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ABSTRACT Self-propelled machines are the main resources used by the Polish copper ore mining industry
to transport ore from the mining area to reloading points for conveyor transport. Due to the difficult mining
conditions, they must meet high requirements in terms of operational efficiency, safety, and reliability. One
of the most significant challenges is high robustness to dynamic overloads. In practice, they have a strong
dependency on pavement influence during machine movement, the type of operation, and the driving style
of the operator. In this research, we focus on the multivariate analysis of dynamic overloads observed on
a large population of haul trucks operating in different mining areas. The main aim of this study was the
identification of major factors of excessive dynamic overload that result in damage to structural nodes of
machines. In the case of haul track, the joint is such a critical component, that in extreme situations, it breaks
and splits the machine in two. There are proposed methods for assessing the occurrence of dynamic overload
based on recognized mining conditions and operator behavior. In addition, we propose a method to specify
which factors are more meaningful for dynamic overloads. A measurement campaign has been conducted
using a mobile inertial sensor interconnected with a developing IoT platform for predictive maintenance of
mining infrastructure.

INDEX TERMS Dynamic overloads, self-propelled machine, haul truck, IoT, inertial sensor, underground
mining, joint damage.

I. INTRODUCTION
Machine availability and safety in the mine are key aspects
that are constantly being optimized. For this reason, predic-
tive maintenance is one of the main developing directions in
the mining industry. A rather neglected issue so far concerns
the monitoring of the road condition (surface quality, slope,
potholes) and its impact on the presence of dynamic loads in
underground mining. Poor quality of the road in connection
with an incorrect adaptation of driving style to operating
conditions can lead to high intensity dynamic overloads with
a shock character. Basically, the design parameters of the
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machines given by the manufacturer assume the ability to
overcome much greater dynamic overloads than occur in
typical conditions in an undergroundmine. However, practice
shows that it is not always possible to maintain the desired
state. It is also related to the occupancy of the machinery
park in a given mining division, the topography of the mine,
and the type of rock that builds the road. Excessive over-
loads during operation significantly reduce the durability of
structural joints. Such a case is the joint of the haul track.
Its damage is typically fatigue. In the first phase, there is a
looseness in the connection, which results in micro-damage.
Its further propagation causes a crack of the entire horizontal
pivot [1]. Exemplary damaged cases have been presented
in Fig. 1.
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FIGURE 1. Breakage of the horizontal pivot – damage to the joint.

Replacing the joint is one of the most expensive mainte-
nance tasks. A failure that halves a machine is an extremely
undesirable event. When it comes to adjusting the design
parameters, the possibilities are also limited because of the
set wheel dimensions, maximum machine height, expected
turning ability, travel speed of the machine, and volume of
the cargo box. However, there is a large correlation between
the intensity of the failure under consideration and the
mining condition. In the case of large multi-site mining enter-
prises such asKGHMPolska-Miedź (KGHMPolish Copper),
such failures were actually associated with specific mining
departments. One of the preventive actions was the periodic
tightening of a mechanical nut to eliminate the looseness in
the connection. Next, a hydraulic nut has been applied for the
automatic correction. This solution significantly mitigates the
impact of dynamic overloads. Other research has also been
directed towards the development of methods for diagnosing
backlash in the joint [2]. The road quality assessment method
based on inertial measurements was also developed [3].

This study focuses mainly on the analysis of dynamic
overload factors to which the machine is exposed during
typical transport operations. In the mining industry, there
are used machines and installations whose size and weight
strongly exceed the size and weight of objects in other
industrial branches. The scale of these objects determines
their dynamics and external characteristics, including loads
with large energy at low frequencies and low cycles. Exem-
plary recognition of dynamic overloads with a low cycle
of influence on heavy-duty machines in the example of a
multi-bucket excavator is presented in [4]. As the authors
point out, the vibrations of the heavy duty machines are a
major factor that has an impact on the reliability of the load-
bearing structure. Common calculation instructions known
from the literature do not assume the coefficients of dynamic
effects. In the majority of cases, the operation conditions

introduce more energy into construction than the set cal-
culation level. Identification of relationships between the
dynamics of load-bearing structure and the variability of
chassis load is necessary to gain more information about
the cause of elements’ fatigue. On this basis, the definition
of modified methods for durability calculation is possible.
Mining machine dynamics is one of the crucial steps in the
design process.

In the case of mining machines, operating loads very often
have a shock character [5], [6], [7]. The transport system
and technological movements (such as driving, rotation, and
lifting) are key factors of shocks for each kind ofmachine. For
wheeled vehicles, the load level depends on the interaction of
the complex system: vehicle (body, chassis, tires) ↔ inter-
nal equipment ↔ environment (mainly road conditions) ↔

external load ↔ operator (mainly driving style), Fig. 2 [8].

