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ABSTRACT The clinical application of a real-time artificial intelligence (AI) image processing system
to diagnose upper gastrointestinal (GI) malignancies remains an experimental research and engineering
problem. Understanding these commonly used technical techniques is required to appreciate the scientific
quality and novelty of AI studies. Clinicians frequently lack this technical background, and AI experts may
be unaware of such clinical relevance and implications in daily practice. As a result, there is a growing need
for a multidisciplinary, international assessment of how to conduct high-quality AI research in upper GI
malignancy detection. This research will help endoscopists build approaches or models to increase diagnosis
accuracy for upper GI malignancies despite variances in experience, education, personnel, and resources,
as it offers real-time and retrospective chances to improve upper GI malignancy diagnosis and screening.
This comprehensive review sheds light on potential enhancements to computer-aided diagnostic (CAD)
systems for GI endoscopy. The survey includes 65 studies on automatic upper GI malignancy diagnosis
and evaluation, which are compared by endoscopic modalities, image counts, models, validation methods,
and results. The main goal of this research is to assess and compare each AI method’s current stage and
potential improvement to boost performance, maturity, and the possibility to open new research areas for the
application of a real-timeAI image recognition system that diagnoses upper GImalignancies. The findings of
this study suggest that Support Vector Machines (SVM) are frequently utilized in gastrointestinal (GI) image
processing within the context of machine learning (ML). Moreover, the analysis reveals that CNN-based
supervised learning object detection models are widely employed in GI image analysis within the deep
learning (DL) context. The results of this study also suggest that RGB is the most commonly used image
modality for GI analysis, with color playing a vital role in detecting bleeding locations. Researchers rely on
public datasets from 2018-2019 to developAI systems, but combining them is challenging due to their unique
classes. To overcome the problem of insufficient data to train a new DL model, a standardized database is
needed to hold different datasets for the development of AI-based GI endoscopy systems.
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LIST OF ABBREVIATIONS
Acc Accuracy.
AI Artificial Intelligence.
AUC Area Under Curve.
BE Barrett’s Esophagus.
CAD Computer-Aided Diagnostic.
CAG Chronic Atrophic Gastritis.
CLBP Complete Local Binary Pattern.
CNN Convolutional Neural Network.
DL Deep Learning.
DSC DICE Score.
EAC Esophageal Adeno-Carcinoma.
ESCC Esophageal Squamous Cell Carcinoma.
F1 F1 Score.
FL Fluorescence Endoscopy.
FPR False Positive Ratio.
GA Genetic Algorithm.
GAC Gastric Adeno-Carcinoma.
GI Gastrointestinal.
GIM Gastric Intestinal Metaplasia.
HAF Hybrid Adaptive Filtering.
HC Handcrafted.
Hp Helicobacter Pylori.
IM Intestinal Metaplasia.
IoU Intersection Over Union.
KAP Cohen’s Kappa Score.
KNN K-Nearest Neighbor.
LLC Locality-Constrained Linear Coding.
ML Machine Learning.
MLP Multi-Layer Perceptron.
NBI Narrow Band Imaging.
NPV Negative Predictive Value.
PPV Positive Predictive Value.
Prec Precision.
R Recall.
Sen Sensitivity.
Spec Specificity.
SSD Single Shot Multibox Detection.
SVM Support Vector Machine.
UC Ulcerative Colitis.
WCE Wireless Capsule Endoscopy.
WLE White Light Endoscopy.
WLI White Light Imaging.

I. INTRODUCTION
The most prevalent cancers found throughout the world
are those that affect the upper gastrointestinal (GI) system.
These forms of cancers include esophageal and gastric malig-
nancies. In contrast to colon polyps, the morphology of
upper GI abnormalities can vary greatly, which presents a
problem for upper GI endoscopy. In addition, the pathophys-
iology is distinct in Asia, Europe, and North America. For
instance, neoplasia associated with Barrett’s esophagus is

more common in Europe and North America than in Asia,
where squamous neoplasia is more common. Despite these
differences, the development of artificial intelligence (AI) for
real-time GI endoscopy has made significant progress, and
this review article represents a significant step forward in that
evolution.

Although AI platforms powered by deep learning (DL)
algorithms are making tremendous progress in the medical
imaging field, there has been little success in applying them to
diagnose upper GI malignancies. Therefore, while AI appli-
cation in medicine is causing significant excitement within
the medical community, there is also ambiguity and worry
surrounding this topic. Researchers seek a global uniform
methodology for creating and validating such AI systems,
ensuring various peoples and diseases are represented during
the design, development, validation, and testing phases of a
GI AI diagnostic system. It is, therefore, necessary to assist
individuals during the design and validation process of a GI
AI diagnostic system. This system will use machine learning
(ML) and DL to analyze images obtained from clinical endo-
scopies to identify upper GI malignancies. The contributions
of these systems should hold the confidence of both medical
practitioners and patients.

The information presented in this paper is expected to
assist further non-expert endoscopists who practice in pri-
mary, essential, or low-volume hospitals in developing a
method or model to achieve diagnostic accuracy for upper
GI malignancies comparable to that of expert endoscopists.
This paper will provide both real-time and retrospective
opportunities for all providers to improve the efficiency
of diagnosing and screening for upper GI malignancies.
This work includes a comprehensive survey that discusses
advances in computer-aided diagnosis (CAD) systems in
several endoscopy modalities that are used for GI exami-
nation. These endoscopy modalities include the following:
(I) white light endoscopy (WLE), (II) high-definition white
light endoscopy (HD-WLE), and (III) narrow band imaging
(NBI). The survey comprises 65 papers on the automatic
detection and evaluation of upper GI malignancies. These
papers are compared by their endoscopy modalities, number
of images, and models applied to the problems, validation
methods, and results. The primary objective is to provide a
comparative analysis of present methods to open avenues for
future research in this field.

The database was searched using the terms ‘‘artificial
intelligence’’, ‘‘AI’’, ‘‘machine learning’’, ‘‘deep learning’’,
‘‘capsule endoscopy’’, ‘‘upper gastrointestinal’’, ‘‘capsule
endoscope’’, ‘‘machine intelligence’’, ‘‘computational intel-
ligence’’, ‘‘image recognition’’, and ‘‘convolutional neural
network’’ as well as similar terms for capsule endoscopy,
such as ‘‘wireless capsule endoscopy’’, ‘‘video capsule
endoscopy’’, ‘‘gastrointestinal diagnosis’’, ‘‘esophageal and
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gastroduodenal endoscopy’’, ‘‘neoplasia’’, ‘‘Barrett’s esoph-
agus’’, ‘‘esophagitis’’, ‘‘gastro-esophageal’’, ‘‘ulcer detec-
tion’’, ‘‘bleeding detection’’, ‘‘gastric cancer’’, ‘‘Heli-
cobacter pylori infection’’, ‘‘upper gastrointestinal cancer’’,
‘‘esophageal cancer’’, and ‘‘gastric cancer’’ to find publica-
tions on AI-based endoscopy diagnostic systems for upper GI
malignancies from January 1, 2015 to March 31, 2022. The
search for information in the scientific literature yields few
results. Due to the retrospective nature of the studies, their
concentration on a single disease, their small sample size,
and their lack of validation, definitive conclusions regarding
the clinical applicability and reliability of an AI-assisted
endoscopic diagnosis remain uncertain. This is the case
even though there have been some encouraging preliminary
reports. The clinical application of a real-time AI image
recognition system to diagnose upper GI malignancies has
thought to be experimental up until this point.

