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ABSTRACT For energymanagement and billing purposes, advancedmetering infrastructure (AMI) requires
periodic transmission of consumer power consumption readings by smart meters to the electric utility (EU).
An efficient way for collecting readings is the change-and-transmit approach (CAT AMI) whereby readings
are only transmitted if there is an enough change in consumption readings. CATAMI, however, is plagued by
malicious consumers who hack their smart meters to illegally lower their electricity bills by falsifying their
readings. These attacks on the AMI could have bad economic consequences and impair the performance
of the power grid if these readings are used for managing the grids. Machine learning models can be used
to detect false readings but this requires disclosing consumers’ CAT readings to the EU to evalaute the
model. However, disclosing the consumers’ readings jeopardizes consumers’ privacy due to the fact that
these readings can reveal sensitive information about consumers’ lifestyles, e.g., their presence or absence,
the appliances they use, etc. The problems of detecting power theft while protecting the consumers’ privacy
in CAT AMI is investigated in this paper. First, a dataset of actual readings to generate a benign dataset is
developped followed by proposing new cyber-attacks tailored for CAT AMI to generate malicious samples.
Then, two deep-learning detectors using a baseline model (CNN) and a CNN-GRU model are trained to
detect power thefts in CAT AMI. To preserve consumers’ privacy, the paper develops an approach to enable
the EU to evaluate the detector using encrypted data without being able to learn the readings. Extensive
experiments were carried out to assess our proposal, and the results indicate that our proposal is capable of
accurately identifying malicious consumers with acceptable overhead while preserving the privacy of the
consumers. Specifically, comparing to CNN model, our CNN-GRU model increases the detection rate from
93.85% to 97.14% and HD from to 87.7% to 94.28%, respectively.

INDEX TERMS Privacy preservation, security, detection of false readings, power theft, AMI networks,
smart grid.

I. INTRODUCTION
A smart grid offers great improvement to the traditional
power grid as many countries of the world increasingly
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embrace this technology. Smart grids provide a reduction in
the emission of greenhouse gases, increased reliability in the
delivery of electricity and optimized grid operation [1], [2],
[3]. Smart grids consist of advanced metering infrastructure
(AMI) which allows communications between smart meters
deployed at consumers’ buildings and an electric utility (EU).
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This communication is essential for billing, energy, and load
management [4]. Contrary to receiving the power consump-
tion readings on a monthly basis in the traditional power
grids, smart grids allow transmission of fine-grained readings
from smart meters periodically (usually every few min-
utes) [5], and in this case, it is called periodic-transmission
AMI or ‘‘PT AMI’’. The EU uses these readings for efficient
energy management, bill estimation, and load management.

However, reporting power consumption readings period-
ically results in enormous data transmission between smart
meters and the EU, and because AMI contains millions of
smart meters, the problem exacerbates [6]. This limitation
results in an ineffective utilization of the available communi-
cation bandwidth and because cellular networks are usually
used to transfer readings from smart meters, transmitting
a huge volume of data becomes expensive [7]. Therefore,
a more efficient approach to collect power consumption read-
ings without overbearing the communication network is the
change-and-transmit (CAT) approach [8]. Here, smart meters
only transmit fine-grained readings once there is enough dif-
ference between the current reading and previously reported
reading. This approach is called ‘‘CAT AMI’’ [9], [10], [11].
Explicitly, readings are sent if the percentage change in read-
ings is above a predefined threshold. In the case where the
change is below the threshold, a reading is not sent by the
meter and the EU simply uses the last reported reading. The
smart grid is susceptible to power theft through cyber-attacks
launched by malicious consumers. In these attacks, con-
sumers hack their smart meters to tamper with the power
consumption readings in an effort to have a lower electricity
bill. These attacks impair the power grid financially. It has
been reported that about $6 billion and $17 billion was lost
annually in the U.S [12] and India [13] respectively, all due
to power theft. Moreover, these false readings might alter
the stability of the power grid as they contribute to making
bad (or suboptimal) decisions regarding grid management,
energy management, and load monitoring [14]. In extreme
cases, it might cause blackouts. Using hardware tamper proof
modules in the smart meters to prevent these attacks has
several limitations. Specifically, these modules are costly
and require full trust which cannot be guaranteed. That is
why to detect power theft in AMI networks in the literature,
various approaches that do not need tamper proof modules
have been proposed. While a Kalman filter is used in [15]
to detect electricity theft, most of the existing approaches
in the literature are machine learning-based [13], [16], [17],
[18], [19], [20], [21]. These solutions use either shallowmod-
els [13], [17], [18] or deep learning models [16], [19], [20].
Promising results have been found with deep learning-based
solutions since they offer high accuracy in detecting power
thefts. Furthermore, the power theft detector can be either
generic, i.e., it can be utilized for all consumers, or customer-
specific, i.e., a tailored detector is trained for each consumer.
Therefore, as opposed to general detectors, customer-specific
detectors cannot be employed to detect false-reading attacks
until enough historical power consumption readings for each

consumer are collected which may be a challenge, espe-
cially for new consumers. Additionally, customized detectors
are susceptible to contamination attacks, in which new con-
sumers initially send false readings, and in this case, the
malicious consumers will not be detected if they continue to
report false data [22]. However, the literature has a research
gap in detecting power theft in CAT AMI networks while
preserving consumers’ privacy as the existing works are
focusing on developing power theft detectors for the periodic
transmission AMI networks, and none of the existing works
has investigated the privacy-preserving detection of power
theft in CAT AMI.

Ibrahem et al. [23] proposed a power theft detector for
CATAMI that can detect malicious consumers. Nevertheless,
the scheme does not take into consideration preserving the
privacy of the consumers as it uses the CAT readings in
clear without any protection, which raises a serious privacy
issue. This is because sensitive information can be inferred
about the consumers’ life habits using these readings, e.g.,
whether the dwellers are around or on vacation [9], [24],
sleeping cycles, mealtimes, number of dwellers, etc. [25],
[26]. This information can be misused to commit crimes [27].
Also, insurance companies can adapt their plans for their
consumers if they can get this kind of information. Hence,
to ensure that consumers’ privacy is preserved, encryption
schemes must be utilized to conceal the consumption read-
ings while allowing the EU only to utilize the encrypted
readings without being able to learn the plaintext readings for
power theft detection, energy management, load monitoring,
and billing [6]. Therefore, this paper deals with the issue
of detecting power theft in CAT AMI while preserving con-
sumers’ privacy by encrypting their readings and enabling
the EU to do energy management, load monitoring, and
billing using encrypted readings.

A. SIGNIFICANCE OF RESEARCH
To preserve the consumer’s privacy, their power consumption
readings must be encrypted and used for billing, energy man-
agement and detection of electricity theft without decrypting
them, which creates the following challenges: (1) the choice
of power theft detection model is controlled by a cryptosys-
tem that can be used to perform the model’s operations
over encrypted data efficiently. This is because the cryp-
tosystem should enable the EU to utilize the previously
transmitted-encrypted readings to evaluate the detector in
case there is no reading transmissions, (2) since the power
consumption readings are encrypted, malicious consumers
can launch new and various types of attacks without consider-
ing the threshold of the CAT approach because the EU cannot
verify whether the readings follow the CAT approach, (3) the
proposed power theft detector in [23] considers consumer’s
transmission patterns besides their CAT readings to improve
the accuracy; however, it cannot be considered while encrypt-
ing the consumption readings since malicious consumers
can launch power theft cyber-attacks without changing the
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transmission pattern, which makes our problemmore compli-
cated, and (4) unlike the power theft detector in [23] which is
attack-specific, i.e., there is one detector customized for each
attack, which needs more computations in training and evalu-
ating the models, a generic attack detector that is employable
for different types of attacks should be trained.