FIGURE 2. Scheme of interaction for the main dynamic overload factors
in relation to: wheeled vehicle – operator – internal equipment –
environment [1].

Operating loads of an impulse nature have a significant
impact on the vehicle’s technical condition, its internal equip-
ment, and the psychophysical state of the driver [9]. The
wheeled vehicles moving on the roads (especially with high
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amplitudes of pavement profile variability) are constantly
exposed to dynamic influences [10]. Investigated loads have
a complicated structure, and they reveal differences in terms
of values, duration, intensity, or direction of force (vertical,
horizontal, or longitudinally). Basically, they depend on:

• High and varied in time driving resistance resulting from
road conditions and observed force reactions.

• Operation of rotational elements (drive system, engine).
• Inertia forces (skidding, driving around a curve, rapid
acceleration).

• Dynamic loads occur as a result of moving at high
speed in varied pavement conditions (especially over
bumps) [9].

Considering self-propelled machines, there are also other
external sources of dynamic overloads that are connected
with the machine, like the operation regime, a condition in the
mining area, unexpected events, etc. The most important are:
the loading and unloading of bucket/cargo box; driving with
a full bucket/cargo box; the machine hitting the wall; and the
impact of a lump of rock against the machine housing. More
extreme cases are tire bursts, the collapse of the excavation
roof, collisions with other machines, or the detonation of a
misfire. In the mining area with a low roof, the situation when
the loader bucket presses the cargo box during the loading
process is very common.

The aim of this paper is to analyze dynamic overloads
in terms of factors like workplace conditions, the operator’s
driving style, operations performed, vehicle equipment, and
the occurrence of failures. It has been proven many times that
dynamic overloads negatively affect the health of themachine
and can lead to serious damage. It has been proven many
times that dynamic overloads negatively affect the health
of the machine and can lead to serious damage. By estab-
lishing which factors cause the highest dynamic overloads,
one can introduce countermeasures like driving policies. The
effects of which should be visible in a long time window by
improving the general condition of machines and reducing
the number of unannounced failures.

The article is structured as follows. Section II presents the
related works. In Section III, a description of the research is
presented. The methodology used for the analysis is included
in Section IV. Section V contains a definition of the model
for detecting turns, a description of operator evaluation,
a presentation of the statistics used, and the factor model
explanation. Section VI presents the actual data analysis, and
Section 7 contains a summary and conclusions.

II. RELATED WORK
Generally, research oriented toward factors and consequences
of dynamic loads influence on mechanical vehicles has been
conducted for many years. Unfortunately, they mainly con-
cern light weight vehicles and are usually focused on the
load’s impact on the operator [11]. The assumptions of
research very often deviate from real machine operational
conditions and do not include the variability of pavement
height profiles.

Parameterization of vibrations recorded while the machine
is moving in the excavation allows for the acquisition of
characteristics and comparative indices. The methods of
assessment for road quality known in the literature have been
described in [1]. So far, experimental results have shown
that the characteristics of the chassis, the increase in driving
speed, the type of road surface, and the degree of bumpiness
have a key impact on the increase in dynamic overloads. The
same conclusions have been drawn by [9] during the study of
combat vehicle types, considering them also as a heavy-duty
machines. In this study, the authors used the measurement of
vertical accelerations of the hull element, pressures acting on
the vehicle hull elements, and deformations occurring at its
bottom. Various measurement points have been defined. The
level of temporary dynamic loads occurring on the elements
of the driving system, resulting from the impact of the road
surface, is most often modeled with the peak values of the
amplitudes of their vertical acceleration [9], [12], [13]. In
order to determine the level of vibration energy of vehicle
components, there are also known in practice quantitative
measures such as the RMS value of changes in vertical accel-
erations [14], [15]. An effective parameter for comparative
analysis of the level and frequency structure of vibrations of
machine components resulting from road conditions is the
power spectral density calculated from vertical accelerations
[15]. Similar research has been presented by the authors
of a paper [16] where an off-road passenger vehicle was
investigated. They usedmeasurements of the acceleration and
deflection of the front axle suspension and the acceleration
of the body frame for various road conditions. They deter-
mined comparative indicators as well as presented statistics
describing the level and frequency structure of dynamic loads
occurring on the chassis as a result of driving on a road
with a variable height of the ground profile. The study used
the average of the 10 highest values: accelerations measured
respectively on the driving axle (a) and separately on the
frame (b) and suspension deflection (c), then RMS acceler-
ations recorded on the driving axle (d) and frame (e), and
PSD measured on the driving axle (f) and on the frame
(g). In turn, in research [17], the author conducted advanced
research related to the analysis of the impact of filling the
dump truck’s cargo box and the unevenness of transport
roads on the dynamic forces of the elements acting on the
dump truck operated in an opencast mine. The main purpose
of the research was to identify the interaction of the road
with the dump truck as well as the reaction of the road to
dynamic loads observed on the machine. Many articles raise
the question of operators’ driving style assessment [18], [19],
[20], [21], [22] and road condition classification [23], [24].

