components. Such an
architecture enables compliance monitoring and helps check

FIGURE 6. Overview of a typical CPSC architecture.

the enforcement of predefined terms of the contract impacting
the physical world [1].

Implementations of CPSCs that have been published in the
literature are shown in Table 3. They are presented along dif-
ferent architectural characteristics, including smart contract
location and data location (on-chain, off-chain, hybrid), plat-
forms, deployment technologies, implementation languages
for the smart contract, and the methods used for produc-
ing and consuming events. These implementations utilize
blockchains as their underlying back-end infrastructure, with
the system’s operations and business logic encoded in smart
contracts. When events or sensor data from the physical
world are reported, the smart contract is invoked, and its
predetermined terms and rules are executed automatically [9].
In recent years, relatively few studies have focused on the
development of smart contracts for centralized systems,
compared to decentralized ones [2], as using decentralized
blockchain-based architectures offers desirable immutability
and transparency features [9].

Blockchain is also employed as a back-end storage solution
for storing sensor data and events or for keeping pointers to
data stored in another layer of the architecture (off-chain).
Storing information on a blockchain is however costly in
terms of time, space, energy, and money. Accordingly, some
studies have utilized off-chain storage options such as the
Interplanetary File System (IPFS) [31], [32], [33], [34],
Swarm [32], or Couch DB [11], [35], [36]. These off-chain
storage systems allow for more cost-effective and faster
alternatives.

Smart contracts are created using either specialized lan-
guages like Solidity or general-purpose programming lan-
guages like Java, Go, or JavaScript. In the conducted review,
Solidity was found to be the most frequently-cited language
among the selected papers, as shown in Fig. 7.

Additionally, smart contracts can be deployed on top
of centralized (off-chain) or decentralized (on-chain) plat-
forms [2]. However, some recent studies have demonstrated
that smart contracts can also be implemented on both
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FIGURE 7. Languages used to implement smart contracts in the selected
studies.

FIGURE 8. Platforms used to implement smart contracts in the selected
studies.

centralized trusted third-party and decentralized platforms
(hybrid), where a smart contract running on a decentralized
platform can trigger another smart contract on a centralized
platform, depending on the execution process [14], [15].
Fig. 8 illustrates the current trend of smart contract implemen-
tation platforms. Also, among the selected papers, Ethereum
and Hyperledger Fabric are the leading blockchain platforms
used for the implementation of smart contracts.

Furthermore, generated events play a crucial role in the
implementation of smart contracts for monitoring compliance
in the physical world. They are used by smart contracts to
record or report violations. Event hubs or logs are available in
the cyber components of the CPSC, which run on centralized
or decentralized platforms and provide access to the events
generated by smart contracts to the physical components of
the system.

Several studies employ different protocols – such as con-
strained application protocol (CoAP) and message queuing
telemetry transport (MQTT) – to facilitate communication
between physical and cyber worlds in regard to sensor data
and events [37]. MQTT is the most frequently-cited protocol
in the selected studies, which is used for storing, publishing,
and aggregating sensor data and events and transmitting them
to smart contracts. Section IV-B provides a more detailed
description of how smart contracts produce and consume
sensor data and events from and to the physical world.

By examining the published literature on the implementa-
tion of CPSCs, we have arrived at a partial answer to the first

research question regarding existing architectures for CPSCs,
as summarized in Table 3.

B. PATTERNS TO INTERACT WITH THE PHYSICAL WORLD
Having gained insight into the programming languages and
platforms involved in constructing CPSCs for compliance
monitoring, it is time to address the second research question
by providing details on how smart contracts produce and
consume events generated from the physical world. This
section provides a general overview of the commonly used
patterns and components in the literature for maintaining
the connection between smart contracts and the physical
world.

The ability of smart contracts to enforce contract terms
depends on receiving events and data from the physical world.
However, on-chain smart contracts cannot interact directly
with the physical world; extra components (e.g., data car-
rier) must be used to maintain the connection between smart
contracts and the physical world [42]. This is due to the
fact that some DLTs are designed to run smart contracts in
isolation to be disconnected from the outside world, offer-
ing secure and reliable sharing of contractual agreements of
event-driven monitoring [42], [45]. For instance, Ethereum
does not allow smart contracts to query data directly from the
outside world, but Hyperledger Fabric does [46]. However,
a hybrid blockchain has been suggested by Falazi et al. [58]
as a way for smart contracts to directly access off-chain
data. Regardless, data carriers may still be necessary for any
blockchain-based smart contracts to ensure a deterministic
behavior of smart contracts in monitoring CPSs [46].