This paper tackles the limitations of existing method-
ologies through a privacy-preserving power theft detection
scheme. First, this paper develops a hybrid deep learning
power theft detection model for CAT readings, consisting
of a combination of feed-forward, gated recurrent unit, and
convolutional neural networks. The input of the model is the
power consumptionCAT readings of one day and the output is
whether the readings are false or not. Then, this paper devel-
ops a homomorphic encryption (HE) [28] cryptosystem to
enable the EU to do load monitoring, compute bills, and eval-
uate the model using encrypted CAT readings to preserves
privacy. Specifically, each consumer sends encrypted CAT
readings and our scheme uses two mathematical operations
that can be done over encrypted data including aggregation
and dot product. The encrypted readings of one meter over
a billing period can be aggregated and only the aggregated
value can be known by the EU for billing without being able
to compute the individual reading. Similarity, the encrypted
readings of the smart meters of one AMI are aggregated to
compute aggregated consumption and use it for load moni-
toring without being able to compute the individual readings.
Finally, by exploiting the dot product over encrypted data,
our model can be evaluated through the encrypted CAT read-
ings without exposing these readings to the EU. In order
to evaluate the performance of our proposed detector, the
paper uses an actual consumption dataset collected by the
Smart Project [29], which comprises actual power readings
of consumers. Additionally, malicious samples are created by
proposing some collection of attacks adapted to CAT AMI,
and the proposed detector is general and can be applied to all
consumers.

In this paper, the following primary contributions are
demonstrated.

• Our research is the first to explore the detection of power
theft in AMI networks that utilize the CAT approach
while preserving the privacy of consumers. Most of the
previous methods of power theft detection have utilized
the PT approach, which requires the receipt of all read-
ings to be used for detection and have not taken into
account the potential for readings not being received
due to the CAT approach. To the best of our knowledge,
none of the existing works has investigated the privacy
preserving detection of power theft in CAT AMI.

• Since preserving consumers’ privacy, in the CAT AMI,
is more challenging as clarified earlier, new attacks can
be launched since the attackers can deviate from the CAT
approach when transmitting the readings and it is not
possible for the EU to ascertain whether the readings
comply with the CAT approach, as they are encrypted.

TABLE 1. Key notations and abbreviations used in the paper.

Consequently, this paper proposes a set of power theft
attacks specifically designed for CAT AMI networks to
generate malicious samples.

• A dataset for CAT AMI is created and used to train a
detector for power theft attacks.

• To evaluate our proposals, extensive experiments and
analysis are conducted. The results demonstrate that
our proposed power theft detector has the ability to
accurately detect malicious consumers with acceptable
overhead while preserving the privacy of the consumers.

The following is the paper’s organization; section II eluci-
dates the related works while section III explains the design
objectives and system model. Section V discusses prelimi-
naries utilized in our research. In Section IV, the dataset used
to train and evaluate our detectors is presented. Section VI
outlines our envisioned scheme, and Section VII discusses
its performance evaluation. Finally, Section VIII concludes
the paper. The main notations and abbreviations used in this
paper are given in Table 1.

II. RELATED WORKS
Privacy concerns have arisen due to the ability to extract
personal data from fine-grained power consumption read-
ings provided by smart meters, using nonintrusive techniques
for appliance load monitoring. Increasing the time intervals
between consumption measurements is expected to enhance
privacy. In [30], the research investigates how the granularity
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of consumption data impacts edge detection methods, which
are commonly employed in nonintrusive load monitoring
algorithms. The study reveals that the detection rate for appli-
ance usage decreases when the time interval exceeds half the
duration an appliance remains active.

Smart grids have emerged as a crucial solution for elec-
tricity infrastructure, primarily due to the significant rise in
electricity prosumers-consumers who also produce energy.
In the context of a competitive energy trading market within a
Neighborhood Area Network (NAN), the research discussed
in [31] presents a framework that safeguards the confiden-
tiality of prosumers’ identities and offers protection against
traffic analysis attacks. Furthermore, the proposed framework
conceals both the number of bidders and the number of
successful bids from malicious attackers.

Different works have been proposed in machine
learning-based power theft detection [13]- [24] using periodic
transmission of readings in AMI network. However, these
works do not consider preserving the consumers’ privacy in
their various networks. Jokar et al. [13] employed the Irish
dataset [32] for training user-specific power theft detectors.
The detector was trained for individual consumer using his
power consumption readings. Jokar et al. used two experi-
ments in training the detector. In the first experiment, benign
samples of each consumer were utilized to train an SVM-
based detector. Both benign and malicious samples were
used in the second experiment. Since Irish dataset does not
comprise of malicious data, some attacks were developed
to generate synthetic malicious data. Results showed that
the detector trained in the second experiment outperformed
greatly the detector trained in the first experiment.

Deep learning approaches were used by Buzau et al. [20]
and Zheng et al. [16] where a generic power theft detector
was developed by the use of datasets in Endesa [20] and the
State Grid Corporation of China (SGCC) [33]. The SGCC
dataset comprises of benign and malicious data. The model
in [16] uses deep learning model which consists of con-
volutional neural network (CNN) and multilayer perceptron
(MLP) components so that the electric consumption period-
icity is captured. It was observed from the statistical analysis
done on the SGCC dataset that the malicious consumers’ con-
sumption readings tend to be less consistent/periodic when
compared to those of benign consumers. So, the temporal
relationship of the power readings is learned by the detector
to help with identifying false readings. Furthermore, a deep
learning model which composes of MLP and long short-term
memory (LSTM) modules was also used in [20]. The results
in the two works show that the detection accuracy of [20] was
better than [16].

In [34], a privacy-preserving approach to the detection
of manipulated Distributed Energy Resources (DER) power
generation readings is proposed. The proposed approach aims
to detect malicious actors that report false power generation
readings for financial gain. The proposedmethod uses the fact
that the (normalised) power output from photovoltaic (PV)

installed in a geographical area should be similar, and thus
deviations from the norm demonstrates malicious activities.
Specifically, the approach calculates the Euclidean distance
between all pairs of normalised power generation readings.
The paper uses a clustering technique to find the outlying
distances that indicate malicious activities. Homomorphic
encryption is used to compute the Euclidean distances over
encrypted data and share the encrypted result with a third
party to detect electricity theft with privacy preservation.

In [35], a privacy-preserving federated learning approach
for energy theft detection in smart grid is proposed. Federated
learning is used to enable different owners of datasets to train
a global model trained on their data without revealing the
dataset to preserve privacy. Unlike this paper that aims at
preserving privacy during the training stage of the electricity
theft detector, our paper aims at preserving privacy during the
evaluation stage of the detector, and therefore, the approach
proposed in [35] complements our proposed scheme.

Smart micro-grid (SMG) networks are small scale dis-
tributed electricity provision networks that are based on a
distributed renewable power generation and a low-cost com-
munication infrastructure. SMGs are used to enhance the
reliability of the smart grid. Because of the low-cost devices
used in SMG, they do not have enough computation resources
to use cryptography to protect the confidentially of the data
exchanged. Therefore, in [36], a differential privacy (DP)
based technique is proposed to protect privacy. However, DP-
based technique adds noise to the data to preserve privacy and
there is a trade-off between the level of privacy preservation
and the utility of the data, i.e., adding more noise enhances
the privacy preservation level but with less utility of the
data. Instead, in this paper, a different approach is used in
which the exact data are used but in ciphertext domain to
preserve privacy, i.e., the encrypted readings can be used to do
load monitoring, billing, and evaluating the electricity theft
detectors using encrypted reading and no one is able to obtain
the plaintext readings.

Some works has investigated the use of CAT approach
in smart grid [37], [38], [39], [40], [41]. Samarakoon et al.
[37] studied demand/response using the CAT approach, [39]-
[41] investigated finding the right value for the threshold.
Nonetheless, their models were not concerned with con-
sumers’ privacy thereby making the models prone to attacks.
Moreover a CAT approach is used in [42] to reduce the
overhead in federated learning by not sending gradients that
do not change enough.

Ibrahem et al. [23] proposed a generic theft detection of
CAT AMI using Irish dataset. The model uses a hybrid deep
learning scheme that comprises of CNN, fully connected
FFN and a GRU. The dataset was modified so as to follow
the CAT architecture by clipping the consumption readings
against a predefined threshold. The CNN and GRU were
employed in extracting crucial features from the inputted
CAT power consumption readings. The FFN was used for the
model classification. Since the consumption of the consumers
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has an impact on the transmission patterns, the detector was
improved by applying the transmission pattern along with the
CAT power readings to provide an accurate classification of
consumers. Furthermore, attacks used in the scheme were
also modeled to follow the CAT architecture. The results
showed that the detector can identify power theft with high
performance and accuracy. However, the scheme does not
consider preserving the privacy of the consumers.