III. DESCRIPTION OF RESEARCH
The presented research was part of a complex study oriented
toward finding the main cause of intensified damages to
joints of haul trucks in strictly defined mining areas. To
achieve this goal, a massive measurement campaign was
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carried out covering 3 KGHM copper mines (Lubin, Rudna,
and Polkowice-Sieroszowice mines). This action resulted in
the collection of over 192 measurement samples from almost
20 haul trucks, giving a total of 2462 recorded work hours.
During this research, it has been proven that the dynamic
overloads were the main cause of the damage, and a method
for early fault detection was introduced [2]. However, preven-
tive actions are needed to address this problem, which is the
motivation for this study. In this section, the details about the
object of interest, sensor specification, and experimental data
gathered are presented.

A. INVESTIGATED TECHNICAL OBJECT
The investigated technical object is a haul truck. All machines
included in the experimental workwere produced by the same
manufacturer. Basically, two types of vehicles were tested,
which do not differ significantly in their design. The weight
of the exemplary machine is roughly 25 Mg with a nominal
payload of up to 25 Mg. Its approximate dimensions are
around 3mwide, about 10m long, and 2m high. Themachine
can move at a maximum speed of 25 km/h (in 4th gear). The
vehicle’s main task is to haul the excavated material between
mining faces and department dumping points. It is possible
to indicate four typical operations in every individual cycle
of ore transport: (a) loading of the cargo box at the mining
face; (b) driving with a full box; (c) dumping material onto
a grid (screen) in the department transshipment point; and
(d) driving with an empty box back to the loading zone. The
considered haul truck, along with the general design scheme
and more detailed 3D visualization of the joint, is presented
in Fig. 3.

FIGURE 3. General type of haul trucks participating in the experiments
(A), general construction view of the machine (B), close up structural view
of the turning mechanism (C).

The machines that took part in the experiments were
structurally adapted to work in difficult underground mine
conditions. The research conducted concerns a specific test
object, which is heavy machinery operated in underground
tunnels 1 km below the surface. Although the assumed
research methodology may seem appropriate for this group
of machines, according to the authors, it can be success-
fully applied by analogy to other types of wheeled machines
providing the transport process because the considered

operational issue is common among them. Differences may
be noticeable in the size of the measured parameters and
their impact on the efficiency and technical condition of the
machine.

B. THE SENSORS SPECIFICATION
In the thesis of our study, we expressed our belief that the
use of a mobile inertial sensor will ensure tracking of the
haulage process, identification of dynamic overloads, and
operational contexts occurring during the movement of the
machine from point A to point B (road gradient, turn at
the intersection, road quality) and forces acting on the joint
or loosening identification itself. Further synthesis of this
information will provide access to valuable knowledge in
the fields of machine performance, operational conditions,
the course of machine movement in mining excavations, the
driving style of operators, and finally their impact on dynamic
overloads. Further comparative and factor analysis can be
used to identify the main causes of cracking of horizontal piv-
ots, which are crucial to further drawing design and operation
recommendations aimed at mitigating dynamic overloads.

Thus, it was decided to apply inertial sensors in our study.
Two of these sensors were mounted on each of the machines
that took part in the experiments. Due to warranty issues,
it was necessary to use non-invasive IMU sensors with their
own energy source. To protect them from damage and min-
imize the influence of the environment, each of the sensors
was covered in a steel housing. The first measuring device
was located on the working unit (back) and the second on
the driving unit (front). The sensors used in the measurement
campaign were the x-io Technologies NGIMU (New Gener-
ation Inertial Measurement Unit). Such a device includes a
triple axis: a gyroscope, an accelerometer, a magnetometer,
and a humidity measurement (giving a total of 10 degrees of
freedom). The sensor specification declares a 400 Hz sam-
pling rate for each of the triple axis variables; however, the
real sampling rate is closer to a stable 360 Hz. The NGIMU
Sensor, along with the mounting positions and steel housing,
is presented in Fig. 4.

FIGURE 4. A: The location of measurement points, B: NGIMU sensor unit
used, C: The method of installation sensor on the vehicle and the steel
housing of the device.