Single-board computers like Raspberry Pi are also used
to facilitate communication between the outside world and
blockchain-based smart contracts. The Raspberry Pi boards
gather sensor data from external sources (e.g., cloud, IoT
devices) and execute the relevant function within the smart
contract [13], [37]. This causes the smart contract to initiate
events to record the new data or contract violations.

Additionally, REST servers offer several REST APIs to
connect the outside world to blockchain-based smart con-
tracts [9]. These servers allow web applications or physical
components to interact with smart contracts to access mon-
itored data and events. Similarly, Ethereum provides several
APIs (known as Web3 APIs) for calling back events moni-
tored by smart contracts from the physical world [13].

Furthermore, an oracle acts as a data carrier or a mediator
to establish a secure connection between blockchain-based
smart contracts and external components such as APIs, IoT
devices, cloud providers, and more [38], [39], [42], [43],
[44], [45], [46], [47], [49], [59]. Fig. 9 illustrates the basic
architecture of an oracle in conjunction with smart contracts
and Table 4 provides a description of the function of each
type besides other patterns that enable physical components
and smart contracts to communicate with each other in inter-
connected ways.

Based on the reviewed literature, all of the above-mentioned
technologies can be leveraged in centralized, decentralized,
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TABLE 3. Relevant literature related to CPSCs that includes a proof of concept.

or hybridmodels for CPSCs, except for theWeb3API, a built-
in functionality provided by the Ethereum blockchain that can
be utilized on either decentralized or hybrid models.

C. LAYERED ARCHITECTURE OF CPSC
From the literature listed in Table 3 and according to
Governatori et al. [61], there are three main approaches for
applying smart contracts for compliance monitoring in
CPSCs:

• Centralized (off-blockchain implementation)(off-chain):
The smart contract is managed by a third-party
server, the contract’s terms and conditions are moni-
tored/carried out off-chain, and contract-related data and
events are stored off-chain.

• Decentralized (blockchain implementation)(on-chain):
The smart contract is deployed on the blockchain, the

contract’s terms and conditions are monitored/carried
out on-chain, and contract-related data and events are
stored on-chain.

• Hybrid (off/on-chain implementation): The smart con-
tract can be divided where a part of the smart contract
is placed on-chain, while the other part remains off-
chain. Some of the contract’s terms and conditions are
monitored/carried out off-chain, while the rest is mon-
itored on-chain. Some contract-related data and events
are stored off-chain, and the rest is stored on-chain.

Based on the reviewed literature, different architec-
ture implementations were chosen by developers based
on criteria such as privacy and scalability [15]. However,
blockchain-based architectures were the most cited ones
among selected papers. Few studies investigate off-chain and
hybrid architectures.
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FIGURE 9. An illustration of basic oracle patterns to access data from/to blockchain and smart contracts in
CPSCs.

TABLE 4. Patterns used by smart contracts to interact with the physical
world for consuming and producing sensor data and events.

Several design concepts have been proposed for using
smart contracts to monitor compliance by utilizing sensor

data and events generated by IoT devices. Part of the literature
suggests a monitoring architecture that includes a front-end
monitoring application to observe sensor data and events
produced by the physical world [7], [13], [33]. Typically,
external applications initiate smart contracts to monitor and
enforce contract terms, while smart contracts store sensor
data and record related events. In their architecture, smart
contracts are deployed, installed, and instantiated on every
node on the blockchain network, which serves as a back-end
storage and processing infrastructure.

Hasan et al. [1] proposed a blockchain-based smart con-
tract for monitoring product shipments, defined by business
rules and risk thresholds. The physical world’s IoT-enabled
containers and sensors are used to track the movement of the
product and perform self-checks of various measurements,
comparing them to predefined conditions. An MQTT server
is employed to store, aggregate, and regularly publish sensor
readings. If there is a violation, the container will initiate
a call to the smart contract, triggering and registering an
event in the events log. A similar approach was proposed
by Lockl et al. [13]; however, the main difference is that a
monitoring dashboard application is available to end-users,
allowing them to monitor sensor data and related events and
register components. Additionally, the blockchain is used as
a light node, storing only the hash of blocks rather than the
entire blocks. In another similar approach proposed by Hang
and Kim [9], smart contracts are utilized to store sensor data
and keep track of the configuration of physical components.
The contracts trigger events when predefinedmonitoring con-
ditions are met or violations occur. A client application can
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send a request via REST APIs to the smart contract to either
register a new component for monitoring or access stored
sensor data and events. CoAP is employed by the server to
transmit sensor data from devices to smart contracts in real-
time.