The focus of this survey is to give a comprehensive
overview of the approaches that have been recently devel-
oped and utilized for identifying upper GI malignancies,
such as tumors, polyps, and ulcers, using wireless cap-
sule endoscopy (WCE) as the only source. In particular,
generalized anomalies detected in WCE images, primarily
bleeding/lesion detection, are presented to circumvent the
knowledge constraints. Bleeding is one of the most critical
problems that should be detected in WCE, because it is one
of the most common complications associated withWCE [1].
Because bleeding in the GI tract is typically the result of
one or more illnesses, using WCE images to diagnose var-
ious types of GI bleeding has recently attracted substantial
attention. This issue is the subject of a significant number of
research articles [2], [3], [4], [5], [6], [7], [8], [9], [10]. How-
ever, there are new hurdles associated with WCE technology
for clinicians to overcome in order to detect bleeding in
patients. Given that the WCE creates 55,000 images for each
examination, it is highly laborious for doctors to manually
scan these images frame by frame to identify and discover
those that show bleeding. In addition, the images that capture
GI tract anomalies make up fewer than five percent of the
total number of images theWCE collects. Additionally, some
bleeding regions might not be visible to the human eye at all
because of inconsistent lighting. As a result, it is ultimately
essential to develop an automatic computer-aided system that
assists doctors in detecting and analyzing bleeding images.
In the following sections, the technique utilized in the evalu-
ation of the cited articles as well as somemedical background
information pertaining to the disease, will be presented.

The remaining parts of the paper are structured as
described below. In Section II, the problem definitions and
motivation for abnormality identification in WCE images
are discussed. In Section III, the overall process used for
this systematic mapping study is illustrated. Following this
process, Section IV summarizes a selection of recent research
articles that are pertinent to WCE imaging. This section will
also attempt to explain and address numerous concerns that
have arisen regarding the use of ML and DL approaches in

GI image analysis within the literature that has been cited
in this review. A tabular form is used to display information
regarding each method’s performance for the detection of
relevant anomalies. In Section V, the findings of the empir-
ical benchmark used to evaluate current state-of-the-art DL
models for GI image processing are presented. In addition,
this section offers a summary and conclusion of the presented
survey and identifies potential areas for improvement.

II. PROBLEM DEFINITIONS AND MOTIVATIONS
Numerous abnormalities in the mucosal lining of the GI
tract, ranging fromminor irritations to life-threatening condi-
tions, can occur. According to theWorld Health Organization
(WHO)’s specialized cancer agency, the International Agency
for Research on Cancer, GI cancers account for approxi-
mately 3.6 million new cases worldwide each year [11], and
1.6 million cases are related to stomach and esophagus can-
cers. Approximately 2.7 million people die yearly from these
cancers, with around 1.3 million deaths related to stomach
and esophagus cancers (Figure 1).

Due to technical advances in healthcare practices and
greater research access to vast medical databases, the diag-
nosis and treatment of many diseases have improved. The
incorporation of new technologies into clinical practice may
be a crucial component. Early identification of GI cancers
could greatly enhance survival rates to as high as 90% [12].
Endoscopy is the most effective method for detecting and
diagnosing GI cancers. However, the detection accuracy
depends on the skill of the endoscopists and is hindered by
a variety of GI variables. This investigation is deemed crucial
for reducing GI cancer incidences and deaths.

After each endoscopy, gastroenterologists should produce
endoscopic procedure reports, which are an important part
of their work. Minimal Standard for Reporting (MSR) and
Minimal Standard Terminology (MST) are recommended by
the World Endoscopy Organization (WEO) [13]. Although
endoscopy is now the gold standard for inspecting the GI
tract, the diversity in operator performance significantly lim-
its its effectiveness. In order to avoid GI disease-related
morbidity and death, enhanced endoscopic performance,
high-quality clinical examinations, and systematic screening
are essential. As AI-enabled support systems have emerged,
they have shown promise in providing healthcare personnel
with the tools they need to offer high-quality care on an
industrial-scale basis.

AI has recently garnered significant interest in various
medical sectors. The advancement of AI techniques, such
as ML and DL, has expanded medical imaging analysis
capabilities. Endoscopists have long focused on prevent-
ing GI cancers by screening endoscopy, and they have
recently turned their attention to AI applications in capsule
endoscopy. As a result, newer endoscopic procedures, like
capsule endoscopy, provide advantages that may overcome
some limitations of standard upper GI endoscopy. Capsule
endoscopy is a painless, non-invasive treatment that is widely
used. However, wireless capsule endoscopy analysis is a
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FIGURE 1. All cancer fact sheets - WHO; Data source - GLOBOCAN 2020 [11].

laborious and time-consuming task, and the output generated
should be adapted to the perceptual quality of physicians so
that diseases can be diagnosed promptly.

ML and DL models, as well as the datasets utilized in
GI categorization and detection, are examined in this work.
The research problems addressed in this paper include the
following:

1) Q1: Which ML models perform most effectively?
ML models are compared based on their performance.
The performance metrics used in this work are also
listed.

2) Q2: Which DL models perform most effectively?
DL models are compared based on their performance.
The performance metrics used in this work are also
listed.

3) Q3: What is the most commonly used modality for GI
classification?
The most common image modality contributing to GI
classification and detection is observed.

4) Q4: What datasets are available for GI classification?
All public datasets for GI endoscopy are listed and
discussed.

Q1 is addressed in Section IV-B, Q2 is addressed in
Section IV-C, while Q3 is observed in both Section IV-B and
Section IV-C. Section IV-E is devoted to answer Q4.

III. METHOD
Since their introduction to the medical community in the
late 1970s, systematic reviews have become more prevalent.
Systematic reviews have a special place in the medical com-
munity and are a useful tool for both academic research and
clinical practice. They reveal information on knowledge gaps,
which helps form the foundation for establishing practice
standards and also drives the direction of future research
projects. Well-written systematic reviews provide an effi-
cient approach to assessing massive amounts of information.

Before the review process starts, it is important to decide
on the premise for conducting a systematic review and the
methodology that will be employed.