Unfortunately, due to measurement in underground mine
conditions as well as enclosing the sensor in a protective
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steel housing, the readings from the magnetometer were use-
less. Thus, only accelerometer and gyroscope signals have
been analyzed. When it comes to the dynamic overloads, the
accelerometer measurements are of most use as they describe
the vibration levels. Therefore, the main focus was put on
data from the Z-axis because it is directly related to machine
vibration levels on the vertical axis. Regardless, because of
the transmission of vibrations between the axes, X-axis and
Y-axis measurements were also analyzed. An example of the
waveforms of the analyzed variables is presented in Fig. 5.

FIGURE 5. Example of waveforms acquired from selected triple axis
variables with using the NGIMU sensor, blue – gyroscope, red –
accelerometer.

Finally, readings from humidity sensors were deemed use-
less as they are not related to the machine or the operator
and only describe the conditions inside the steel housing. In
addition, as the experiments were carried out in underground
mines, the humidity of its environment is a very fluent factor
and should not be used in this type of analyses. As for the
variables utilized, apart from the sample rate little being a
lower than declared, the data was of excellent quality with
little to no missing values.

C. THE SAMPLE DESCRIPTION
Overall, 3 underground mines (M1–M3) were subdued
to the experiments, consisting of 4 mining regions
(D1–D4), 7 heavy machinery chambers (C1–C7), and 8 min-
ing divisions (I–VIII). All of this resulted in 19 haul trucks
(HT1–HT19) driven by a total of 60 operators. The general-
ized scheme of the enterprise organization that took part in
the experiments is presented in Fig. 6.

Each of the measurements was performed using the same
method. Sensors were installed a while before the start of
machines’ operation. Then such machines worked two full
shifts, after which the sensors were dismounted. So, as a
sample, we define the data from 2 sensors covering 2 full
work shifts. After the completion of one measurement sam-
ple, both sensors needed to be recharged before the next

FIGURE 6. Generalized scheme of the mining hierarchy that took part in
the experiments.

usage. Unfortunately, due to limitations related to conducting
the measurement campaign in the operating conditions of the
underground mine, it was impossible to obtain continuous
measurements on a daily basis, shift after shift. Most often,
the time betweenmeasurements (i.e., two working shifts) was
1-4 days.

One of the more meaningful aspects of this research was
the study of operator influence onmachines’ vibrations. In the
subsequent sections, the operators are compared in ranking
based on proposed methods. Moreover, there is a an indica-
tion of the relationship between the operator’s driving style
and the failure rate of vehicles. To summarize, a quantitative
view of data is the presented in Fig. 7.
A greater number of measurements observed in the red

group concern the mine, where a very high level of joint
failure rate was noted. The HT6 and HT3 are the machines
with the lowest mileage between failures. The green group
concerns mines with mining divisions where machines are
exposed to low, medium, and high overloads. The yellow
group, on the other hand, is a mine where road conditions
are the best and the level of overloads and joint failures is the
lowest.

IV. METHODOLOGY
The dynamic overloads were investigated through machine
vibration analysis. Through this process, four main fac-
tors with the largest impact on machine vibrations were
established. Those factors are: the machine’s working envi-
ronment, the machine operators, the part of the transportation
process, and the vehicle equipment. As shown in Fig. 8,
each of the factors was treated as a dimension for future
analysis. For this task, metrics presented later in this article
were established, as well as two supplementary algorithms.
The first one was created to estimate machine driving speed,
which differed strongly with regard to parts of the process and
operator driving characteristics. The second algorithm was
created for detecting moments of machine turning (with two
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FIGURE 7. Number of samples and duration of samples for each: haul truck and mine department.

types of turns being recognized) and was also connected to
the environment (road layout of the mine).

The algorithms were established as a supplementary
insight, as all of the metrics utilize only the raw readings
(mostly from the vertical axis of the accelerometer). All of
the below-mentioned analyses were carried out on signals
that were segmented into individual cycles. The segmenta-
tion process was carried out by hand, as individual cycle
components were only slightly visible in the raw signals.
The division of raw signals into cycles and their components
introduced a common ground for further analyses, enabling
various forms of comparison between them.

FIGURE 8. Main dimensions that took part in the analysis along with
their connection to algorithms.

A. SELECTED MEASURES
Measures used in the analysis of dynamic overloads are pre-
sented in Table 1. All of them can be calculated on different
scales of segmentation (whole day, one shift, one cycle, one
cycle component, etc.), and while they can be applied to all of
the signals, they were calculated only for the accelerometer
Z axis. The utilized measures were: quantile 0.99, quantile

0.90, quantile 0.95, quantile 0.80, the mean of the 10 highest
values, range, and the driving time with low, medium, and
high vibrations. Selected measures are calculated for single
cycles and operations (separately for both sensors).

TABLE 1. Measures proposed to give insight into dynamic overloads
based on vibration.