Furthermore, a four-layered architecture for CPSCs was
proposed by Tahmasebi et al. [33], consisting of application,
service management, gateway, and physical layers. The gate-
way layer collects and saves the sensor data from the real
world in off-chain storage. Smart contracts are triggered by
the aggregated data and executed accordingly. An implemen-
tation of two smart contracts on the blockchain monitors
the execution and registration of IoT devices. The sensor
data produced by these devices is stored in off-chain storage
using IPFS. Bagozi et al. [31] also presented a CPSC in a
four-layered architecture that includes the acquisition, gate-
way, blockchain, and application layers. However, they use
smart contracts to provide anomaly detection services based
on the sensor data and related events frommonitored devices.

Zhou et al. [40], Lopez-Pintado et al. [32], and
Kochovski et al. [49] propose decentralized architectures
for CPSCs similar to the architecture of the above-
mentioned literature, including physical, gateway, distributed
(blockchain), and application layers. It is worth mentioning
that some studies have combined some layers or used dif-
ferent terminology. For instance, Lopez-Pintado et al. [32]
proposed a three-layered architecture of CPSCs for compli-
ance monitoring consisting of storage, access, and process-
aware layers. Zhou et al. [40], Lopez-Pintado et al. [32],
and Kochovski et al. [49] differ from the above literature
by adding an extra layer for off-chain events monitoring.
Zhou et al. [40] introduced a witness model to report vio-
lations and monitor off-chain events stored in the cloud.
In contrast, Lopez-Pintado et al. [32] added an off-chain event
monitoring model to retrieve and monitor on-chain events
stored on an event log. On their side, Kochovski et al. [49]
added a decision-making layer with a decision-making mech-
anism, a monitoring system, and an orchestration system for
off-chain monitoring.

The literature highlights the importance of various compo-
nents such as devices, event management, off-chain storage,
communication interface, off-chain monitoring systems, and
client applications that are connected using decentralized,
centralized, or hybrid architectures. Fig. 10 presents a typ-
ical tier architecture for compliance monitoring of CPSCs,
obtained from the reviewed literature. CPSCs can have multi-
ple independent layers that developers can modify. However,
the minimum requirements for building CPSCs are displayed
in the figure and described as follows:

1) Physical tier: This layer contains physical devices
(e.g., sensors and actuators), data storage, communi-
cation protocols, and so on. Physical devices collect
sensor data and events from the physical world and pass
them to the next tier.

2) Delivery, Aggregation, and Control tier: This tier is
composed of data carriers that validate and verify the

TABLE 5. Data storage for producing and consuming events.

data generated from the physical world before sending
it to the service tier. It may also contain monitoring
agents that process the data received from sensors
for compliance monitoring and trigger the appropriate
smart contract function in the service tier. Each of them
has communication capabilities to communicate with
the service tier.

3) Service tier: This is the tier where the smart contracts
are placed to pull information from the physical world
to apply the agreed policy from the agreed legal con-
tract. Also, in this tier, events are generated based on
the compliance monitoring rules specified by smart
contracts. All events, sensor data, and device infor-
mation are stored in this tier as well. Fig. 10 shows
threemain options, where SC execution andmonitoring
can occur on-chain, off-chain, or both on-chain and
off-chain.

4) Application tier: This tier provides many services,
such as monitoring the execution of the physical world
(e.g., a monitoring dashboard), allowing users to inter-
act with the data, or performing analysis on them.

Additionally, based on the reviewed literature, there are
several options for storing collected sensor data and events
generated by the physical world, where smart contracts can
access data/events through the control layer for compli-
ance monitoring purposes. Table 5 lists various data storage
options where sensor data and events are being consumed
from and produced for the physical world.

V. INFRASTRUCTURE FAILURES
After reviewing existing architectures for CPSCs, and the
way events are generated and consumed in the environment
that is being monitored, we focus here on RQ3. Specifically,
we study possible infrastructure failures and summarizes
existing approaches to alleviating these failures. Fig. 11
shows the risks that are identified from the reviewed literature
and the corresponding mitigation approaches.

The first noticeable risk is that sensor data and related
events that are generated by the physical world are not sent
directly to the smart contracts; rather, they are stored and
transmitted through a third party (i.e., data carrier) that resides
on a centralized architecture. This approach is particularly
vulnerable because it consists of a single point of failure [47].
Taghavi et al. [47] suggest utilizing multiple data carriers to
feed the data to smart contracts from the outside world as a
mitigation approach.

Another risk is that CPSCs rely on centralized services
(e.g., cloud, fog node, MQTT, and CoAP servers) for storing
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FIGURE 10. Conceptual tier architecture for CPSCs.