A solid systematic review attempts to reduce bias and
random error by summarizing the results of various pri-
mary research papers on a subject [14], [15]. A systematic
review must meet three principles: explicit, rigorous, and
replicable. These principles have endured the test of time
and can be found in previous works that describe system-
atic review techniques. As a result, it is crucial to adhere
to the already accepted published technique. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Statement, or PRISMA Statement, is the most widely used
reporting guideline for systematic reviews that address the
literature review and search component [16], [17]. As a result,
we decided to conduct this systematic review in accordance
with the PRISMA guideline [15], [16], [17].

Typically, a systematic review starts with a specifically
stated reflective research hypothesis or question. The inclu-
sion and exclusion criteria for studies can be established after
the research question has been created. The next procedure
is conducting the comprehensive search by following these
steps:

1) Determine in advance which databases and specific
terms will be used to search in each database’s key-
words, title, and abstract fields.

2) Scour all suitable databases using the keywords and
index terms from this literature search.

3) Investigate the references in the research found in the
previous phases to broaden the search.

A. LITERATURE SEARCH STRATEGY AND IDEA VALIDATION
The literature search is essential to a systematic review [15].
The process of doing a literature search, also known as
information retrieval, not only influences the findings of a
systematic review but also establishes the data that may be
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TABLE 1. The significance of this review article compared to other review articles.

FIGURE 2. The systematic review procedure by following PRISMA
guideline [16], [17].

used for analysis. This section presents how this process is
conducted. By adhering to several practices outlined in [18],
the search strategy and requirements are defined for this
study’s selection and exclusion. First, publications that have
been published between January 2015 and March 2022 are
taken into account. An automatic search is utilized in the four

large databases available, Scopus, Web of Science, Pubmed,
and MEDLINE, to retrieve relevant publications that have
been published as journal articles or conference papers. The
keywords extracted from several papers are the basis of the
following search criteria.

(machine learning OR deep learning OR artificial
intelligence OR machine intelligence OR
computational intelligence OR image recognition
OR convolutional neural network)
AND
(wireless capsule endoscopy OR video capsule
endoscopy OR gastrointestinal diagnosis OR
esophageal OR gastroduodenal endoscopy OR
cancer OR carcinoma OR neoplasia OR Barrett’s
esophagus OR esophagitis OR gastro-esophageal
OR ulcer detection OR bleeding detection OR
motility disorder OR gastric cancer OR helicobacter
pylori infection)

B. INCLUSION AND EXCLUSION CRITERIA
After the search phase, a number of publications are obtained
that require additional screening. Table 2 shows the criteria
for the inclusion and exclusion of all searched publications.
Publications that meet the inclusion criteria should be pub-
lished as journal articles, written in English, and discuss
ML and DL techniques that utilize WCE to detect lesions
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TABLE 2. Set of inclusion and exclusion specifications for pertinent papers.

FIGURE 3. Publication growth from January 2015 to March 2022.

in the upper GI tract. In contrast, papers considered gray
literature are not included in the final selection. In addition,
papers written in languages other than English and papers that
discuss the broader topic of lesion detection are excluded.
Following the screening phase, 65 publications are finally
considered for further analysis.

IV. RESULTS AND DISCUSSION
This section formally explains the methods used to clas-
sify WCE images for detecting various malignancies.
The following section also includes a comparison of the
methods that have been utilized for each malignancy
classification.

A. RESEARCH TRENDS AND PUBLICATION VENUES
Figure 3 depicts the number of studies conducted throughout
the period from January 2015 to March 2022 that is under
consideration. Evidently, at least two studies on applying ML
and DL algorithms to detect lesions in the upper GI tract have
been conducted during this period. According to the trend,
there has been an increased interest in employing ML and
DL in the purview of lesion detection. The results reveal that
there has been a significant surge in interest in ML and DL
algorithms in 2019.

Table 3 summarizes the papers chosen for final inclusion
(i.e., 65 studies) and the venues in which they are published.
The table also recapitulates the distribution of the studies

with respect to publication locations, publication types (either
journals or conference proceedings), the number of corre-
sponding studies, and relative fraction of total studies. Two
recent journal performance metrics, CiteScore and Impact
Factor from Scopus and Web of Science, respectively, are
listed as well. Forty-four different publication sites exist in
which the vast majority of papers have been published in
the IEEE International Symposium on Biomedical Imag-
ing (five papers). Other essential publication sites are the
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society and Computers in Biology
and Medicine, each of which published four papers. The
top venues on this application domain in terms of Impact
Factor metric are The Lancet Oncology, followed by The
Lancet Digital Health, eBioMedicine, IEEE Transactions on
Medical Imaging, and GI Endoscopy. Among these journals,
however, only GI endoscopy published more publications
(three papers) throughout the publication period (January
2015-March 2022).

B. SELECTED STUDIES THAT EMPLOY MACHINE
LEARNING (ML) TECHNIQUES
In recent years, a proliferation of AI-based applications has
rapidly transformed our work and life. AI can be defined
as the creation and implementation of computer algorithms
capable of performing activities that would otherwise neces-
sarily involve the use of human intelligence. ML is a form
of AI in which an algorithm uses input raw data to analyze
features in a separate dataset and then produces a classified
output as required. One of the most common uses of ML in
medicine is image detection and classification. A training set
of images containing the appropriate categories is used to
train the system, resulting in better performance and fewer
errors in traditional ML. The system’s performance is tested
using an independent set of images after a series of training
sequences. Algorithms like support vector machine (SVM)
and multi-layer perceptron (MLP) are common in traditional
ML. Table 4 summarizes the findings of some studies that
have used ML to help in GI diagnosis.

As presented in Table 4, SVM is widely used in GI image
analysis. Sixteen papers apply SVM, while the other eight
papers apply MLP, KNN, and random forest. According to
investigated papers, the performance of SVM for detecting
bleeding has a range of around 0.87 - 0.98 in terms of accu-
racy, 0.85 - 0.98 in terms of sensitivity, and 0.93 - 0.98 in
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TABLE 3. Recapitulation of the selected studies according to their publication venues.

terms of specificity. The results from the studies on KNN
process indicate competitive performance with accuracy of
0.96 - 0.99, sensitivity of 0.92-0.99, and specificity of 0.96
- 0.99. All ML models use the standard RGB image modal-
ities from private sources. Therefore, it is difficult to have
an objective comparison for their performance. The major
disadvantage of these conventional and handcrafted systems
is the requirement to design and engineer a system for a
specific task.

C. SELECTED STUDIES THAT EMPLOY DEEP LEARNING
(DL) TECHNIQUES
DL and ML are instances of AI. Neural networks with
many hidden layers are known as DL architectures. In recent
years, the state-of-the-art performances of deep convolutional
neural networks (DCNNs) have led to DL methods being
recognized as the most sophisticated AI techniques. Image
and video detection and classification are two domains where
DL has been showing promising results and has become
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TABLE 4. Classification of selected studies based on ML detection techniques and other relevant features between January 2015 and March 2020.

increasingly popular. Because of the significant progress
made in the image and video detection on large-scale anno-
tated training sets, image and video recognition technologies
are now being developed for use in various fields, includ-
ing the medical field. Therefore, recent advances in medical
image analysis have included DL techniques. These methods
are typically classified into supervised learning and unsu-
pervised learning. DL architectures usually employed in GI
image analysis are trained with labeled data in a supervised
setting. As presented in Table 5 and Table 6, almost all the
literature related to deep neural networks (DNNs) used in GI
image analysis is based on CNN (supervised learning), while
only six papers apply other networks such as artificial neural
network (ANN) and DNN.