Both of the thresholds (mentioned in the above table) are
established based on several samples (for haul trucks HT2,
HT3, and HT4) and are determined separately for various
axes and sensors. The first threshold is the quantile 0.60 of
the data, while the second threshold is the quantile 0.9. The
established thresholds are shown in Table 2.

All described measures can be used to assess the level of
vibration in three axes. The upper quantiles indicate the val-
ues of the largest vibrations and, at the same time, do not take
into account the most outliers. The average of the 10 highest
values allows one to analyze the largest vibrations along with
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TABLE 2. Thresholds for measures: driving time with low/medium/high
vibrations.

outliers. The range defines how much the amplitudes change.
In turn, the driving time at individual vibration levels shows
how long the machine was exposed to high, medium, or low
overloads. From all of the above-mentioned measures, it was
found that two of them are especially crucial when it comes
to dynamic overloads. Those measures were the mean of the
10 highest values in the Z axis of the accelerometer, along
with a percentage of driving time on high vibrations.

B. TURNS MANEUVERS IDENTIFICATION
For the turn detection (i.e., moments in time when the haul
truck turns) the Z-axis readings from a gyroscope were uti-
lized. However, firstly, the raw angular velocity measurement
from a gyroscope needed to be processed to form the yaw
rotation angle. This action can be done using the numerical
integration presented in (1).

ψ (t) =

∫ T

0
ωZ (t) dt, (1)

where ψ is the Yaw angle as a function of time t and ωZ
is the angular velocity in the Z-axis. From this point, there
are many possible ways to detect the turn. In this particular
research, the algorithm presented in [24]. The authors of the
selected publication verified several classification methods
and finally presented a method based on the random forest,
which was incorporated into the presented analyses. The
simplified scheme of the algorithm is presented in Fig. 9.
The yaw angle data from one shift (6 hours) is used as the
algorithm input. This vector is then split into one-second frag-
ments from which a set of measures is calculated (standard
deviation, range, median, interquartile range, and kurtosis).
Such statistical sample is then used tomake a prediction using
a random forest classifier. The output of the classifier is a
categorical variable that can take 3 possible values: 0 – the
vehicle did not turn during the recorded segment; 1 – the
vehicle did a turn of 40◦-70◦; or 2 – the vehicle did a turn of
70◦-100◦. To train such classifier, a selection of recoding was
utilized, where all turns in categories 1 and 2 were marked by
a human.

Determining the vehicle’s turning moments enables a more
accurate analysis of the haulage path. For example, more
turns can cause more dynamic overloads, especially when
there are difficult conditions such as narrow corridors.

FIGURE 9. Simplified procedure for turns identification.

C. ESTIMATION OF VEHICLES SPEED
Possible speed levels are tightly connected to the environment
in which the machines are currently working. Unfortunately,
most of the machines were not covered by the monitoring
systems (except for HT1, HT17, andHT18) which include the
measurement of this variable. Instead, a very crude approx-
imation of the mean speed can be obtained by dividing the
length of the haulage path by the time of each haulage oper-
ation. Information about haulage routes is extracted from the
CMMS system utilized by the mining enterprise. The time
from each cycle is the length of the driving operation acquired
by the previously mentioned segmentation. It should be noted
that the haulage lengths extracted from the system may be
affected by errors. Speed is another factor that may affect
dynamic overloads, so it is worth including this parameter in
the analysis. Driving at high speed with an empty box can
increase its value.

D. OPERATOR RANKING
The ranking of operators was performed with the developed
metric connected with Z-score statistics calculated for (a) the
mean of the ten largest amplitudes and (b) the ratio of stan-
dard deviations for the driving time with high and medium
vibrations. Their position in the ranking is determined based
on this score. The score takes into account the fact that one
operator can drive several trucks. Only measurements from
the rear sensor are considered. The score (for the selected
axis) is given by the following equation (2):

SCORE

= 200 −
1
2

·

(∑
i
wi ·

(
x̄op,i − x̄i

σi
+ 100 +

dop,i
di

· 100
))
(2)

where: i determines the vehicle index; wi is the weight of the
i-th vehicle; x̄op,i describes the mean of the 10 highest values
for the selected operator and i-th vehicle; x̄i is the mean of
the 10 highest values (of vibrations) for the i-th vehicle (and
all operators); dop,i is the sum of the ratio of the driving time
with high and medium vibrations for the selected operator
and i-th vehicle; di is the sum of the ratio of the driving time
with high and medium vibrations for i-th vehicle (and all
operators); and finally, σi denotes the standard deviations of
the 10 highest values for i-th vehicle (and all operators).
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The operators for whom the length of the collected samples
was inadequate (shorter than the average for all measure-
ments) do not receive the score. The score is not calculated
when the number of cycles performed during the operator
shift is too small. Thanks to omitting operators with insuffi-
cient data, it is possible to avoid the situation where the score
would be overstated by a single measurement (that may or
may not determine the operator’s driving behavior).