FIGURE 11. Common CPSC infrastructure failures with mitigation approaches.

physical device information and performing operations on
them. However, a disadvantage here is, again, a single point
of failure for such services [9]. The suggested mitigation
approach is to combine centralized storage with distributed

storage, such as blockchains [9]. This concern is exempli-
fied by the Atlanta Ransomware Attack6 in 2018, where a

6https://l8.nu/qh9M
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ransomware incident targeted the centralized infrastructure
of the city, causing disruptions to critical services. This inci-
dent serves as a stark reminder of the risks associated with
relying solely on centralized services in CPSCs. To enhance
resilience and mitigate the impacts of such infrastructure
failures, it becomes crucial to explore decentralized and dis-
tributed storage solutions, such as blockchains, to ensure the
availability and integrity of CPSC operations [9].

Additionally, monitoring processes that involve mul-
tiple agents entails the risk of failures resulting from
agents not following the agreed protocol of execution.
Shukla et al. [2] propose CPSCs that monitor process exe-
cution and detect anomalous executions (centralized or
decentralized). For instance, the Binance Smart Chain exploit
in 2022 serves as a relevant example.7 In this incident,
an attacker exploited a vulnerability in the Binance Smart
Chain’s infrastructure, manipulating a smart contract’s code
to steal a significant amount of ‘‘FOO’’ tokens. Such inci-
dents emphasize the importance of implementing robust
security measures and conducting careful code reviews to
prevent unauthorized access and manipulations of smart
contracts.

Moreover, running a CPSC on a single node can result in
system failure if the node fails. Hang and Kim [11] utilize
blockchain as back-end storage for compliance monitoring.
However, their system runs on a single node, which makes
it fault-intolerant. The authors do point out that the usage
of a single (solo) node is suitable for running smart con-
tracts for testing purposes only. However, for production
purposes, they suggest using clustering nodes for implemen-
tation, such as those used by Kafka8 or Raft9 to avoid system
failures.

Furthermore, components that reside off-chain are vulner-
able to tampering. In this context, Lopez-Pintado et al. [32]
suggest the use of distributed data storage, such as
blockchain, to store sensor data and related events. This mit-
igation approach provides reliable and secure storage, so all
compliance monitoring processes happen on-chain.

Typically in CPSs, IoT contains multiple sensors that are
responsible for producing and exchanging massive quan-
tities of data. Such sensors are themselves vulnerable to
cyberattack and hence compromise the integrity of the data.
IoT/DLT integration is suggested as a paradigm to handle
such attacks [9].

Intercepting and altering the order of received data is
another risk that can cause major losses. IoT/DLT integration
can provide a level of authenticity of IoT devices, such as
actuators, to ensure the integrity of transmitted data [9].

Finally, good network connectivity is crucial for IoT
devices to perform properly and transmit sensor data to the
smart contract; failure to do so can result in significant losses
of sensor data and events [9].

7https://l8.nu/qhbw
8https://kafka.apache.org/
9https://raft.github.io/

FIGURE 12. Technical challenges for implementing CPSCs.

VI. TECHNICAL CHALLENGES
On the basis of our mapping review, five main challenges
were identified as an answer to RQ4, as shown in Fig. VI:
Security, availability, robustness, privacy, and legal and regu-
latory aspects.

A. SECURITY
Smart contracts cannot directly access off-chain data accumu-
lated by monitoring the outside world. Instead, access needs
to be provided by a third-party data carrier [38], [39], [42],
[43], [45], [46], [47], [49], [59]. This is because smart con-
tracts have been designed to operate in a closed environment,
disconnected from the outsideworld for security reasons [19],
[42], [45]. Oracles have been used as a data carrier solution
to fetch data from different data sources, verify them, and
send them to the smart contract [42], [44], [45], [46], [47].
However, the trustworthiness of oracles and the integrity of
provided data have become challenging. Therefore, the lack
of trusted data carriers and the absence of a robust envi-
ronment of reliable data sources impede the applicability of
CPSCs.

Another concern is the lack of security measures for
the communication between physical and cyber components
used to link smart contracts with the outside world [63].
For example, the communication between REST APIs and
physical components (e.g., IoT) [11], [37], [50]. Similarly,
as more heterogeneous physical and cyber components and
services become connected to cyber-physical smart contract
systems, more security risks, insecure connections, and bugs
are expected to happen [64].

To deal with those smart contract vulnerabilities and
take advantage of the CPSC paradigm, blockchain-based
smart contracts have been proposed as a solution because
they provide distributed security with their cryptographic
mechanisms, especially when sensor data and events are
collected and shared among different physical and cyber
components [64]. Additionally, security analysis tools for
contract vulnerabilities are constantly being developed to find
potential security bugs and check compliance and potential
violation of contract behavior.
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Two relevant open source audit tools are Securify10 and
Manticore.11 Securify is a security audit tool for Ethereum
smart contracts. It uses symbolic analysis on the dependency
graph of the contract to obtain accurate semantic details
from the code, and then it checks whether the smart contract
behaves according to what is intended. Manticore is another
symbolic execution tool capable of tracing smart contract
transaction inputs to detect potential violations.