Existing power theft detection schemes in the privacy
preservation domain assumed that power readings are
reported periodically by the smart meters even when there is
no significant difference in the readings. Privacy-preserving
data aggregation techniques are used in these schemes to
allow the smart meters to send fine-grained encrypted read-
ings and the EU to acquire the accumulated readings for
billing, energy and load management without allowing the
EU to access each consumer’s readings to ensure privacy
preservation.

Machine learning models were developed in [43] and [44]
to detect power thefts while preserving privacy. A CNN
model was proposed in [43] in which smart meters transmit
their encrypted readings to a fully trusted system and dis-
trusted system. The trusted system evaluates a CNN model
on the decrypted power readings in order to detect power
thefts. The output of the model is then reported to the EU for
necessary action. The distrusted system collects the aggre-
gated encrypted readings in the network without learning
the consumers’ readings so as to preserve privacy. These
aggregated readings are used for load monitoring. Practically,
it cannot be guaranteed that a system can be fully trusted and
it cannot compromise consumers’ information.

Nabil et al. [44] developed a privacy preserving deep
learning power theft detection scheme. The smart meters
mask their power consumption readings using secret sharing
technique and the EU uses the aggregated masked read-
ings to compute the aggregated readings for billing and
energy management without learning the individual readings.
A multi-party computation protocols that are evaluated with
the use of arithmetic and binary circuits were employed on a
convolution neural network model. The CNN model’s evalu-
ation can only be done through an interactive/online session
between individual smart meter and the EU. Furthermore, the
scheme’s model classification is both known to the EU and
smartmeters. However, this scheme suffers from high compu-
tation and communication overheads. Most of the overheads
are incurred through the continuous linear approximation of
the nonlinear (sigmoid) function used in the scheme, and
because the model is evaluated on each smart meter, high
computation overhead arises. Furthermore, high overhead is
also accrued using the secret sharing technique i.e., the cost
of masking the consumption readings of consumers.

Ibrahem et al. [7] addressed these limitations in [44] by
offering a privacy preserving power theft detection that uses
a functional encryption (FE) to mask the fine-grained con-
sumption readings. The EU utilized the aggregated encrypted
readings for load management, and to compute the electric-

ity bills without learning the consumers’ readings. The EU
utilizes a functional decryption key and feedforward neural
networks (FFN) to detect power theft. Smart meters encrypt
their consumption readings and send the ciphertexts to the
EU. The smart meters do not require an interactive session in
order to evaluate the power theft detector. To ensure privacy
is being preserved, no entity within the AMI network is
allowed to learn the readings of consumers. The results gotten
indicated that the scheme can accurately detect power theft
while preserving consumers’ privacy with satisfactory com-
munication and computation overheads. The scheme reduced
the computation overhead by 97.4 percent better than [44]
with low communication overhead.

III. SYSTEM MODELS AND DESIGN GOALS
The proposed network model, threat model and design objec-
tives are discussed in this section.

A. NETWORK MODEL
The AMI network consists of smart meters, Electricity Utility
(EU) and a key distribution center (KDC) as shown in the
Fig 1. The purposes of each entity are as follows.

• SmartMeters: They are installed at consumers’ premises
to record and transmit consumers’ consumption readings
to the EU according to the CAT approach. Only when the
current reading exceeds or falls short of the last reported
measurement by a set threshold do smart meters com-
municate readings. In periods where no enough change
is recorded, the last reported reading will be used by the
EU. Smart meters can either communicate with the EU
directly or through a gateway (aggregator).

• KeyDistribution Center (KDC): Encryption and decryp-
tion keys are generated by KDC which are used by the
smart meters and the EU. The KDC is usually managed
by a trusted authority like the Department of Energy.

• EU: It receives fine-grained readings from the smart
meters, and uses them to compute bills, manage energy,
and monitor loads. In addition, it utilizes these readings
to evaluate a deep learning model to identify malicious
consumers who steal power.

Moreover, Fig. 2 shows the step-by-step process of CAT
AMI. Each smart meter first measures the power con-
sumption and then computes the absolute change in the
consumption comparing to the last reading reported to the
EU. If the absolute change does not exceed the threshold of
the CAT approach, the meter does not transmit a reading and
the EU uses the last reported reading in the load management,
billing, and theft detection. On the other hand, if the absolute
change exceeds the threshold of the CAT approach, the smart
meter encrypts the reading using homomorphic encryption
and transmits the encrypted reading to the EU. For instance,
if the last reported readings is 10KWh and the threshold is
10%, themeter does not send a readingwhen the consumption
is between 10KWh ± 1KWh, and in this case, the EU uses
10KWh in the computation, and thus, the maximum error
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FIGURE 1. Network model of CAT AMI.

FIGURE 2. Step-by-step process of CAT AMI.

in the readings is ±1KWh. On the other hand, the meter
transmits the readings when the consumption is greater than
11KWh or below 9KWh. At the EU side, it computes the bills
using the aggregated TB readings of each meter, aggregates
all the readings of the AMI meters for load monitoring, and
uses the ciphertexts of TD readings of each meter to evaluate
the electricity theft detector.

B. THREAT MODEL
In this paper, two types of threats are considered. In the
first type, malicious consumers manage to hack their smart
meters and change its firmware to unlawfully reduce their
bills by reporting false readings to the EU, which may not
only cause economic loss to the power grid, but it could

lead to wrong decision-making in the energy management
of the grid. There are several limitations to using hardware
tamper-proof modules in smart meters as a means to pre-
vent these attacks. Specifically, these modules are costly
and require full trust which cannot be guaranteed. In the
second type of threat, attackers may attempt to acquire the
consumption readings of fellow consumers in order to deduce
sensitive information about them. The EU may attempt to
infer sensitive information about the activities of the con-
sumers from the fine-grained readings received from the
smart meters. Furthermore, the malicious consumers could
either collude with the EU to deduce the readings of fellow
consumers or collude with other consumers in the network
to deduce sensitive information of fellow consumers in the
network.
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C. DESIGN OBJECTIVES
This paper aims to accomplish these security and functional-
ity requirements.

1) Functionality requirements
• F1: Our solution shall permit the EU to calculate
the overall consumers’ power consumption in the
CAT AMI network at every reporting period for
both grid and load management.

• F2: Our solution shall enable the EU to calculate
the electricity bills of each consumer in the net-
work by computing the aggregated consumption of
the consumers using their fine-grained readings.

• F3: Our solution shall enable the EU to detect hon-
est and fraudulent consumers by running the power
theft detector on individual consumers utilizing
their reported fine-grained consumption readings.

2) Privacy and Security Requirements.
• Detection of power theft: Our detector shall accu-
rately detect any attacks frommalicious consumers
who intend to steal electricity without being
detected.

• Consumers’ bills and total power consumption
confidentiality: Only EU will be allowed to learn
the overall consumption of consumers for load
management and also the individual bills of the
consumers.

• Consumers’ privacy preservation: No entity within
the network, including the EU, will be allowed
access the plaintext consumers’ consumption read-
ings.

IV. DATASET PREPARATION
This section explains the dataset used in training and evalu-
ating the performance of our theft detectors. A benign CAT
AMI dataset is created by utilizing various thresholds on
benign consumption readings of a publicly available dataset
[45]. A collection of power theft cyber-attacks are proposed
to create malicious data samples. Lastly, this section explains
how the benign and malicious datasets are used in training the
proposed detectors.

A. BENIGN DATASET
The CAT dataset are prepared from Smart Project dataset [45]
which contains PT transmissions. It is an open-access smart
meter dataset containing benign power consumption readings
of 114 apartments. These readings are reported to the EU per
minute. Two new datasets Y5 and Y10 from this dataset are
created by applying different transmission rates of 1/5min
and 1/10min thereby producing 288 readings per day and
144 readings per day respectively. In total, 39,786 benign
samples were produced with each sample containing the
consumer’s readings per day.

Furthermore, other datasets are created for our CAT
approach using the earlier created two dataset Y5 and Y10,
by varying the threshold at 5% and 10%. This means that

TABLE 2. Savings gained using the CAT approach at different
transmission rates and thresholds.

when using the 5% threshold or the 10% threshold, a smart
meter only sends a power consumption reading when the
absolute change in the consumption comparing to the last
reading meets those thresholds. The following formula was
used to compare the CAT technique to sending data period-
ically at various transmission speeds and thresholds in order
to assess the percentage of unreported readings and determine
the savings gained of the CAT approach.