Receiving a score of 100 by an operator means that he does
not stand out from other operators driving the same vehicles.
A score above 100 means that the statistical values of the
operator are lower than the values for the population (results
from the vehicles that the operator was driving). Therefore,
it can be assumed that his driving style is more subtle than
that of operators who obtained lower ratings.

E. THE FACTOR ANALYSIS
Factor analysis is a useful approach that enables one to iden-
tify which features are the most influential in a particular set
of variables. In this paper, this analysis is applied to examine
which factors affect vibrations the most. Based on previous
conclusions (concerning statistical analysis), such analysis
was carried out by connecting the model with two measures:
the mean of the ten highest values (model 1) and the percent-
age of the driving time with high vibrations (model 2). For
this reason, two random forest classifiers were created, one
for each measure. The following independent variables were
used in each of the two models: process, operator, vehicle,
number of cycles, heavy machinery chamber, mine region,
mine.

The quality of the fit can be assessed by calculating the
mean square error. After the initial starting calculation, the
individual factors are sequentially excluded from the models.
After each iteration, the MSE metric is recalculated. This
operation allows one to check how much the quality of the
fit changes. For instance, if the factor ‘‘process’’ is removed
and the quality of the model does not change, then it can be
concluded that the ‘‘process’’ is not influential. On the other
hand, for significant factors, the quality of the model dete-
riorates after excluding the procedure. Hence, their presence
affects the model and results, which is an important factor for
estimating the level of dynamic overload.

V. REAL DATA ANALYSIS
Performing a full multidimensional analysis requires first
determining the key factors influencing the observed dynamic
overloads. Therefore, both of the models are tested on actual
data from the Z-axis of the accelerometers, and their metrics
are presented in Table 3.

These results confirm that the models can be used to
evaluate the significance of variables (and their impact on
the resulting metrics. Therefore, in the next stage, all of
the variables can be sequentially removed, and the MSE
of the models can be monitored to estimate their influence on
the metrics. Results from that action are presented in Fig. 10.

TABLE 3. Comparison of the resulting metrics obtained for both models.

FIGURE 10. Importance of the variables on the vibration level.

Both models agreed unanimously that the most influential
factor is the type of operation performed (process). This is an
expected result, as it is intuitive to think that larger vibrations
occur when a machine drives with an empty box than with a
packed box. In addition, signal fragments related to loading
the box have characteristic peaks (shocks that are classified
as large vibrations). The method showed that the second most
influential factor is the operator. However, this information
is not fully reliable because each operator usually works in
one place and on one machine. Therefore, such information
is already partially coded in vehicle and workplace variables,
which in turn lowers their importance. The method would
be more reliable if each operator would move to different
machines and the machines would move in various regions.
Unfortunately, for various reasons, this action was impossible
to perform, even on a smaller sample.

A. COMPARIVE ANALYSIS—MINES, MINING
DEPARTMENTS, AND PROCESSES
The comparative analysis starts with an examination of the
mine’s influence on the vehicle’s vibration characteristics.
Previously, it was mentioned that the most significant dif-
ferences can be seen at the rear sensor (Z-axis); therefore,
all metrics and values in this section are presented only for
this axis. Mining departments are compared using a percent-
age of driving with a high vibration metric calculated for
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each cycle component. Such a comparison is presented in
Fig. 11, and it is clearly seen that the mines and mining
department do have an impact on dynamic overloads. The
vibration level in M1-D1 and M3-D4 is lower than for the
other mining departments, and there are differences between
the areas within one mine (much more outliers in M1-D2
than in M1-D1). However, one possible cause for that is
that samples from D1 come from a single haul truck, which
can translate to a smaller number of outliers associated with
differences between machines. Overall, the results are the
same as expected, as different mines and mine departments
are managed differently and possess different environments
(e.g., road conditions that translate to vibration and make it
possible to acquire more speed).

FIGURE 11. Percentage of driving time with high vibrations, A - sensor on
the working unit, B - sensor on the driving unit.

FIGURE 12. Comparison of dynamic overload rates between mining
departments at the different processes of the cycle (mean of the
10 highest values for Z-axis accelerometer located on the working unit);
(A) driving with full box, (B) driving with an empty box, (C) dumping
material, (D) loading of the cargo box.

Similar analyses were carried out using the metric describ-
ing the ten highest values. Results from such a study, divided

FIGURE 13. Mean number of turns in one cycle per mining regions and
heavy machinery chambers.