Currently, detection by DL methods is a common task in
GI image analysis. There are two object detection methods
based on CNNs: single shot multibox detection (SSD) [43],
[44], [45] and mask region-based CNN (Mask RCNN) [46],
[47]. Both are popularly used in GI image analysis. The SSD
method transforms object detection into an end-to-end target
detection for regression problems. Mask RCNN combines
region proposal algorithms and CNN classification. Addi-
tionally, generative adversarial network (GAN) [48], [49],
which is an unsupervised architecture, also holds promise
for GI image analysis. GAN is composed of two simultane-
ously trained and competing models: a generative model G
that captures data distribution and a discriminative model D
that estimates the probability that a sample comes from the
training data rather than G. During the training procedure,
G tries to maximize the probability of D making mistakes.

This model is also described as a minimax two-player game.
At the end, there is a unique solution: G recovers the training
data distribution, and D equalizes to 0.5 everywhere. Both
models, G and D, can be trained with backpropagation.

Training DNN from scratch requires large quantities of
labeled data. The training and optimizing process of the net-
work is usually very time-consuming. Collecting the required
large number of GI images and having those images expertly
annotated presents fundamental challenges, as label errors
increase as experts become more fatigued. Hence, most GI
image analysis tasks based on DL methods adopt a transfer
learning approach [50], [51], [52], [53], which can reduce
DNN’s need for training data. In transfer learning, the model
trained on a large image dataset, like ImageNet, is called the
pre-trained model.

One transfer learning method is related to the feature
extractor. The CNN layers of the pre-trained model are used
as a feature extractor, and the fully connected layers of the
pre-trained model replace the traditional classifier, like a
linear classifier SVM. The GI image analysis tasks with
small samples usually choose this transfer learning method.
Another transfer learning method is the so-called fine-tuning.
The input layer of the pre-trained model is replaced and
trained by new data. One can fine-tune several or all layers
of the pre-trained model. Typically, the previous DNN layers
extract the images’ generic features, such as edges and colors,
which are useful for many tasks. The latter layers extract
features related to a particular task, so the fine-tuning method
often only fine-tunes the latter layers. The other transfer
learning method is parameter sharing. The parameters of
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pre-trained DNN are loaded as the initialization parameters
and trained with new data again, which can speed up the
training process. The newly trained model shares the same
network and parameters as the pre-trained model. This trans-
fer learning method usually requires large training datasets.

D. SELECTED STUDIES BASED ON TYPES OF DISEASES
The stomach, which is located between the esophagus and
the duodenum, is a vital component of the digestive system.
The stomach is placed within the abdomen, between the
cardiac and pyloric orifices of the GI system, and is covered
by and connected to other organs by the peritoneum [86],
[87]. Its principal role is to facilitate the mechanical and
chemical assimilation of food that enters the stomach via
the pharyngeal hole. In addition to processing, this organ is
also involved in digestion and plays a vital role in regulating
emission and motility in linked organs. Some of the most
anatomically significant stomach sections are depicted in four
major regions of the stomach: the cardia, fundus, body, and
pyloric sections. The cardia covers the cardiovascular hole,
which connects the throat to the stomach. The fundus, which
is located in comparison to the flat plane of the cardiovascular
entrance, is the most prominent expansion of the stomach.
The most important part of the organ is the corpus or gastric
body. The final segment of the stomach is the pyloric portion,
which empties its contents into the duodenum. In addition, the
pylorus is divided into two distinct zones: the pyloric antrum,
which is connected to the stomach, and the pyloric channel,
which is connected to the duodenum [87]. The stomach is
primarily J-shaped, with two additional bends. The more
elongated and elevated bend on the left side of the stomach
is the cardiovascular indent, which is framed between the
esophageal border and the fundus. The more limited inward
bend contains a small notch called the angular incisures,
which marks the line of intersection between the pyloric
portion of the stomach and the rest of the body. Indications for
the use of wireless capsule endoscopy have evolved over the
years, with some becoming clear and well-established over
time, while others have recently come to light and require
additional verification.

1) GI bleeding.
2) Crohn’s disease.
3) Small bowel tumor.
4) Surveillance of polyps.
5) Evaluation of abnormal small bowel imaging.
6) Barrett’s esophagus (BE) and early esophageal adeno-

carcinoma (EAC)
7) Celiac disease.
8) Detection of Helicobacter pylori (Hp) infection and

hookworm.
9) Gastric intestinal metaplasia (GIM).

Wireless capsule endoscopy is user-friendly for viewing the
small intestine in high resolutions. There are a few prelimi-
nary findings on the use of video capsule endoscopy to detect
celiac disease. The major and most evaluated indication

for capsule endoscopy is GI bleeding. Patients with cryptic
bleeding, probable small intestinal tumors, polyposis syn-
dromes, Crohn’s disease, hookworm, severe celiac disease,
ulcer, and Helicobacter pylori illness, are currently evaluated
by capsule endoscopy [88]. With an 8-fold magnification
lens optical system, video capsule endoscopy may achieve
a magnification similar to dissection microscopy, allowing
it to examine the small intestinal villous structure in detail.
In accordance with GI anatomy and the diagnostic purposes
of WCE [88], [89], this subsection discusses the application
of ML and DL to four major types of GI malignancies or
diseases [90], as shown in Figure 4.

1) AI APPLICATION FOR GI BLEEDING
Any internal bleeding within the GI tract must be identified
quickly. On the other hand, WCE generates many images,
each of which has a varied brightness quality dependent upon
position. This variationmakes diagnosis more challenging for
clinicians. Because bleeding within the GI tract can result in
other potentially life-threatening conditions, including can-
cers, polyps, and ulcers, it is necessary to develop methods to
diagnose bleeding within WCE efficiently.

To address this challenge, several methods have been pro-
posed. Fewmethods involving a saliency map to extract color
and textural information have been offered to locate bleeding
within a frame of WCE images [19], [28]. The saliency map
is derived from the physicians’ perspective, and bleeding
patterns emerge as red hues that differ from the normal col-
ors perspective in the second stage. The saliency extraction
method divides images into saliency areas and non-saliency
regions; hence, these six features are individually extracted
from saliency and non-saliency regions and concatenated to
represent the WCE image’s information. Following the rep-
resentation ofWCE images as twelve features. This approach
yields promising results, with SVM achieving a classification
performance of 0.96, 0.98, and 0.93 for accuracy, sensitivity,
and specificity, respectively [19].