S =
(P− C)

P
× 100 (1)

where S is the savings gained, P is the number of reported
readings when using PT approach, C is the number of
reported readings when using the CAT approach. Table 2
shows the bandwidth savings gained by utilizing the CAT
technique at various transmission rates and thresholds. It is
worth noting that when the threshold rises, the possibility
of the consumption change exceeding the CAT approach’s
threshold lowers, resulting in fewer transmissions. However,
the savings reduce as the interval of transmission increases
due to the increased possibility of the change in consumption
exceeding the threshold thereby causing more transmissions
to occur.

The CAT approach necessitates that the EU accepts clipped
readings from smart meters in the network. This leads to
a reading error because the readings received by the EU
could be less or more than the real readings recorded by the
smart meters owing to the usage of thresholds. Our network
comprises of 114 smart meters, and the aggregated readings
for the individual consumers which is then used to compute
their bills are computed. Furthermore, the EU is allowed to
compute the aggregated readings of the whole collections of
smart meters which is used for load monitoring and energy
management. Then, the error due to using aggregated read-
ings is also determined. Consequently, the error due to using
aggregated readings for load management is shown figure 3
for various thresholds and transmission rates by the cumula-
tive frequency function (CDF). Figure 4 shows the aggregated
readings’ error incurred in billing for two consumers selected
at random. From the two figures, the error from the aggre-
gated readings is substantially lower than the error from the
highest individual reading since some errors are negative and
others are positive thereby reducing the overall reading error.
As a result, even when the readings received by the EU are
clipped due to using the CAT approach, the EU can still utilize
these readings for accurate load monitoring and billing.
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FIGURE 3. CDF of error for aggregated reading for load monitoring of
different transmission rates and thresholds.

FIGURE 4. Aggregated readings error for two consumers randomly
chosen.

B. MALICIOUS DATASET
In this study, our proposed model is trained on both malicious
and benign data samples. The malicious data samples are

TABLE 3. Function for the proposed cyberattack for power theft in the
CAT AMI.

developped by implementing a collection of attacks that may
be carried out by malicious consumers in the CAT AMI
networks because there were no real malicious data samples
available. In order to lower the electricity bills through a
cyberattack, malicious consumers reduce the values of their
reported readings. Five attacks are developed for our mali-
cious samples and applied them on the benign dataset. Table 3
shows a summary of the attacks in which all attack functions
f (·) aim at reducing electricity bills. Denote Thact , r il , and r

i
c

as the CAT approach threshold, the previous reported reading
of SMi and the present true power consumption, respectively.
So, the following condition should meet to send a reading
(x il > r ic > x iu), where x

i
l = r il − (r il ∗ Thact ) and x iu =

r il + (r il ∗ Thact ) are corresponding to the upper and lower
limits, respectively.

Attack 1, as seen in Table 3, lowers the readings by η%
when there is a transmission and the current reading r ic is
greater than x iu, otherwise, the true power reading is reported.
Therefore, rather than taking the real consumption r ic into
account, which is greater than the reported reading, this attack
makes the EU use a reduced reading η × r ic when r

i
c > x iu.

Additionally, since certain readings are correct (when r ic <

x il ), this attack seeks to trick the power theft detection while
lowering the bill. Attack 2 compares the previous reported
reading r il with the current reading r

i
c, and reduces the lowest

reading by β. Similar to Attack 2, Attack 3 also compares the
previous reported reading r il with the current value r ic but the
attacker sends the lowest reading only. In this attack, rather
than considering the correct present consumption r ic, when
r ic > x iu, the EU utilizes the most recently reported reading
r il that is less than r ic. Also, Attack 3 is intended to create
confusion in the power theft detector while simultaneously
causing decrease in billing since certain readings are genuine
(in the case that r ic < x il ).
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Attack 4 is a By-pass attack, whereby a malicious con-
sumer transmits readings of zero over a predetermined time
period (i.e., [ts, tf]), and in the other time periods, it sends
the correct consumption reading r ic following CAT approach,
where tf is the start of the power theft interval and ts is the
end of the power theft interval.

Alternatively, rather than adhering to the actual symmet-
rical threshold Thact determined for the CAT approach, i.e.,
±5%, Attack 5 attempts to establish and adhere to asymmet-
ric threshold boundaries, denoted Thu and Thl . For example,
Thl is equal to 5% while Thu is equal to 10%, with Thl and
Thu representing the threshold’s lower and upper boundaries
that are set by the attacker, respectively. The values of Thl and
Thu are chosen by the attacker while making sure that |Thu| >

|Thl | to guarantee a decreased bill. In this attack, a reading is
reported when r ic < r il − r il ∗Thl or r

i
l + r il ∗Thu < r ic. As the

Thu increases, it is less likely that the current consumption
will exceed Thu, leading the EU to consider the lower last
reported consumption r il for a longer period, in order to reduce
the bill. This means that r ic is higher than r

i
l , and hence, r

i
c will

only be sent if there is a considerable change between the
most recent reading and the previous one, thus guaranteeing
a reduced bill.

C. DATA PRE-PROCESSING
To generate malicious data samples, the parameters for the
attacks discussed above are set in a random manner based on
uniform distribution as follows. η and β, in functions f1(·) and
f2(·), are randomly chosen over the interval [0.3, 0.8], where
as η decreases, profits that the attacker can achieve increases.
In f4(·), ts is a random variable in [0, 80] while the attack’s
period, i.e., tf − ts is chosen in [40, 80]. For function f5(·), αl
and αu are randomly chosen over the interval [0.05, 0.2] and
[3, 8], respectively. As αu increases (i.e., Thu increases), more
bill reduction is accomplished due to the fact that as the Thu
is bigger, it becomes less likely that r ic exceeds Thu, leading
the EU to consider r il for a longer period, in order to reduce
the bill.

Given that our dataset contains benign CAT readings of
one hundred and fourteen consumers over 349 days, the
total number of benign samples is 39,786 (114*349). For
a 1/10min transmission rate, there are 144 CAT readings
in each sample that is either labeled one if it is malicious
or zero if benign. The five attacks are then employed to
generate five malicious samples per benign sample, yielding
349 honest records as opposed to 1, 745 malicious records
(i.e., 5 attacks×349) for each SM. The result is an imbalanced
dataset because there are more malicious samples than honest
samples. The problem of data imbalance is addressed by
balancing the size of the benign and malicious samples using
an adaptive synthetic sampling approach (ADASYN) [46].
As a result, there are 3, 490 malicious and honest records
in each SM, with 144 CAT readings in each record. Hence,
our dataset contains approximately 500, 000 records for 144
SMs. The dataset is then further split into two portions, with

20% of the samples being used for evaluating our detector
and 80% of the samples being utilized for detector training.

V. PRELIMINARIES
This section briefly discusses the cryptosystems, deep learn-
ing systems and the activation functions used in this paper.

A. BILINEAR PAIRING
A pairing is admissible if the mapping is non-degenerate and
computable. Bilinear pairing will be used to verify the smart
meter’s signatures efficiently. Given that U and UT are cyclic
groups of the large prime order y, and Q, V are generators of
U. A pairing is a mapping of ê : U ×U −→ UT satisfying the
property of bilinearity. This means

ê(V ,V ) ̸= 1UT
ê(cV1, dQ1) = ê(V1,Q1)cd ∈ UT ,

for all c, d ∈ Z∗
q and any V1,Q1 ∈ U

B. HOMOMORPHIC ENCRYPTION
Paillier cryptosystem is a homomorphic encryption scheme
that permits arithmetic operations to be performed on aggre-
gated encrypted data without decrypting these data. This
cryptosystem consists of three processes

• Encryption: given that r ∈ Z∗
n , E(·), and m ∈ Zn

are a randomly generated number, encryption function,
and the plaintext or message respectively. The encrypted
message can be computed as:

f = E(m) = gmrn mod n2 (2)

• Decryption: let the encrypted message f ∈ Z∗

n2
, the

message is

D(f ) = m = L(f λ mod n2) · µ mod n (3)

• Key generation: The public key is generated by choosing
prime numbers q1 and p1, where |q1| = |p1|, followed
by computing λ and n through λ = lcm(p1 − 1, q1 − 1)
and n = q1p1.
Furthermore,

µ =
modn

L(gλ mod n2)
(4)

where, a generator g ∈ Z∗

n2
and L(u) = ((u− 1)−1

× n).
Hence, the private key is sk = (µ, λ) and its correspond-
ing public key is pk = (g, n).
Homomorphic encryption is used to preserve the
consumers’ privacy by evaluating our detector using
enecrypyted data while enabling the EU to aggregate the
consumers’ readings in the CAT AMI network.