Furthermore, an Intrusion Detection System has been
developed to handle other vulnerabilities and cyber and
physical attacks as a result of the increasing incorpora-
tion of cyber and physical components where sensor data
and events are collected and used to monitor different fea-
tures of a CPSC [31], [34], [62], [63], [65]. An Intrusion
Detection System is a software tool that can be used to
detect attacks automatically using machine learning, deep
learning, or other techniques [34]. It is responsible for detect-
ing attacks, triggering warnings, or taking action [34]. For
example, Bagozi et al. [31] developed an anomaly detection
service to monitor sensors and check if identified measures
of sensor data are above or about to reach pre-identified
thresholds during a transportation journey. Kumar et al. [34]
propose a scalable blockchain-based smart contract for secure
data transmission. Also, A deep learning architecture com-
bining Deep Sparse AutoEncoder with Bidirectional Long
Short-Term Memory is proposed for intrusion detection in
a healthcare network. Kumar et al. [63] discuss IoT-based
zero-touch networks for secure data sharing. They also
suggest a deep learning approach for intrusion detection.
Kumar et al. [62] suggest a two-level approach for data secu-
rity. The first level uses blockchain and smart contracts to
ensure secure data exchange, while the second level utilizes
deep learning to encode data into a new format that pre-
vents attacks. Kumar et al. [65] suggest a new framework for
secure data sharing in Intelligent Agriculture that utilizes
deep learning and smart contracts enabled by the Internet of
Things to detect intrusions.

Note that the above technological solutions to security con-
cerns are those that focus on cyber-physical smart contracts,
as scoped by our research questions and search query. Other
solutions to security vulnerabilities targeting other types of
systems can be found in the work of Leka et al. [5].

B. AVAILABILITY
Availability in cyber-physical smart contracts relates to the
capacity of smart contracts to maintain their state and be
accessible to entities and physical and cyber components,
regardless of the circumstances, e.g., power outages, network
outages, attacks, or resource limitations [13]. For example,
using Wireless Sensor Networks as a network infrastructure
constitutes a risk because of limitations with respect to con-
nectivity, data stream, energy, storage, and capacity [33].
Also, the current CPSC paradigm relies on transmitting

10https://github.com/eth-sri/securify2
11https:https://github.com/trailofbits/manticore

sensor data and events to off-chain centralized servers that
represent single points of failures before delivering them to
smart contracts for compliance monitoring [13].

Maintaining CPSC availability is challenging, especially in
scenarios where it is critical to ensure data is always available.
For instance, such scenarios include monitoring sensor data
and events in healthcare systems or food supply chains, which
can be addressed by ensuring continuous functioning of both
cyber and physical components even if some of them are
damaged, and by implementing solutions to handle potential
single points of failure [13].

To tackle the challenges related to availability, the CPSC
paradigm can integrate various recommended methods, such
as redundancy and load-balancing capabilities. An IoT/DLT
architecture has often been used as a back-end infrastructure
as it maintains redundancy [13]. Blockchain-based architec-
tures allow cyber and physical components to be distributed
overmultiple nodes handling the same tasks; there is no single
point of failure. Thus, when one node fails, the other nodes
can take over [37]. Another approach is to use load-balancing,
which allows deploying physical and cyber components over
different resources to avoid overloads [49].

C. ROBUSTNESS
Smart contract robustness is crucial for maintaining contact
with the physical world via actuators and sensors. Currently,
there is a significant rise in the adaptation of physical com-
ponents such as IoTs due to their capabilities to provide
real-time data and enable networking among various CPS
applications [66]. Also, the amount of generated real-time
data by IoTs is increasing, which requires massive stor-
age, processing techniques, and networks allowing them
to interact with other physical and cyber components and
exchange data for compliancemonitoring conducted by smart
contracts [66]. Thus, since CPSCs involve growing cyber
and physical components and data, it is hard to maintain
robustness and expect how the systems can react to different
conditions, e.g., power constraints, network outages, IoT-
limited resources, and so on. Also, such systems adopt a
centralized architecture that is exposed to data loss at any
given time, as such architecture is not fault-tolerant [66].

To address these challenges, many studies, such as [13]
and [66], report on architectures that achieve fault-tolerance
through redundancy, which ensures that if one component
stops responding for any reason, other components can carry
out. Another robust mechanism is the use of artificial intel-
ligence and expert systems to make decisions about an
CPSC’s behavior and take actions accordingly, e.g., redis-
tribute resources to avoid overwhelming IoT devices of the
monitored environment [66].