On the other hand, Charfi and Ansari [25] presents a
simpler method by using a color-based segmentation in
the HSV color space and utilizing color histograms, local
binary patterns, and SVM. They proved with fewer or lim-
ited features; their techniques obtained promising results,
with sensitivity, specificity, and accuracy of 0.96, 0.93, and
0.94, respectively. Another idea for limited features is pro-
posed by Suman et al. [27]. It is worth noting that their
approach certainly exhibits a highly promising performance
in detecting bleeding within WCE images. By employing
automated removal processing of dark and light blocks fol-
lowed by image enhancement and subsequently utilizing
SVM to detect bleeding, the method yields an impressive
accuracy score of 0.97, a specificity of 0.95, and a sensitivity
of 0.97.

In an effort to further enhance the accuracy of detecting
bleeding areas inWCE frames, Deeba et al. [29] proposed the
use of two improved SVM classifiers based on the RGB and
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TABLE 5. Classification of selected studies based on DL detection techniques and other relevant features between August 2016 and October 2019.

TABLE 6. Classification of selected studies based on DL detection techniques and other relevant features between November 2019 and March 2022.

HSV color spaces. The classifiers are based on the RGB and
HSV color spaces. The image regions are defined using statis-
tical features taken from the first-order histogram probability

of the corresponding color channels. Although their method
exhibits an average accuracy of 0.95, a sensitivity of 0.94,
and a specificity of 0.95, it falls slightly short compared to
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FIGURE 4. GI malignancy detection in WCE.

the performance of Suman et al. [27]’s method. Nonetheless,
these studies offer valuable insights into the development of
efficient methods for detecting bleeding within WCE images
with limited features.

Another interesting idea for GI bleeding detection is pro-
posed by Yuan et al. [24]. They offer a different approach
by using an extension of the Bag of Words method and
define WCE images as word-based color histograms. They
use the word-based color histograms and K-means cluster-
ing approach on pixel images to generate cluster centers.
Next, they use SVM and KNN algorithms to determine the
state of a WCE frame. In contrast, Ghosh et al. [30] proposes
using color histograms of block statistics (CHOBS) by uti-
lizing block-based local feature extraction from each color
RGB plane, leading to superior feature representation. The
extracted features’ dimensionality is reduced by using two
stages of feature reduction: histogram pattern and PCA. KNN
classifier is then used to determine the state of a WCE frame.

In summary, various methods inML have been proposed to
locate bleeding within Wireless Capsule Endoscopy (WCE)
images. These methods utilize color and textural informa-
tion extracted from multiple color spaces, including RGB,

CIELAB, CIEXYZ, YUV, YIQ, CMYK, HSV, and HSI [19],
[24], [25], [30]. Selecting the right color space is essential
for WCE picture salient region extraction. Bleeding frame
detection is also affected by this setting. These methods also
employ a variety of classifiers, including SVM, KNN, Fisher
score tests, and neural networks, for bleeding classification
regions [19], [24], [25], [27], [28], [30], [54]. Addition-
ally, Gabor filters, local binary patterns, haralick, color
histograms, and feature reduction methods, such as PCA, are
used to enhance the detection of bleeding regions [25], [30],
[54]. Notably, the RGB color space has been found to be the
optimal color space for bleeding detection in GI diagnosis,
and the combination of SVM, KNN, and PCA achieves the
best results. The best result of the proposed methods achieves
0.98 accuracy, 0.99 sensitivity, 0.99 specificity in the case of
bleeding frame detection, and 0.96 precision in the case of
bleeding zone detection [24], [30]. Furthermore, it has been
found thatMLmodels with fewer features perform better than
models with more complex features [19], [25], [27], [29].

One significant breakthrough in the field is the introduction
of a computerized bleeding detection approach at the pixel
level, combined with the MapReduce framework [22]. This
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method comprises two stages: bleeding frame identification
and region segmentation. K-means clustering algorithm and
SVM are used to retrieve accurate bleeding frames, and
DBSCAN is utilized to identify bleeding locations quickly.
Finally, the MapReduce framework rewrites the entire work-
flow in distributed computing to speed up the discrimination
process without sacrificing detection accuracy. This method
achieves an accuracy of 0.97, a precision of 0.99, and an F1
score of 0.98. Another breakthrough is the use of transform
color domains instead of RGB for pixel-based holistic feature
extraction to improve bleeding frame detection in WCE [31].
Higher and lower-order statistical analyses are carried out
on composite color domains to derive WCE picture features,
resulting in very competitive results with an accuracy of 0.97,
sensitivity of 0.97, and specificity of 0.98. Their research
open-up new directions to improve GI bleeding detection
using the transform color method instead of using raw RGB
information.

Recently, with the rapid development of DL, researchers
proposed several models based on CNNs to distinguish bleed-
ing and non-bleeding WCE images through V-GAN [49],
semantic segmentationmethod known as SegNet [62], U-Net,
TernausNet, and AlbuNet34 [64] as well as transfer learn-
ing with pre-trained AlexNet [80]. Surprisingly, the optimal
color space for these models has been shown to be Hue,
saturation, and value (HSV) instead of RGB. However, the
results demonstrate that the performance of DL models is
inferior to that of the ML models for GI bleeding detec-
tion. Their results show a global accuracy in the range of
0.83-0.94 and an intersection over union (IoU) in the range
of 0.75-0.91.

Therefore, to overcome this limitation, researchers devised
an idea for a new framework by combining ML and DL
models together [57], [58], [68], [70]. Jia and Meng [57],
[58] describes a new approach to WCE bleeding detection
that incorporates both handcrafted (HC) and CNN features.
The framework has several stages: feature extraction, feature
integration, and classification. In the feature extraction stage,
the input frame is processed for both CNN-derived and HC
features. Next, both results from the feature extraction stage
are merged with a specified technique. The classification
stage uses the combined feature vector as an input. A softmax
classifier is used to make the final decision. Their proposed
method of integrating handcrafted and CNN features achieves
remarkable improvements compared to DL models alone,
with an accuracy range of 0.95-0.99, an AUC score above
0.97, an IoU score of 0.98, and an F1 score of 0.93. This
breakthrough provides new insights for the future develop-
ment of GI bleeding detection [57], [58], [68], [70].

2) AI APPLICATION FOR ULCER, GASTRIC INTESTINAL
METAPLASIA (GIM) AND HELICOBACTER PYLORI (Hp)
Ulcers are a prevalent medical condition that affects a large
number of people around the world, and early detection and
treatment can substantially improve the outcome for patients.
AI have the potential to enhance the accuracy and efficiency

of ulcer detection, which could result in earlier diagnosis and
better treatment outcomes for patients. Several ML methods
have been proposed to detect ulcers from WCE images by
utilizing saliency map, Locality-constrained Linear Coding
(LLC), K-means, Complete Local Binary Pattern (CLBP),
and Global Local Oriented Edge Magnitude Pattern (Global
LOEMP). Their best performance achieves an accuracy score
in the range of 0.80-0.94 and specificity in the range of 0.91-
0.94 in the experiments [20], [26], [28].