C. DEEP LEARNING
A deep learning network comprises of input layer, hidden
intermediate layer, and output layer. Supervised learning is
a kind of deep learning which involves the use of labelled
dataset to train a model. Typical ways by which supervised

VOLUME 11, 2023 68577



M. J. Abdulaal et al.: Privacy-Preserving Detection of Power Theft in Smart Grid Change and Transmit (CAT) AMI

FIGURE 5. Architecture of a convolutional neural network.

learning are implemented are through MLP, CNN and recur-
rent neural network (RNN). Deep neural networks are usually
trained by learning weights and bias parameters. Features
extracted from input data are mapped into higher abstraction
in the intermediate layers through feed forward and back-
propagation. During back propagation, the learning is done
by calculating the cost function and choosing an optimiser
and the output layer utilizes these mapped abstractions for
classification. Using the cost functions’ gradients, the bias
and weights of parameters in the intermediate layers are
updated at every iteration. The output values are then equated
to the correct values to optimize the cost function, and the
difference in value is then sent via the hidden layers’ neurons
to alter the weights associated with each connection, resulting
in a cost function that is eventually minimized. Categorical
cross-entropy C(z,ẑ) is the cost function used in the classifi-
cation tasks and it is a measure of the loss as a result of the
change in the learned distribution ẑ and true distribution z for
P classes.

C(z, ẑ) = min
θ
(−

P∑
c=1

z(c) · log ẑ(c)) (5)

The labeled data and cost function are then optimized using
an optimization method. Furthermore, using the k-fold cross
validation method, hyperopt, etc., the model may be tweaked
for improved performance by changing hyper-parameters like
optimizer’s type, the number of layers, and each layer’s neu-
rons number.

D. CONVOLUTIONAL NEURAL NETWORK (CNN)
Since its advent, CNN has been employed in varieties of
applications ranging from speech processing, autonomous
driving applications, image processing etc. This is owing to
its capability to extract complex patterns or features from
input data. Fig. 5 shows the architecture of a typical CNN.
The convolutional layer of CNN is made up of filters, which
slide across the input data so as to extract distinctive features.
In order to conduct complex decisions and accomplish com-
plicated tasks, these features are made to pass via a Rectified
Linear Unit (ReLU), Sigmoid function or Tanh depending on
the nonlinear function used. Furthermore, by subsampling the
feature map, pooling layers help to compress the convolution
layer’s output. This subsampling ensures that important infor-
mation are retained [47], [48]. Fully connected layers process
these extracted features from the pooling layers for decision
making purposes.

FIGURE 6. Architecture of a GRU neural network.

E. GATED RECURRENT UNIT (GRU)
It is a type of RNN capable of memorizing long sequence of
input patterns. The memorization of information is achieved
by employing hidden states and forming a directed graph of
the relations between internal units. The transition function
utilizes the present informationPt and the previous stateQt−1
at each time step t as shown in Fig. 6. It computes the present
hidden state as

Qt = F(Pt ,Qt−1), (6)

where F is a nonlinear transformation such as Sigmoid and
Tanh functions. Qt−1 is referred to as the memory of pre-
vious state. Due to the recurrent structure, GRU is said to
recall previous inputs of the network. The reset and update
gates are used by GRU to control the flow of information
and to determine the data to be saved and the date to be
deleted. Therefore, GRU can capture the correlation between
the inputs making it very useful in our application to capture
the correlation in the power consumption readings.Moreover,
GRU is employed in speech synthesis, text generation, and
speech recognition.

F. ACTIVATION FUNCTIONS
Activation functions are utilized to convert a neuron’s aggre-
gated weighted input into the neuron’s activation. They
contribute immensely to the convergence speed and model
accuracy. Here are the commonly used activation functions.

• SoftMax: It is usually utilized in multi-class classifica-
tion of data. It calculates a probability vector for any
input vector x = [x[1], x[2], x[3] . . . x[N ]] ∈ RN of
length of N number of classes.

softmax(x[k]) =
ex[k]∑N
j=1 e

x[j]
(7)

for k = {1, 2, 3, . . .N }

• Rectified linear unit (ReLU): ): If given a positive input,
ReLU yields the same output; otherwise, it yields zero.
This is because it only performs max function on the
input. This activation function is highly efficient.

ReLU (x) = max(0, x) (8)

VI. METHODS
This section first provides an overview for our scheme and
then explain the different phases iincluding initialization,
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reporting of smart meters’ consumption readings, aggregat-
ing the readings using their ciphertexts, and decrypting the
aggregated readings by the EU to perform load monitoring.
The section, then, discuss the process of training a deep
learning model for detecting power theft, as well as the way
the EU utilizes the encrypted readings to evaluate our detector
without compromising the privacy of consumers.

A. OVERVIEW
Here are the main stages of our proposed scheme.

1) At the time slot t , each SMi ∈ SM encrypts its
masked power consumption reading mi[t] by using
homomorphic-based Paillier cryptosystem if there is
enough change in the consumption. Then, it transmits
its encrypted reading Ci[t] to the aggregator.

2) Then, the aggregator collects and aggregates these
encrypted readings Ci[t], for {1 ≤ i ≤ |SM|}, from
all smart meters, i.e.,

∑|SM|

i=1 mi[t], where mi[t] is the
reading from smart meter, SMi at time slot Tt in an
CAT AMI network for load monitoring and energy
management.

3) Regarding billing, the aggregator computes the
encrypted aggregated reading for each consumer i∑b

t=1mi[t] at the end of every billing period TB.
4) At the end of every power theft detection period TD, the

aggregator computes the encrypted dot product of the
encrypted CAT readings for this period and the power
theft detection model’s weights. Then, it sends these
results to the EU.

5) All the encrypted results from stages 2, 3, and 4 are sent
by the aggregator to the EU for load monitoring, billing
computation, and evaluating a theft detection model
to identify malicious consumers respectively, without
compromising the privacy of consumers, i.e., without
learning the consumers’ plaintext readings.

B. INITIALIZATION
Our scheme is bootstrapped by an offline KDC as follows.
The creation of the Paillier cryptosystem’s public key (g, n =

pq) and private keys (λ, µ) begins with selecting two large
prime numbers, q and p, where they have the same magni-
tude [28], [49]. This is followed by computing the parameters
for bilinear pairing (UT , U, q1, ê,V ). A protected hash func-
tion, H : {0, 1}∗ → U, is selected and the public parameters
are published as pubs =

{
q1, U, n,V , ê, g, UT ,H

}
. Each

smart meter SMi derives a corresponding public key Yi = xiV
from a private key xi ∈ Z∗

q, and the aggregator obtains the
private/public key pairs xagg/Yagg.

C. REPORTING OF THE CONSUMPTION READINGS
Once there is an enough change in SMi’s reading, it encrypts
this reading mi[t] and transmits its corresponding ciphertext
Ci[t] to the aggregator in a time slot Tt by carrying out the
steps outlined below.

• S1: SMi selects a number randomly ri[t] ∈ Z∗
n and uses

the Paillier cryptosystem to encrypt mi[t] as follows.

Ci[t] = gmi[t] · (ri[t])n mod n2 (9)

• S2: SMi computes a signature σi forCi[t] and a sequence
number (Si[t]) using its secret key xi as

σi[t] = xiH (Ci[t]∥Si[t]) , (10)

where the sequence number is used to secure against
replay attacks and also enable the aggregator to identify
dropped messages and in this case it can ask for re-
transmission.

• S3: the aggregator receives this tuple from SMi.

Ci[t] ∥Si[t]∥ σi[t] (11)

D. AGGREGATION OF ENCRYPTED READINGS
In order to validate the smart meters’ readings and compute
the ciphertexts of the aggregated readings of the smart meters,
an aggregator must save the most recent encrypted reading
transmitted by each SM so that it can be used if the smart
meter does not transmit an encrypted reading in next time
slot when the consumption does not change enough. The
aggregator should then carry out the following procedures.

1) Verification of the received messages: The aggregator
should first verify the freshness of the receivedmessage
timestamps, and then perform batch verification of the
received signatures using the following equation:

ê

(
k∑
i=1

σi[t],V

)
?
=

k∏
i=1

ê (H (Ci[t]∥Si[t]) ,Yi) (12)

where the number of messages is k ≤ |SM|.