D. PRIVACY
As indicated earlier, many CPSCs studied in the literature
adopt an IoT/DLT architecture. However, maintaining sen-
sory data on-chain is expensive. Therefore, several studies
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have turned to alternate hybrid approaches for storing sensor
data and physical device information. Such practices are
prone to privacy violations, particularly in terms of data
privacy for smart contracts and the privacy of data car-
riers that contain sensitive data concerning the monitored
process [13], [51].

Currently, public blockchains represent a real challenge as
they do not support access control, resulting in unrestricted
access to contract-related data and sensor data, as access
to sensitive data can not be prevented. Thus, a variety of
solutions have been suggested, such as (1) zero-knowledge
proofs [34], [56], [67], (2) homomorphic encryption [57],
and (3) securemulti-party computation [57]. Kosba et al. [67]
proposed amodel called Hawk that allows developers to write
a privacy-preserving smart contract using zero-knowledge
proofs that can keep its privacy to prove the validity of trans-
actions to contract parties without exposing its content. Also,
Kumar et al. [34] suggested a privacy-preserving scheme to
protect and prevent data leakage during the transmission
of data from/to smart contracts. This privacy-preserving
scheme involves verifying IoTs using zero-knowledge proofs.
Hewa et al. [56] utilized zero-knowledge proof to main-
tain anonymity of identities stored in blockchains. Other
privacy-preserving primitives suggested by Zhang et al. [57]
include homomorphic encryption and secure multi-party
computation. Homomorphic encryption keeps data confi-
dentiality by conducting operations on encrypted data [38],
whereas secure multi-party computation is another type of
encryption that allows parties to come together to conduct
computation on off-chain functions without disclosing their
data [15].

For Data carriers, they do not all have the same level of
privacy and data access because sensor data and events are
collected and shared among different off-chain data sources
in CPSs. Therefore, the privacy and integrity goals of data
carriers are challenging. Town Crier [68] is an approach
that provides controlled access to off-chain data provided by
different data carriers.

It is worth noting that these privacy-preserving approaches
are resource intensive in a cyber-physical smart contract envi-
ronment full of IoT devices with limited capacity.

E. LEGAL AND REGULATORY
As stated earlier in section II, a smart contract is a pro-
gram created using a programming language, such as Go,
JavaScript, or Solidity, that can independently enforce, ver-
ify and control the execution of a legal contract. However,
a smart contract may not always be considered a completely
enforceable legal contract, depending on how well it satisfies
the requirements of laws and legal standards [69]. Thus, there
could be an inconsistency between the legal contract and its
corresponding digital representation, which may affect the
codification of laws [69]. Recent research initiatives related to
this matter [20], [21], [22] aim to enable the development and
verification of legal contracts and their corresponding smart

contracts through the use of domain-specific languages with
various levels of formality.

There could also be legal issues with the data manipu-
lated by smart contracts. For example, in European countries
and in the US, people’s medical data are protected under
privacy protection regulations and governance [50], which
allows individuals to ask for their personal information to be
removed; this is the so-called ‘‘right to be forgotten’’. Such
provision conflicts directly with the immutability feature of
smart contracts that leverage blockchain technology.

In addition, the execution of smart contracts is a dynamic
process that cannot occur in isolation, as it is often influenced
by various factors and external forces [61]. These factors
involve rules and regulations (the law in a particular juris-
diction) from other contracts and external events from IoT
devices that may affect the contract’s outcome.

Thus, legal and regulatory challenges include, but are not
limited to:

• Determining which legal rules and regulations would
apply to transactions being executed in CPSC applica-
tions;

• Deciding on a strategy for the modification and dele-
tion of data from the blockchain (e.g., through access
removal or blockchain forking), as required by applica-
ble legislation;

• Determining who takes responsibility for the conse-
quences (disputes, claims, and financial penalties) when
the contract’s outcome does not align with the legal
requirements that must be met.

Collaboration among legal experts, engineers, and stake-
holders is essential to tackle the legal and regulatory aspects
of smart contracts. Such collaborative effort can help ensure
the integration of legal requirements into technical design and
implementation, as well as help guarantee code correctness,
compliance, and regulatory alignment during the deploy-
ment and execution of smart contracts. Approaches such as
formal verification and others surveyed by Wang et al. [19]
can help smart contracts become better aligned with existing
jurisdictions.

VII. DISCUSSION
This section explicitly answers the four research questions
identified in this mapping review, together with relevant
threats to the validity of our work.