FIGURE 14. Scatterplots of the centroids for particular haul trucks
(including mining departments). Measures calculated for the Z-axis
accelerometer located in the working unit.

not only for the mines but also for different cycle compo-
nents, are presented in Fig. 12. The general values of these
metrics for the whole mine department are consistent with
the previous metric. As for the processes, driving with an
empty box and loading generate substantially more dynamic
overloads than their counterparts (driving with a full box and
unloading). Overall, driving with an empty box can always be
considered as a process with the highest dynamic overloads.
On the contrary, unloading can be described as a process of
least vibrations.

To better investigate the working places, it was decided to
check the average number of turns made by machines in one
cycle in individual heavymachinery chambers in eachmining
region (Fig. 13). It can be seen that the most turns are in
M3-D4 and the second place is in M1-D1. As shown above,
these two mining regions also have the smallest values of
dynamic overloads. This means that a higher number of turns
does not directly affect higher dynamic overloads.

B. THE VEHICLE AND ENVIRONMENT RELATION AND ITS
IMPACT ON OVERLOADS
The previous analysis confirmed the impact on the work envi-
ronment. Therefore, the next step was to access the influence
of the machine. This was done by comparing all haul trucks
on the plane constructed using two metrics. To achieve that
task, for each machine, all its samples were taken, and a
single centroid was calculated from them. In that way, all
of the machines can be visualized on a single plot (Fig. 14)
without too much noise or data overflow. It can be seen that
machines generally fall into one of 3 groups: small, medium,
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FIGURE 15. Comparison of the average speed and the mean of the 10 highest values for the Z-axis accelerometer located in the working unit
for various machines, divided into driving with an empty and a full box.

FIGURE 16. Rankings for operators and their relation with machines - A) The scatterplots for particular operators of HT2, and the
ranking of the operators. Measures calculated for Z-axis accelerometer located in the driving unit. B) Table with score values for each
operator. C) The comparison of the vibration levels (the mean of the 10 highest values; the sensor located on the working unit) for
different operators and machines.

or high dynamic overloads (marked on the plot as green,
yellow, or red areas).

Then, it was decided to determine the average speed for
each machine and compare it with dynamic overloads occur-
ring on the working unit. Fig. 15 shows the mean speed and

the mean of the 10 highest values with division into two
processes of the machine’s cycle: driving with an empty and a
full box. It is visible that the speed is not directly proportional
to dynamic overloads, but some relations are worth noting.
Usually, the speed of driving with an empty box is slightly
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lower than the speed of driving with a full box. The exception
is the whole M3-D4, where probably better road conditions
allow for faster driving with an empty box. Another case is
machine HT4, for which there is the highest value of the
dynamic overloads statistic when driving with an empty box.
Driving too fast with an empty box can, in this case, cause
high dynamic overloads. In another respect, the HT16 stands
out as it drives much faster with a full box than with an empty
one. However, it does not seem to have a significant impact
on overloading. The lowest speeds are visible for the HT7
machine, which does not mean small overloads. This shows
that speed, and especially its adaptation to the conditions, can
have an impact on dynamic overloads, but it is not obvious
due to other factors.

C. THE HAUL TRUCK AND OPERATOR RELATION AND ITS
IMPACT ON THE OVERLOADS
For a presentation of the relationship between a haul truck
and its operators, an HT2 was chosen. This specific vehicle is
characterized by very high vibrations on the rear sensor while
driving with an empty box. For this particular machine, the
high vibrations observed when driving empty are not present
when the vehicle is loaded. This is with the exception of
Operator 1, whose driving style probably causes additional
overloads for the sensor on the working unit. In addition,
one sample for this operator was recorded during a machine
failure; therefore, it can influence his score. As mentioned
earlier, vehicle operators are compared using ranking. The
one overall rating is the arithmetic mean of the scores from
all axes. As cycle operations are statistically significant, it is
possible to make the operator’s score depend on them. One
of such rankings is presented in Fig. 16.

The main tool for comparison is the scatterplot with the
ranking of operators (rating concerning the Z-axis). Operators
with higher vibrations get fewer scores, and one can clearly
see that some of them have generally elevated values. When
one haul truck is being driven by more than one operator,
it is possible to put them together and compare the results
with the use of boxplots. Usually, such comparisons point out
that vibrations are similar and mostly depend on the machine
that is being driven. Nevertheless, there are cases when such
a comparison shows an outstanding difference, pointing out
that one operator’s driving style is good or bad enough to
overcome the impact of the machine.