1) PROOF OF SIGNATURE VERIFICATION

ê

(
k∑
i=1

σi[t],V

)
=

k∏
i=1

ê (σi[t],V )

=

k∏
i=1

ê (xiH (Ci[t]∥Si[t]) ,V )

=

k∏
i=1

ê (H (Ci[t]∥Si[t]) , xiV )

=

k∏
i=1

ê (H (Ci[t]∥Si[t]) ,Yi) .

2) The aggregator calculates the encrypted aggregated
reading Cagg[t] using the ciphertexts of the encrypted
readings sent by the smart meters using the following
equation.

Cagg[t] =

|SM|∏
i=1

Ci[t] mod n2 (13)
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3) The aggregator utilizes its private key xagg to calculate
the signature in the following way.

σagg[t] = xaggH
(
Cagg[t]∥Sq[t]

)
(14)

4) The EU receives the message containing an encrypted
aggregated reading, a sequence number, and a signature
from the aggregator in a tuple form:

Cagg[t]∥Sq[t]∥σagg[t] (15)

E. RECOVERY OF AN AGGREGATED READING
The EU checks whether the sequence number is fresh or not
and also validates the signature upon receiving the message
from the aggregator through

ê
(
σagg[t],V

) ?
= ê

(
H
(
Cagg[t]∥Sq[t]

)
,Yagg

)
(16)

1) PROOF OF SIGNATURE VERIFICATION

ê(σagg[t],V ) = ê(xaggH (Cagg[t]∥Sq[t]),V )

= ê(H (Cagg[t]∥Sq[t]), xaggV )

= ê
(
H
(
Cagg[t]∥Sq[t]

)
,Yagg

)
.

The EU then utilizes the private key (µ, λ) to decrypt
Cagg[t], thus allowing for the retrieval of the total consump-
tion reading of the smart meters, which is done through the
following operations.

D
(
Cagg[t]

)
= L

(
Cagg[t]λ mod n2

)
· µ mod n =

|SM|∑
i=1

mi[t]

(17)

By carrying out the aforementioned computations,
(
∑|SM|

i=1 mi[t]) which is the aggregate of the consumption
readings of all smart meters for time interval Tt can be
obtained. Hence, our scheme fulfills functional requirement
(F1) by allowing the EU to compute the aggregate of the
power readings for load monitoring while protecting con-
sumers’ privacy by not having access to the individual
plaintext readings

In addition to the steps explained above, the ciphertexts of
each SMi should be stored by the aggregator in a vector cBi so
that bills can be calculated over every billing interval TB as
will be discussed in section VI-F, where cBi is:

cBi = [Ci[1], . . . ,Ci[b]]⊤ (18)

As will be discussed in section VI-G2, the ciphertexts of
each SMi, over power theft detection interval TD, should also
be stored by the aggregator in vector cDi so that the EU can
use them as an input to the detector at the end of each TD,
where cDi is defined as follows:

cDi = [Ci[1], . . . ,Ci[d]]⊤ (19)

Be noted that there may be a repeat in the encrypted read-
ings in cBi and cDi since as mentioned before, the aggregator
should save the most recent reported reading from SMi for the
event that it does not transmit a reading due to an insufficient
change in the power consumption.

F. BILL COMPUTATION USING DYNAMIC PRICING
In addition to utilizing the CAT readings for energy man-
agement and load monitoring, they are also used for the
calculation of consumers’ bills in case of using dynamic pric-
ing. This section discusses how the EU utilizes the encrypted
CAT readings for computing bills.

At every billing interval TB, the EU computes the bill using
b encrypted CAT readings (cBi vector) from every SMi, {1 ≤

i ≤ |SM|} as follows.

1) At the termination of every billing interval TB, the
aggregator calculates the billing for the encrypted
aggregated readings Cb

agg[i] for each SMi.

Cb
agg[i] =

b∏
t=1

Ci[t] mod n2 (20)

2) For every billing computation, the aggregator also uti-
lizes the private key xagg to compute the signature. This
is shown in this formula.

σ bagg[i] = xaggH
(
Cb
agg[i]∥Tt

)
(21)

3) The aggregator sends a message to the EU which
contains a tuple of the encrypted aggregated reading,
timestamp, and a signature. The tuple is as follows.

Cb
agg[i]∥Tt∥σ

b
agg[i] (22)

4) To recover the aggregated reading for billing, the EU
first checks whether the timestamp is fresh or not, and
then also validates the signature upon receiving the
message from the aggregator through

ê
(
σ bagg[i],V

)
?
= ê

(
H
(
Cb
agg[i]∥Tt

)
,Ygw

)
(23)

Then, the EU decrypts the aggregated reading for
billing for SMi Cb

agg[i] using the secret key (λ, µ) by
performing the following operations.

D
(
Cb
agg[i]

)
= L

(
Cb
agg[i]

λ mod n2
)

· µ mod n

=

b∑
t=1

mi[t]) (24)

After executing the aforementioned steps, the result
(
∑b

t=1mi[t]) is the sum of the CAT consumption readings
of each SM individually at the end of each billing interval
TB. Hence, our model has attain the functionality requirement
(F2) of computing bills of each consumer.

G. POWER THEFT DETECTION
This section explains the training process of the detection
model and its architecture. Furthermore, it explains how the
EU can identify malicious consumers while protecting their
privacy without accessing the plaintext CAT readings.
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1) POWER THEFT DETECTOR
In AMI networks, recent research results show that power
theft detectors based on machine learning outperform those
based on state estimation and game theory [22]. In particular,
deep learning-based machine learning detectors, e.g., RNN
and CNN [19], [44], are more accurate in identifying power
thefts as opposed to shallow detectors, e.g., support vector
machine and decision tree, [16], [19], [20], [44], [50]. Fur-
thermore, the power theft detector can be either generic, i.e.,
it can be utilized for all consumers, or customer-specific, i.e.,
a tailored detector is trained for each consumer. Therefore,
as opposed to general detectors, customer-specific detec-
tors cannot be employed to detect false-reading attacks until
enough historical power consumption readings for each con-
sumer are collected which may be a challenge, especially for
new consumers. Additionally, customized detectors are sus-
ceptible to contamination attacks, in which new consumers
initially send false readings, and in this case, the malicious
consumers will not be detected if they continue to report false
data [22].

The following characteristics of our detector will be based
on the discussion above. It will be a generic detector that
can be utilized for any consumer (old or new) since it will
be trained on all consumers’ CAT power consumption read-
ings using a deep learning model. By using deep learning,
our detector can recognize correlations in the CAT readings.
Additionally, a hybrid two-stage deep learning architecture
that comprises CNN preceding a GRU and FFN layers is
considered when designing our detector to improve its detec-
tion performance. In our detector, the logic behind using
the sequence of CNN and GRU is that the most distinctive
features in the input CAT readings can be extracted by CNN
while the time-correlations within the extracted features can
be captured by GRU, resulting in high detection performance.
It is note worthy mentioning that the first layer, in our hybrid
detector, is a convolution layer where there are a set of max
pooling layers and independent filters. Moving each filter
over the input and doing dot product operations between the
input and filter are how the convolution process is carried out.
Homomorphic encryption help us perform the dot product
of the encrypted data, hence our model can be evaluated to
protect consumers’ privacy.

2) PRIVACY-PRESERVING EVALUATION OF POWER THEFT
DETECTOR
Our approach leverages the homomorphic encryption’s abil-
ity to perform dot product operations on encrypted data.
Hence, our model is evaluated using the encrypted CAT
readings to protect the consumers’ privacy. In our model
architecture, only the first layer operations are performed
using the encrypted data. The result of these operations are
used by the EU to resume the subsequent layer’s operations.
In homomorphic, given that the encrypted message m is
E(m), and when it is raised to the power x, it results in the
encryption of m multiplied by x as indicated in the following

formula.