A. ANSWERS TO RESEARCH QUESTIONS
The review highlights a growing interest in using CPSCs to
oversee contract execution and ensure contract compliance.
Not all reviewed approaches deployed smart contracts to
monitor legal contracts; instead, many have utilized smart
contracts to monitor and control sensor data and events and
react to violations. Here are the findings of each research
question and some insights about the conducted mapping
review:
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For RQ1 (What are the current platforms that support
the implementation of CPSCs for event-based monitoring?):
the findings of the literature review, which are reported in
section IV, demonstrate that the development, deployment,
and invocation of CPSCs involve a variety of platforms,
development tools, and data carriers. Table 3 presents a sum-
mary of the CPSC literature with architectural characteristics
themes. The centralized, decentralized, and hybrid platforms
were proposed as different CPSC approaches for compliance
monitoring. Few studies proposed and explored the hybrid
and centralized architecture for CPSCs, with most studies
using a decentralized implementation for distributed execu-
tion of smart contracts. The decentralized approach is favored
because it offers the benefits of blockchain technology, such
as transparency and immutability.

Also, the results of the review indicate that smart contract
execution and monitoring can occur on the blockchain, while
also some parts of the smart contracts may be executed off-
chain, and somemonitoring procedures may remain off-chain
as well. The prevalent method described in the literature for
enforcing compliance is to conduct monitoring outside of
smart contracts, where smart contracts can utilize feedback
from external sources to respond to monitoring outcomes.
In reality, monitoring using blockchain-based smart contracts
can be challenging due to the high cost of execution and
monitoring on the blockchain. Therefore, several approaches
proposed for storing sensor data/events and conducting mon-
itoring off-chain to reduce costs.

The literature also revealed that smart contracts are typ-
ically created manually and customized to fit the targeted
programming language and platform, making their creation
an exceedingly challenging task for developers in various
CPS fields. Finally, the proposed layered architecture of
CPSC, shown in Fig. 10, is based on a modular architecture
that may consist of several distinct components, and it is the
responsibility of the developers to remove, add, or modify
them according to the requirements of the targeted field in
CPSs.

For RQ2 (How do CPSCs produce and consume events
from/to the outside world for monitoring?): the results from
section IV show that smart contracts cannot access and mon-
itor sensor data and events from the outside world directly.
External components and technologies are needed to verify,
consume, and produce these data and events for compliance
monitoring. Tables 4 and 5, together with Figs. 9 and 10,
summarize the needed components, technologies, and com-
munication patterns for consuming and producing events.
An oracle is used as a third-party agent to check the veracity
of sensor data and events that cannot be accessed by the smart
contract or cannot be reached by the physical world. Also,
additional storage could be used as a conduit for consuming
and producing sensor data and events, e.g., a cloud envi-
ronment could store sensor data and events collected from
an oracle. Sensor data and events are either made available
to anyone to ensure transparency or are only accessible to
certain parties in order to preserve privacy. Three methods

TABLE 6. Mapping review limitations and related mitigation approaches.

are used to store sensor data and events, including storing
them directly in the blockchain, in third-party storage (off-
chain), or dividing them between the blockchain and multiple
third-party storage entities.

For RQ3 (What are current techniques for mitigating
CPSC execution failures in event-based monitoring?): the
results reported in section V show that the components and
technologies needed for supporting CPSCs could come with
multiple types of infrastructure failures. Fig. 11 summa-
rizes failure types and corresponding mitigation approaches.
Also, the existing literature focuses more on run-time
smart contract execution failures than on infrastructure fail-
ures and solutions (e.g., limitations of IoT devices). This
could be a significant barrier hindering the development of
smart contracts in CPSs. Therefore, infrastructure failures
require further research in order to better address chal-
lenges related to integrating smart contracts with CPSs in
practice.

For RQ4 (What are the main technical challenges faced
in the development of CPSCs for event-based monitoring?):
the results presented in section VI reveal that the role of
CPSCs in compliance monitoring brings multiple technical
challenges. Multiple aspects need to be considered while
making architectural decisions related to CPSCs. Important
technical challenges relate to security, availability, robust-
ness, privacy, and legal and regulatory aspects.

B. THREATS TO VALIDITY
As for any literature review, this mapping review is prone to
several limitations and threats to validity, which are listed in
Table 6 together with related mitigation strategies.
In addition, as this is a literature review, there was no

experiment-based or empirical assessment of the various
approaches discussed in the paper.
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VIII. CONCLUSION AND FUTURE OPPORTUNITIES
This paper presented the findings of a mapping review on
the use of CPSCs for compliance monitoring, with the aim
to provide insights on existing architectures, patterns, infras-
tructure failure types, and technical challenges. To our best
knowledge, this mapping review is the first literature review
focused on smart contract development for event-based mon-
itoring in cyber-physical systems.