In recent years, there has been rapid development in deep
learning, and researchers have been using these methods to
develop new ulcer detection models. The use of deep learning
models for ulcer detection has yielded remarkable results,
with various studies showcasing the superior performance
of different models such as AlexNet, GoogLeNet, VGG19,
RetinaNet, ResNet, Mask-RCNN, and Xception CNN [65],
[69], [74], [75], [82]. These models have demonstrated high
accuracy, sensitivity, and specificity in detecting and classi-
fying ulcers in medical images.

Among themethods discussed, Alaskar et al. [65] achieved
the highest performance with an accuracy, sensitivity, and
specificity of 1.00 using DL networks such as AlexNet
and GoogLeNet. However, it is important to note that a
newer model proposed by Khan et al. [47] that is based on
Mask-RCNN achieved a classification accuracy of 0.99 and
a mean overlap coefficient score of 0.88, which is also
a highly advantageous result. Furthermore, new research
has advocated using GoogLeNet and transfer learning
to detect Helicobacter pylori infection. As proposed by
Shichijo et al. [51], the impressive attained accuracy, sensi-
tivity, and specificity of 0.83 demonstrate the potential of this
method to identify the presence of this infection accurately.

Gastric cancer is a significant global health problem,
ranking as the fifth leading cause of cancer-related death
worldwide. The development of gastric adenocarcinoma
(GAC) is often preceded by intestinal metaplasia (IM) in
the cardia gastric mucosa. Therefore, detecting IM early on
is crucial for preventing the development of (GAC). Recent
studies have demonstrated the potential of using deep learn-
ing (DL) models for detecting gastric intestinal metaplasia
(GIM) and chronic atrophic gastritis (CAG), which are indi-
cators of gastric cancer.

One promising study, conducted by Xu et al. [84], pro-
posed using several DL models, including ResNet-50,
VGG-16, DenseNet-169, and EfficientNet-B4, to detect
GIM. The authors achieved impressive results with their
system, which was trained on multicenter data from five
hospitals in China, achieving an accuracy of 0.91, sensitivity
of 0.88, and specificity of 0.93. Their research highlights
the potential of DL models to accurately detect early-stage
gastrointestinal (GI) tract diseases, such as GIM. Another
breakthrough idea is a real-time GIM segmentation method
that uses a bilateral segmentation network (BiSeNet), pro-
posed by Siripoppohn et al. [85]. Their method incorporated
contrast-limited adaptive histogram equalization to boost the
contrast of GIM regions. Their method achieved impressive
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sensitivity, specificity, PPV, NPV, accuracy, and IoU scores
of 0.93, 0.80, 0.82, 0.92, 0.87, and 0.57, respectively.

In addition to GIM detection, recent research has also
focused on developing DL-based video monitoring systems
to diagnose chronic atrophic gastritis (CAG), another sig-
nificant indicator of gastric cancer. A recent study by Zhao
and Chi [91] developed a real-time DL-based video mon-
itoring system that outperformed an experienced group of
endoscopists, achieving a sensitivity of 0.88, specificity of
0.93, PPV of 0.91, NPV of 0.92, the accuracy of 0.91, AUC
of 0.92, and KAP of 0.82. These impressive results highlight
the potential of DL-based video monitoring systems for diag-
nosing early-stage gastric cancer.

In conclusion, despite the considerable expertise of endo-
scopists, relying solely on their visual diagnosis can pose
significant challenges in the diagnosis and differential diag-
nosis of early malignant tumors and cancer detection.
According to studies by Siripoppohn et al. [85] and Zhao and
Chi [91], up to 10% of malignant lesions can be missed
with conventional endoscopic methods. However, computer-
aided diagnosis (CAD) using DL models has demonstrated
significant potential for early detection of gastrointestinal
tract diseases, including GIM and CAG, leading to improved
gastric cancer diagnosis and prevention. Recent studies
have proposed breakthrough ideas such as transfer learn-
ing and real-time segmentation, which demonstrate rapid
advancements in this field. These advancements are likely
to significantly impact the field of gastroenterology and con-
tribute to reducing the global burden of gastric cancer.

3) AI APPLICATIONS FOR BARRETT’S ESOPHAGUS (BE),
ESOPHAGUS CANCER, AND POLYPS
Esophageal cancer is one of the deadliest forms of can-
cer and is the sixth leading cause of cancer-related deaths
globally. The disease progresses through various phases and
becomes more challenging to treat as it advances. Barrett’s
esophagus is a precancerous condition that may develop into
esophageal adenocarcinoma (EAC). Early detection of EAC
is crucial, as endoscopic removal of malignant tissue can lead
to five-year survival rates exceeding 95%.

The detection of early esophageal cancer using ML and
DL methods has become an important area of research due
to the high mortality rate associated with this disease. In the
case of Barrett’s esophagus, ML methods such as logistic
regression, decision tree, naive Bayes, SVM, and random
forest have been used to identify this precancerous condition,
with performance scores ranging from 0.84 to 0.85 [42].

Meanwhile, the DL models have shown impressive
improvement in the detection of Early Esophageal Adeno-
carcinoma (EAC) and esophageal squamous cell carcinoma
(ESCC). The application of transfer learning [53], Single
Shot MultiBox Detector architecture [43], and GI AI Diag-
nostic System (GRAIDS) [73] were breakthrough ideas to
detect signs of early esophageal cancer that resulted in high-
performance scores. These models achieved high sensitivity

scores in the range of 0.94-0.98, accuracy scores in the range
of 0.91-0.98, and specificity scores in the range of 0.85-
0.92 [43], [53], [66], [73].

The results of the studies discussed above highlight the
potential of both ML and DL approaches for the early
detection of esophageal cancer. It is noteworthy that DLmod-
els consistently outperformed the ML models, suggesting
that DL techniques may have an advantage and be particu-
larly effective in this domain. These findings underscore the
promise of AI, particularly in the field of gastroenterology,
and contribute to reducing the global burden of esophageal
cancer. Moving forward, it also provides a foundation for the
continuation of future research and development in this area
which is critical to realizing the full potential of AI for the
early detection of esophageal cancer.

4) AI APPLICATIONS FOR CROHN’S DISEASE, CELIAC
DISEASE, AND HOOKWORM
Several less-studied GI diseases, including Crohn’s disease,
celiac disease, and hookworm, pose a significant challenge
in terms of accurate detection. To address this, Charisis
and Hadjileontiadis [21] introduce a novel approach that
utilizes the spatial morphology distribution domain, in con-
junction with the space-frequency of curvature structures,
to detect Crohn’s disease. They employ the hybrid adaptive
filtering (HAF) technique to recover lesion-related structural
properties and reconstruct more meaningful images in the
space-frequency domain. The differential lacunarity analysis
is used to establish the spatial morphological distribution
domain and extract textural features. SVM is utilized for
the classification stage, with the YCbCr space’s Cr channel
being used as the input. The proposed approach achieves a
sensitivity of 0.77 and a specificity of 0.86, demonstrating
the potential of this method for detecting Crohn’s disease.