E(m)x = gx·m ·
(
rx
)N mod N 2

= E(x · m) (25)

Generally, the main operation in the convolutional layer in
a neural network’s CNN architecture is the dot product which
is represented by z = mW, where m is the input vector and
W is the weight matrix. In our CNN-GRU model, given f
1 − d filters in the first convolutional layer and d features
(input neurons), the dimension of the first layer weight matrix
is represented as (d × f ). In our paradigm, the input vector
is multiplied by W to perform the dot product operation
(mW) of the first layer, yielding to f components which are
corresponding to f dot product operations between each filter
inW and the input. Thus, in order to protect the privacy of the
consumers, the homomorphic encryption’s ability to compute
the dot product operations on encrypted data is used in the
first convolutional layer and get the result that is:

miW , (26)

where the input mi represents the SMi’s CAT read-
ings for the period TD, and it can be expressed by
[mi[1],mi[2], . . . ,mi[d]].

The EU sends the power theft detector’s parameters to
the aggregator so that the aggregator can perform the model
operations and then sends the encrypted results to the EU.
The encrypted results are then sent to the EU by the aggre-
gator at the end of each detection interval TD so that the
EU can decrypt these results by using the homomorphic
decryption key to be able to evaluate the power theft detector.
This process is done for each SMi to identify malicious and
honest consumers. [w1

⊤,w2
⊤, . . . ,wb⊤] represents the f

columns of W , where wj is the jth column of W , and wj =

[wj[1],wj[2], . . . ,wj[d]]⊤ ∈ Zd
q . The following is how the

detection model is evaluated.

• Step 1: The encrypted dot product between each column
of W and the ciphertexts of SMi cDi (encrypted CAT
readings for TD) is computed by the aggregator by the
end of each TD by carrying out the following steps.

Cd
agg[i] =

[
d∑
t=1

mi[t] × wj[t]

]
=

d∏
t=1

Ci[t]wj[t] (27)

where Cd
agg[i] is the encrypted dot product results.

• Step 2: The signature of each encrypted inner product
results for every SMi, i.e., Cd

agg[i] is calculated through
the aggregator’s private key xagg.

σ dagg[i] = xaggH
(
Cd
agg[i]∥Tt

)
(28)

• Step 3: The EU receives a message containing the
encrypted dot product results and its signature sent by
the aggregator. The following tuple should be included
in the message.

Cd
agg[i]∥Tt∥σ

d
agg[i] (29)
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• To recover the dot product results, the EU first checks
whether the timestamp is fresh or not and also vali-
dates the signature upon receiving the message from the
aggregator by verifying the following.

ê
(
σ dagg[i],P

)
?
= ê

(
H
(
Cd
agg[i]∥Tt

)
,Yagg

)
(30)

Then, given the homomorphic decryption key (λ, µ) and
the encrypted dot product results from the aggregator
Cd
agg[i] for each SMi, the EU decrypts the first convolu-

tional layer’s output by performing the following steps.

D
(
Cd
agg[i]

)
= L

(
Cd
agg[i]

λ mod n2
)

· µ mod n (31)

=

d∑
t=1

wj[t]mi[t], j = 1, 2, . . . , b (32)

• The EU continues running the power theft detector by
having the first hidden layer’s output which is the next
layer’s input, and operation is further performed in the
subsequent hidden layers until the final output layer’s
calculation is completed and classification is done.

Therefore, the EU can evaluate our CNN-GRU-based
detector securely at the end of each TD without being able
to learn the CAT readings to protect the consumers’ pri-
vacy. Hence, the functionality requirement (F3) of detecting
power thefts while preserving privacy can be achieved by our
scheme.

In the literature, the HE is used in one of two approaches,
called separation of knowledge [51], [52], [53] and mask-
ing [54]. In the first approach, the EU knows the HE’s private
key but it cannot access the ciphertexts of the individual
readings. Specifically, a non-colluding entity (i.e., the aggre-
gator) aggregates the consumption readings and send the
ciphertext of the aggregated readings to the EU to decrypt and
know the aggregated reading without being able to learn the
individual readings. To protect the scheme against external
eavesdroppers, all the communications between the smart
meters and the aggregators are secured using symmetric-key
encryption. For the masking approach, it does not need a
non-colluding entity. It executes a secret sharing technique
by the smart meters to share secret masks, and then the
meters mask their readings in such a way that by aggregating
the encrypted readings, the total aggregated reading can be
computed because the masks added by the meters nullify.
In this case, if the EU accesses an encrypted reading, it can
only compute a masked reading and it cannot de-mask the
reading because it does not know the secret masks. In this
paper, we prefer the first approach to avoid the overhead of
the secret sharing technique and because some computations
are done by the aggregator and other computations are done
by the EU.

VII. RESULTS AND DISCUSSION
The performance of the power theft detector is evaluated
and the computation and communication overheads are mea-
sured.

TABLE 4. Performance metrics of power theft detector.

A. POWER THEFT DETECTION
1) PERFORMANCE METRICS
TP, TN , FP, and FN are true positive, true negative, false
positive, and false negative, respectively. Table. 4 presents
the performance metrics used to assess our detector in terms
of accuracy (Acc), detection rate (DR), false alarm (FA),
and highest difference (HD). The detection rate measures
the proportion of fraudulent consumers identified correctly,
while the false acceptance rate gauges the portion of hon-
est customers mistakenly categorized as fraudulent. The
highest difference is the difference between the detection
rate and the false alarm rate. The accuracy is the percent-
age of honest/fraudulent customers correctly identified as
honest/fraudulent, respectively. The model’s performance is
better when FA is low, and HD, Acc, and DR are high.
Because there is no current proposal for CAT AMI we can
compare to it in the performance evaluations, we compare
our CNN_GRU detector to a CNN detector because it is
widely used in the literature in case of periodic transmission
AMI [16], [44], [55], [56], [57], [58], [59].

2) RESULTS AND DISCUSSION
In this subsection, we first train a power theft detector using
a CNN model because it is widely used in the literature in
PT AMI, and we consider this model the baseline. Then,
we train a power theft detector using the hybrid architecture
(CNN & GRU model) by adding a GRU model after the
fully connected layer of the CNN. We train the two detectors
using 144 CAT readings reported by the consumers’ smart
meters. To conduct a thorough investigation, the power theft
detectors are trained on both malicious and benign samples
using the dataset discussed in Section IV. ℓ2−regularization
is used while training the model to prevent over-fitting.More-
over, Based on a validation dataset, the hyper-parameters of
the detectors are modified using the hyperopt tool [60] to
fine-tune the quantity of filters and units in the CNN andGRU
layers, respectively, and select learning rate, batch size, and
activation function for each layer. Table 5 shows the optimum
hyper-parameter for the model. Next, the test dataset is used
to evaluate our models. Python3 libraries (e.g., Keras [61]
and Numpy) are used to train our model. These libraries
were installed on high performance clusters of Tennessee
Technological University with an NVIDIA Tesla K80 GPU.
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TABLE 5. Hybrid CNN-GRU-based detector’s optimal hyper-parameters.

TABLE 6. Performance comparison between various detectors.

Table 6 reveals the evaluation results of the CNN-GRU
model and the CNN model. Our model has a higher accuracy
and DR, 97.14% and 97.45%, respectively, in comparison
to the CNN-based model which has 93.85% accuracy and
93.98% DR. Moreover, our model attains a higher HD
(94.28%) compared to the HD of the CNN model (87.7%) as
shown in Table 6. Consequently, it can be concluded that the
detector with a hybrid of CNN & GRU offers the best perfor-
mance due to its CNN layers’ capability to learn distinctive
features from the inputted CAT readings and its GRU layers’
ability to capture the long term correlations among features.

Furthermore, Our model is applicable to all consumers
without the need for collecting prior data from individual
consumers, so it is resilient against contamination attacks.
Figure 7 reveals the Receiver Operating Characteristics
(ROC) curves of the detectors, with the area under curve
(AUC) serving as a measure for accuracy. It is evident from
the results presented in the figure that our model offers supe-
rior performance compared to the CNN model.

B. COMMUNICATION AND COMPUTATION OVERHEAD
Our approach is implemented on Python Charm library [62]
using a 1GB RAM, 1.2GHz Processor, and Raspberry Pi 3.
512 bytes (2048 bits) are used for the primes’ length p and q
in the Paillier Homomorphic Cryptosystem. It is important to
note that, for security reasons, it is recommended the primes’
length p and q should be at least 1024 bits [63], [64].