The main conclusions of this mapping review are sum-
marized below, together with corresponding suggestions for
potential elements of solutions and future research opportu-
nities:

1) Existing research on smart contract compliance moni-
toring in CPSs is limited to the blockchain as a dom-
inant execution environment with back-end storage
and a mediator for transferring sensor data and events
because this architecture maintains secure, immutable,
and redundant storage. In the future, research should
be extended to cover other approaches to overcome
the limitation of blockchains in terms of cost, speed,
and power usage. For example, off-chain execution
could be used as an alternative approach to blockchain
for executing smart contracts [61], [69]. This strat-
egy requires shifting data and/or smart contracts ‘‘off’’
the blockchain and to a different platform that per-
forms better in terms of execution speed, storage,
regulatory compliance, and so on. This approach can
decrease blockchain costs and provide better scalability
by improving transaction processing times and stor-
age [61]. Off-chain execution, however, may jeopardize
some of the benefits of security and transparency that
come with using blockchain [61]. Another option to
explore could involve Directed Acyclic Graph based
Distributed Ledgers, which offer better scalability than
blockchain at the expense of more limited security due
to the absence of consensus algorithms [48].

2) Regarding the lack of trusted data carriers, external
data and events from the physical world are neces-
sary for smart contracts execution and monitoring. The
connection between the cyber and physical worlds is
made possible by reliable data carriers (e.g., oracles) to
verify the data generated by physical components and
deliver them to smart contracts. However, the trustwor-
thiness and security of data carriers are seen as major
impediments to the use of smart contracts within CPSs.
Therefore, a robust ecosystem of reliable data carriers
is necessary to improve the implementation of CPSCs.
Many potential solutions could be utilized to estab-
lish a robust ecosystem to ensure the accuracy of data
and events that are roaming around several physical
and cyber components in various CPSC applications,
including but not limited to:

• Data Provenance: Tracking the source of data,
including its origin, usage, and history can help
minimize data tampering. Blockchain provides an
immutable data record where data origins can

be traceable to ensure data accuracy and consis-
tency [51].

• Data Protection: Taking necessary privacy and
security measures to protect the shared ecosys-
tem’s data and events is also something to be
considered. This involves applying measures such
as preventing unauthorized access or other privacy
and security practices described in section VI of
this paper.

• Data Standardization: The use of standardized
data formats would also facilitate the sharing of
data and events while supporting interoperability
amongst the smart contract and other systems [61].

3) Few studies have focused on monitoring infrastruc-
ture failures; instead, most studies have focused on
failures related to the execution of smart contracts.
There is a need to extend the research on infrastruc-
ture failures of CPSs due to the increased adoption of
IoT, cloud, and other technologies, which is crucial
for the accurate and reliable monitoring and execu-
tion of smart contracts. As mentioned previously in
section V, hardware failures can occur with actua-
tors/sensors for a variety of reasons (e.g., attacks,
damages, or degradation [9]), potentially resulting in
major data loss. Potential solutions aiming to reduce
the impact of hardware failures could involve the use
of IoT/DLT integration that supports redundancy, e.g.,
distributing multiple actuators/sensors across various
nodes such that if one fails, another can take over the
task. Such solutions can help prevent single points of
failure [9].

4) For compliance monitoring, existing studies have often
used an extra layer in the monitoring architecture
between smart contracts and the external world, where
usually the monitoring happens outside the smart
contracts. Also, based on the monitoring decision,
a suitable function within the SC will be called. There
is however a need for a reference monitoring model
of generated data and events to identify and deal with
them efficiently.

5) The body of smart contract functions is often coded
manually using languages such as Solidity, JavaScript,
Go, and Java. There is no method for directly convert-
ing a real contract into an enforceable smart contract,
which further increases the complexity of adopting
smart contracts in other CPS areas. There has been
some research on this matter, such as the use of
domain-specific languages, template-based code gen-
erators, and verification. Template-based code genera-
tors provide templates to assist developers in creating
smart contracts efficiently. These templates consist of
predefined common smart contract constructs code,
as proposed by Hamdaqa et al. [21]. Domain-specific
languages can also represent a potential solution [20],
[22], [70]. By using domain-specific languages,
developers can use domain concepts, rules, and
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high-level coding abstractions related to contracts,
which can simplify the process of creating smart con-
tracts, hence reducing coding errors, development time,
and overall complexity. Such languages can hence help
address some of the challenges discussed in our review.
Verification is another potential solution to address
the complexity of coding smart contracts [19]. This
usually involves the use of (formal) verification meth-
ods to ensure that a smart contract complies with its
intended specification (including legal obligations) and
can prevent vulnerabilities. These solutions have their
own challenges in terms of additional time and domain
expertise needed to exploit them properly [20], [21].

6) Common CPSC challenges related to availability,
robustness, privacy, and legal and regulatory aspects
have not been investigated extensively yet, which again
provides many opportunities for further research.
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