In another study, Maghsoudi et al. [23] proposes a method
for identifying Crohn’s disease that utilizes textural char-
acteristics, such as Gabor filters, local binary patterns, and
Haralick in HSV color spaces, combined with Fisher score
tests and neural networks. Their approach achieves an impres-
sive accuracy, sensitivity, and specificity of 0.95, 0.97, and
0.94, respectively. These studies have shown that ML meth-
ods are particularly effective in this domain.

In a different study, Gadermayr et al. [61] proposes a DL
method by utilizing patch-based CNNs as a replacement
for traditional hand-crafted machine learning methods in
the automated diagnosis of celiac disease. Their CNN is
pre-trained on ImageNet, and their best performance achieves
an accuracy of 0.90. Overall, these studies offer novel
insights into the detection of less-studied GI diseases, par-
ticularly Crohn’s disease and celiac disease. The utilization
of advanced computer vision techniques such as spatial
morphology distribution domain, space-frequency of curva-
ture structures, traditional machine learning algorithms such
as SVM, and deep learning such as patch-based CNNs,
has shown promising results in the detection of these dis-
eases. Future research could explore the integration of these
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FIGURE 5. The KVASIR dataset’s sample images of eight different classes.

techniques with other emerging technologies and image seg-
mentation algorithms to further improve the accuracy and
reliability of these less-studied GI disease detection within
the GI tract.

E. PUBLIC DATASETS
This section explains various publicly available image and
video datasets of the human GI tract. These public datasets
are commonly employed in CAD systems that are used for
GI examination.

1) KVASIR DATASET
There are four hospitals in Norway that participated in the
medico challenge with a dataset of 8,000 endoscopic images,
which have been annotated and validated by endoscopists
from each of the four institutions. It has been the first time
that an endoscopic GI dataset with eight classes is used in
the Medico 2017 competition. It is known as the ‘‘KVASIR’’
dataset, which is a multi-class dataset with 1,000 images per
class [92]. This is the first comprehensive dataset that mimics
various endoscopic procedures as a whole.

The KVASIR dataset consists of multiple endoscopic find-
ings for the entire GI tract. This dataset is classified into
eight different anomalies, where each class consists of 1,000
images. These classes are dyed-lifted-polyps, normal-cecum,
normal-pylorus, normal-z-line, esophagitis, polyps, ulcera-
tive colitis, and dyed-resection-margins (see Figure 5). The
various diseases and their respective class label encodings are
listed in Table 7.

Datasets for training and testing have been created sepa-
rately for Medico 2017. The number of images in the training
and testing sets is approximately 4,000. Pre-split train-test
categories with 500 images per class for each split are given to
the participants (see Figure 6). There are, however, no avail-
able labels for the test set. The resolution of the images,
captured with an Olympus endoscope with high resolutions,
ranges from 720× 576 pixels to 1920× 1072 pixels. A green
box in the left-bottom corner of some photos in the collection
indicates the location of the scope inside a patient’s digestive
tract.

2) MEDICO 2018 AND BIOMEDIA 2019 CHALLENGE
DATASETS
The dataset for the Medico 2018 challenge includes the
images from the previous competition in addition to 6,033
more images and eight new classifications. Colon-clear,

stool-inclusions, stool-plenty, blurry-nothing, out-of-patient,
dyed-lifted-polyps, dyed-resection-margins, and the instru-
ment class are the extra classes utilized in the task. The total
number of endoscopic pictures and annotations for Medico
2018 is 14,033 [93].

The BioMedia 2019 Challenge dataset consists of a com-
bination of the Medico 2018 Challenge dataset [93] and six
video datasets [94]. These challenges with their extended
dataset of 14,033 GI endoscopy frames and six video datasets
are aimed at classifying 16 class categories for multiple GI
endoscopy organs [94]. The dataset sample can be seen in
Figure 7. The video dataset in BioMedia 2019 has various
lengths from 51 seconds to 5 minutes and 11 seconds (see the
details in Table 8). In most high-resolution GI endoscopes,
the standard frame rates are over 45 frames per second.

Overall, the dataset is highly uneven (see Figure 8), with
polyps constituting the majority class (1,625 photos; 11.58%)
and out-of-patient constituting the minority class (10 images;
0.08%). This unbalanced distribution can be viewed as part
of the problem and reflects actual hospital data collection.
The included images range in resolution from 720 × 576 to
1920 × 1072 pixels. The dataset is divided into a training
dataset comprising 5,293 images and a test dataset containing
8,740 images.

3) HYPER-KVASIR DATASET
On the basis of the lessons acquired from the publication of
the KVASIR dataset and the organization of challenges, it is
evident that data availability remains one of the most signif-
icant obstacles in medical AI. It is difficult to retrieve data
from healthcare systems; approval from medical committees
is challenging to obtain, because medical specialists have
limited time, and there is no efficient labeling tool for such
data. Consequently, Borgli et al. [95] create Hyper-KVASIR.

The photos and videos contained in Hyper-KVASIR are
collected prospectively from 2008 to 2016 from routine clin-
ical examinations conducted in a Norwegian hospital (see
Figure 9). The photos have been retrieved from the Picsara
image documentation database (CSAM, Norway) in 2016,
which is an add-on to the electronic medical record system.
With Hyper-KVASIR, both the quantity of labeled medical
data for supervised learning and unlabeled data increases
significantly. The 1.17 million images and frames in the
new dataset come from 110,079 images and 374 videos of
different GI exams. The details of the Hyper-KVASIR dataset
are presented in Table 9. All various 23 classes are shown
in Figure 9, and the dataset class distribution is shown in
Table 10.

4) KID DATASET
The KID dataset is a publicly available database of annotated
WCE images and videos, including pixel-level annota-
tions. It contains WCE images obtained from the whole
GI tract using a Miro-Cam capsule endoscope with a res-
olution of 360×360 pixels. These include 303 images of
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TABLE 7. Details of KVASIR disease dataset.

FIGURE 6. The KVASIR dataset class distribution for Medico 2017.

vascular anomalies (e.g., small bowel angiectasias, lym-
phangiectasias, and blood in the lumen); 44 images of
polypoid anomalies (e.g., lymphoid nodular hyperplasia,
lymphoma, Peutz-Jeghers polyps); 227 images of inflamma-
tory anomalies (e.g., ulcers, aphthae, mucosal breaks with
surrounding erythema, cobblestone mucosa, luminal stenoses
and/or fibrotic strictures, and mucosal/villous oedema); and
1,778 normal images obtained from the esophagus, the stom-

ach, the small bowel and the colon. This dataset total is
2,352 images.