1) COMPUTATION OVERHEAD
It is the amount of time it takes for each entity in the network
(the EU, the aggregator, and the SMs) to do the computa-

FIGURE 7. Comparison between the ROC curves of the CNN and
CNN_GRU power theft detectors.

tions needed by our scheme. When there is enough change
in the consumption and the smart meter needs to transmit
an encrypted CAT reading, this requires two exponentiation
and one multiplication operations over Z2

n to calculate the
ciphertext, and one multiplication operation for the signature.
In each time slot Tt , after the ciphertexts are received from
w SMs (w ≤ |SM|), the aggregator initially executes w
pairing operations for the batch verification process to verify
the integrity and authenticity of the consumption readings.
Furthermore, it should aggregate the readings of different
SMs by performing w− 1 multiplication operations in Z2

n for
load monitoring and energy management.

The aggregator performs b − 1 multiplication operations
in Z2

n for billing purposes for each SM or a total of (|SM| ×

b−1) multiplication operations for all SMs at the end of every
billing interval TB, after having b encrypted CAT readings (cBi
vector) from each SMi, {1 ≤ i ≤ |SM|}.
For privacy-preserving power theft detector evaluation,

given that the number of filters in the detector’s first hidden
layer is 64, the number of CAT readings is 144, and the kernel
size for each filter is 13, at the end of every power theft
detection interval TD and after receiving d encrypted CAT
readings (cDi vector) from each SMi, {1 ≤ i ≤ |SM|}, the
aggregator needs to perform 1716 multiplication operations
and 1584 addition operations in Z2

n for power theft detection
for each SM for each filter. For simplicity, a total of 132 =

(144 − 13 + 1) dot product operations are needed, where
each dot product operation requires 13 multiplication and
12 addition operations for a total of 1716 = 132 × 13 multi-
plication operations, where 132 is coming from (144−13+1)
and 1584 = 132 × 12 addition operations. Moreover, the
aggregator computes the signature through a multiplication
operation in U for the purpose of load monitoring, billing,
and power theft detection.
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The EU performs one pairing operation to verify the
encrypted aggregated data from the aggregator, and then
it performs one exponentiation operation in Z2

n to decrypt
each aggregated ciphertext. Therefore, the EU performs one
exponentiation operation for loadmonitoring in each time slot
Tt , |SM| exponentiation operations for billing computation
for all SMs at the termination of every billing interval TB,
and |SM| × 8448 exponentiation operations for power theft
detection for all SMs at the termination of every billing
interval TD.

2) COMMUNICATION OVERHEAD
It is the amount of data transmitted between network entities,
i.e., SM-to-aggregator and aggregator-to-EU. The commu-
nication overhead of our CAT approach is compared to the
periodic transmission (PT). PT AMI allows periodic trans-
mission of encrypted readings even if there is no enough
change in the current reading comparing to the last reading,
while in CAT AMI, smart meters report ciphertext of con-
sumption readings to aggregator only when the change in the
consumption comparing to the last reading exceeds a certain
threshold, 10% in this paper. Since 512 bytes Paillier cryp-
tosystem is used, the sizes of an encrypted reading, timestamp
and signature are is 512 byte, 4, and 64 bytes, respectively.
Therefore, given 10 minutes transmission rate (144 readings
per day), the communication overhead among smart meters
and the aggregator is 83,520 (580 × 144) bytes per day
for each SM in case of transmitting the consumers’ power
consumption readings periodically compared to 62,640 bytes
using our scheme. Therefore, there is about 25% saving
gained in the communication overhead (bandwidth) as a
result of using the CAT transmission of power readings.
As can be seen from these results, the communication over-
head incurred in our CAT AMI approach is superior to using
PT AMI even with preserving privacy.

C. SECURITY AND PRIVACY ANALYSIS
Our scheme is capable of achieving the desired secu-
rity/privacy requirements need to thwart the attacks discussed
in Section III-B.

1) SECURE DETECTION OF POWER THEFT
The outcomes presented in subsection VII-A illustrate the
effectiveness of our power theft detection system in identi-
fying attempts made by dishonest consumers to steal power.
To ensure the secure evaluation of our power theft detector,
each SM encrypts its readings using homomorphic encryp-
tion. This encryption allows the EU to compute the output
of the first layer of the detector without gaining knowledge
of the individual meter readings. The resulting output is then
fed into subsequent layers of the detector to determine the
classification result. Furthermore, the EU employs the same
encrypted readings for monitoring, billing, and evaluating the
detector. This approach prevents deceptive behavior from a
consumer who might try to bypass the detector by submitting
two different sets of readings: one for billing and monitor-

ing purposes, and another for theft detection. As a result,
our scheme effectively safeguards against such deceptive
actions, ensuring that it meets the security requirements for
privacy-preserving theft detection.

2) CONSUMERS’ PRIVACY PRESERVATION
To ensure consumer privacy, the CAT readings of the con-
sumers are encrypted in such a way that no entity, including
the EU, can gain access to the individual readings. Moreover,
even if the same reading is repeated at different times, the
encrypted ciphertext appears different due to the utilization
of a unique random number during each encryption pro-
cess. This effectively thwarts any attempts at traffic analysis
attacks. The utilization of a random number, denoted as r ,
must be done only once. Reusing the same random number
can lead to a vulnerability where the difference between two
readings, denoted as m1 and m2, can be obtained by dividing
their respective ciphertexts. By solving the equation gm1 ·

rn/gm2 · rn = gm1−m2 , one can deduce the value of m1 − m2.
Consequently, if one reading is known, the other reading
can be obtained. For the EU to learn the power consump-
tion reading of a specific consumer, collusion with (|SM|-1)
consumers is required. This collusion involves subtracting the
total power consumption of the colluding smart meters (SMs)
from the total power consumption known to the EU.However,
this type of attack becomes infeasible when the number of
SMs in an AMI network is sufficiently large. As a result, our
scheme ensures that no entity within the network, including
the EU, is granted access to the consumers’ consumption
readings, satisfying the requirement for maintaining privacy
in the system.

3) CONSUMERS’ BILLS AND TOTAL POWER CONSUMPTION
CONFIDENTIALITY
Once the encrypted cumulative power consumption of an
AMI is calculated by the aggregator from the encrypted CAT
readings received from smart meters, it is the responsibility of
the aggregator to transmit this ciphertext to the EU for load
monitoring purposes. In the event that attackers intercept the
encrypted readings, they will gain no knowledge about the
individual readings nor the overall power consumption of the
AMI. This is due to the complex decryption process, which
involves a private key exclusively known to the EU. Only the
EU possesses this key, allowing it to decrypt the homomor-
phic ciphertext and obtain the aggregated power consumption
reading. Additionally, the EU is the sole entity capable of
computing the billing information for each consumer. This is
achieved by employing a secret key that is exclusively known
to the EU. As a result, the EU possesses the authority to
access both the overall consumption data of consumers for
load management purposes and the individual billing details
of each consumer.

VIII. CONCLUSION AND FUTURE WORKS
This paper proposes a deep-learning solution for power theft
detection in CATAMI networks while preserving consumers’
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privacy. Specifically, our proposal enables the EU to detect
power theft, compute bills using dynamic pricing, and per-
form loadmonitoring and energy management, without being
able to learn the individual readings of the smart meters.
Disclosing the consumers’ readings jeopardizes consumers’
privacy due to the fact that these readings can reveal sensitive
information about consumers’ lifestyles, e.g., their presence
or absence, the appliances they use, etc. In order to obtain
benign data for the CATAMI, a real power consumption read-
ings dataset is processed, and to generate malicious samples,
a novel collection of attacks specifically designed for CAT
AMI are proposed and implemented on the benign dataset.
Our proposal leverages the ability of the Pailer cryptography
to perform dot product operation over encrypted data in addi-
tion to privacy-preserving data aggregation. The do product
operations are used to evaluate the detector without revealing
the plaintext input readings while the data aggregation is
used for billing, load monitoring, and energy management.
Through extensive experiments, our approach was proven to
accurately detect fraudulent consumers without compromis-
ing consumers’ privacy with reasonable overhead.

For future research directions, in smart grid net-metering
systems, renewable energy generators, like solar panels and
wind turbines, are installed at homes to generate energy.
In this case, houses have batteries that may need to charge
from the grid (buy electricity) or inject power to the grid (sell
energy). In this system, the smart meters report the difference
between the energy consumption and the amount of injected
energy. Positive readings indicate that the house consumed
energy from the grid, while negative readings indicate that the
house injected power to the grid. In our future work, we will
investigate electricity theft in this system.
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