VI. CONCLUSION
The main purpose of the research was to examine the distri-
bution of dynamic overloads on haul trucks and their factors
in various operating conditions that could explain signifi-
cant differences in the frequency of failures between mining
departments in three KGHM underground mines. Joint fail-
ures are unfavorable not only from an economic point of
view but also pose a real threat to the life and health of the
operator himself as well as employees in the vicinity of the
machine. In the study, it was decided to use a non-invasive
inertial measurement unit. Since it was impossible to mount

the sensor on the joint itself, it was decided to use two sensors
on one machine. One was monitored on the drive unit and
the other on the working unit. The main objective was to
observe the mutual behavior of these units in three axes in dif-
ferent road conditions, machine operations, and approximate
recognition of the distribution of forces acting on the unit
and the machine’s joint. Due to the fact that damage to hori-
zontal joint is typically fatigue-related, the main emphasis in
the work was placed on examining a number of regularities
of dynamic overloads, especially those with impact action.
Three-axis accelerometers and three-axis gyroscopes were
used as the main source of data on overloads and the reaction
of forces acting on the joint in various operational situations
of the machine. Identification of the distribution of overloads
and the sources of their formation required proposing an
appropriate statistical description. In order to recognize the
factors influencing the form of the recorded overloads and the
regularities accompanying them, it was necessary to conduct
a multidimensional analysis by:
1. signal segmentation for the purposes of identifying the

components of the operation (working shift, haulage
cycle, loading, driving with a full cargo box, unloading,
driving with an empty cargo box, operational standstill,
turning the machine, driving on an access road);

• selection of representative samples (operator, region,
mining department, critical machine, access road, fail-
ure, looseness, etc.);

• data processing in various contexts and configurations.
The key analytical directions included:
1. Factor analysis.
2. Comparative analysis between the mines, their regions,

and operations.
3. Testing the relationship between the machine and the

workplace at the level of recorded overloads.
4. Examination of the machine-operator relationship to the

level of recorded overloads.
5. Testing the relationship between average speed and

number of turns per cycle to the level of recorded
overloads.

The level of influence of variables: operation, operator,
vehicle, number of cycles, chamber, region, and mine on the
level of vibrations was tested using random forests based
on statistics: the average of 10 maximum values in the Z
axis and the percentage of work time at high vibrations. The
most informative variable is the operation. This result con-
firms the relationships noted during the preliminary analyses
(e.g., greater vibrations when driving with an empty box than
with a full one). The method showed that the vibration level
is next affected by the operator. However, it was indicated
that this study has some limitations, mostly because each of
the operators during the tests usually worked in one place
and on one machine, so this information is already included
in this variable. This lowers the importance of vehicle and
workplace variables. Thus, the impossibility of determining
the actual weights of the impacts of individual variables with
this method was demonstrated. Additionally, attention should
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be paid to a number of factors that will negatively affect the
interpretation of the results:

• There is no continuous monitoring of all machines at the
same time.

• Lack of measurements of the work of a single machine
in all areas of the mines subjected to the study.

• Operators do not drive all machines in all areas. So the
impact of the workplace is also included in the operators
and the machine.

• Lack of current information about looseness and damage
to the joint.

• No measurements directly from the machine’s joint.
• No monitoring of tire pressure parameters.
Nevertheless, the interdependence of factors and the need

to perform an exploratory analysis were shown. Further anal-
ysis was necessary, taking into account the comparisons:
operator – machine, machine – workplace, and a number
of other variables. The general level of vibration recorded
in individual mines was compared, taking into account the
regions and departments present there. A large diversification
in the level of overloads was shown both between the mines
and the mining departments located there. This suggests a
predominant influence of the workplace on dynamic over-
loads. A comparative analysis of the regions was carried out
in terms of the size of the overloads observed in various oper-
ations of the vehicles. It was noticed that one region clearly
lags behind in all types of operations of the haulage cycle
compared to the areas with the normal level of overloads.
Using the statistics of dynamic overloads, a comparison of
machines was made, taking into account their place of work.
It has been observed that, to a large extent, machines can be
grouped by regions. When comparing the level of vibration
measured during the work of different operators on the same
machines and mining areas, we usually do not observe large
differences in the values. There are individual cases when
the level of vibration for selected operators is much higher
than for the rest. It is possible, however, that the technical
condition of the machine has an impact on this. Some such
cases have been correlated with failure. It seems that the
machine itself has a greater influence on the vibrations than
the operator.

The findings presented in this research have important
implications for the mining industry, and possibly, other
industrial areas with heavy-duty vehicles. Understanding the
behaviour of dynamic overloads and their relation to certain
work-related factors is crucial to ensure the safety of humans
and machines. Companies can either use relations presented
in this paper, that were established on an example of KGHM
mines or perform a similar analysis on their own. In the
authors opinion, the main application of this study lies in the
implementation of policies based on the results obtained.
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