5) KVASIR CAPSULE DATASET
The Kvasir Capsule dataset [96] is an extensive capsule
endoscopy dataset compiled from hospital examinations in
Norway from February 2016 to January 2018. The dataset has
been collected using the Olympus Endocapsule 10 System
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FIGURE 7. Medico 2018 and BioMedia 2019 dataset classes and sample images.

FIGURE 8. The BioMedia 2019 dataset class distribution.

with a frame rate of 2 and 30 frames per second. The Olym-
pus Endocapsule system captures in total between 50 and
100 thousand frames, with pixel resolutions of 336 × 336.
The Kvasir Capsule consists of 117 videos from which
4,741,504 images can be extracted. It contains 47,238 labeled
and medically confirmed images by four medical specialists,
with a bounding box surrounding findings from 14 distinct

classes. In addition to these labeled images, the dataset con-
tains 4,694,266 unlabeled images. The various diseases and
their respective class label encodings are listed in Table 10.

All 14 various labeled classes are shown in Figure 11,
and the details of the KVASIR Capsule dataset are shown in
Table 11. Additionally, as shown in Figure 12, the quantity
of images per class is unbalanced, which is a common issue
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FIGURE 9. Hyper-KVASIR dataset’s classes and sample images.

TABLE 8. Details of BioMedia 2019 video dataset.

in the medical area due to the fact that certain findings occur
more frequently than others. This presents researchers with
an additional problem, as AI algorithms applied to the data
should also be able to learn from a limited amount of training
data.

TABLE 9. Details of hyper-KVASIR dataset.

F. CLINICAL IMPACT OF AI IN GI ENDOSCOPY AND
WIRELESS CAPSULE ENDOSCOPY INVESTIGATION
Given its potential to adapt and continuously learn in real-
time, AI-based technology can present unique challenges.
Regulatory pathways differ globally, so this review will focus
on perspectives from the United States of America (USA),
the European Union (EU), and Japan. It also should be noted
that a voluntary group known as the International Medical
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FIGURE 10. Hyper-KVASIR dataset class distribution.

TABLE 10. Details of KVASIR Capsule dataset class labels.

Device Regulators Forum (IMDRF) is attempting to develop
harmonized principles and common regulatory frameworks
for software as a medical device (SaMD) [97]. Currently, AI-

based GI endoscopy systems are at the jump-off point from
proof-of-principle studies to clinical trials. Table 12 shows
several commercial AI that have been applied and approved

VOLUME 11, 2023 66561



M. Vania et al.: Recent Advances in Applying ML and DL to Detect Upper GI Tract Lesions

FIGURE 11. KVASIR Capsule dataset’s classes and sample images.

TABLE 11. Details of KVASIR Capsule dataset.

to use in GI. The EndoBRAIN and EndoBRAIN-UC use a
ML algorithm (e.g., SVM) for their systems. The CAD EYE
and EndoBRAIN-Eye use deep learning (e.g., CNN) for their
systems, while Discovery uses DNN in its system.

Repici et al. [102] utilize GI Genius in a multicenter ran-
domized experiment conducted using 685 subjects in order
to compare AI-based GI endoscopy systems to traditional
endoscopy. Using GI Genius, they determine that the ADR
is significantly higher (i.e., 0.55) compared to traditional
endoscopy (i.e., 0.40), and the number of adenomas per
colonoscopy is also considerably higher in the AI-based GI
endoscopy than in the traditional endoscopy [102]. Addition-
ally, AI-based GI endoscopy systems have faster reaction
times compared with endoscopists in 82% of cases with
0.99 sensitivity [99].

Although many of the AI systems listed above sound
promising for the future of daily endoscopic applications, the
optimum efficacy of AI systems will continue to rely sig-
nificantly on endoscopists’ technical competence. Advanced
imaging techniques are also important for capturing stable
endoscopic images, which are frequently used as the founda-
tion of AI systems. Wireless capsule endoscopy (WCE) is a
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FIGURE 12. KVASIR Capsule dataset class distribution.

TABLE 12. AI applications in GI endoscopy.

relatively new technique that allows doctors (i.e., gastroen-
terologists) to examine the GI interior using a noninvasive
procedure. Prior to the introduction of WCE, it had been
impossible for a physician to examine GI tissues with-
out performing a surgical procedure. Although WCE has
the advantage of investigating the entire digestive system,
viewing and evaluating each WCE video takes time and
poses numerous challenges. Thus, combining the current AI
systems’ good diagnostic performances for GI endoscopy
with well-trained endoscopists and recent imaging tech-
niques (e.g., WCE) may improve daily endoscopy quality.

Researchers in the medical, computer vision, and robotic
fields examine GI analysis extensively, and they hope to
utilize AI in WCE [103]. Although AI has made significant
advancements in GI endoscopy, its contribution to improved
WCE is still lacking. Therefore, more research is required to
advance AI systems for GI endoscopy to the next develop-
ment stage for implementation in WCE. Future technologies
will face more rigorous approval procedures. Additionally,
it is critical to emphasize that medical specialists who provide
the necessary expertise in a specific subject play the most
essential function in developing an AI medical system.
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V. CONCLUSION
This study provides a comprehensive overview of ML and
DL algorithms for AI applications in capsule endoscopy, with
a particular emphasis on gastrointestinal (GI) classification
and detection. In this research, previous studies were ana-
lyzed and categorized according to the ML and DL models.
In addition, some of the current research issues that are
being faced were discussed, which offered researchers new
perspectives on the most recent applications of AI in capsule
endoscopy. In conclusion, this section reviews the responses
to the questions raised in the previous section, Section II.
This study discovered that for the ML model, the SVM

model is commonly used in GI image processing and has
shown accuracy, sensitivity, and specificity ranging from
0.87 to 0.98, 0.85 to 0.98, and 0.93 to 0.98, respectively.
On the other hand, the DL model mainly utilized the
CNN-based supervised learning object detection models,
such as SSD and Mask RCNN in GI image analysis. A novel
encoder-decoder semantic segmentation network called the
DSRD-Net has also been proposed for segmenting surgical
instruments in minimally invasive surgery, which may be
useful for future GI research.

This study also discovered that RGB is still the most
commonly used picture modality for GI categorization and
detection because the color is one of the most essential factors
in detecting bleeding locations. However, there is a need
to extend and improve the public dataset database for GI
classification because this study found that only five public
datasets from 2018-2019 are extensively used for AI appli-
cations in GI analysis. However, each dataset has its own
classes, some of which are absent from the other dataset.
Therefore, it is difficult to combine all datasets to address the
problem of insufficient data to train a new data-hungry DL
model. There is also a need to create a standardized database
to hold datasets for the AI-based GI endoscopy system.

Future and ongoing efforts in software methods (i.e., AI)
described in this survey should improve image processing
and computer vision techniques, but further improvements
may not be possible without hardware advancements and
medical doctors’ participation. Future capsule generations
will provide more quality information to software engineers,
allowing them to create smarter software systems that can
handle unsolved issues and provide more capabilities.
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