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ABSTRACT We focus on a distributed learning problem in a communication network, consisting of N
distributed nodes and a central parameter server (PS). The PS is responsible for performing the computation
based on data received from the nodes, which are transmitted over a multiple access channel (MAC). The
objective function for this problem is the sum of the local loss functions of the nodes. This problem has
gained attention in the field of distributed sensing systems, as well as in the area of federated learning
(FL) recently. However, current approaches to solving this problem rely on the assumption that the loss
functions are continuously differentiable. In this paper, we first address the case where this assumption does
not hold. We develop a novel algorithm called Sub-Gradient descent Multiple Access (SGMA) to solve the
learning problem over MAC. SGMA involves each node transmitting an analog shaped waveform of its
local subgradient over MAC, and the PS receiving a superposition of the noisy analog signals, resulting in
a bandwidth-efficient over-the-air (OTA) computation used to update the learned model. We analyze the
performance of SGMA and prove that it has a convergence rate that approaches that of the centralized
subgradient algorithm in large networks. Simulation results using real datasets show the effectiveness of
SGMA.

INDEX TERMS Distributed learning, gradient descent (GD)-type learning, subgradient methods, federated
learning (FL), multiple access channel (MAC), over-the-air (OTA) computation.

I. INTRODUCTION
We consider a distributed learning problem in a communica-
tion network, which consists of many distributed edge nodes
and a central parameter server (PS). The objective of the PS
is to solve the following optimization problem:

θ∗
= argmin

θ∈2

1
N

N∑
n=1

fn(θ ) (1)

based on data received from the nodes. The term θ ∈

2 ⊂ Rd is the d × 1 parameter vector which needs to be
optimized. The solution θ∗ is known as the empirical risk
minimizer. In machine learning (ML) tasks, we often write
fn(θ ) = ℓ(xn, yn; θ ), which is the loss of the prediction on
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the input-output data pair sample (xn, yn), where xn refers
to the input vector and yn refers to the label, made with
model parameter θ . Traditional ML algorithms solve (1) in
a centralized manner. The traditional approach to machine
learning involves storing all of the data in a central loca-
tion and using a centralized optimization algorithm, such as
gradient descent, to process the data. However, this method
can be inefficient for data-intensive applications due to the
high storage and latency requirements. FL is a collaborative
machine learning framework that addresses these issues by
allowing distributed nodes to process and share a function of
their locally-held data with a central PS without the need to
upload the entire dataset. This approach is particularly well-
suited for mobile applications, such as those found in 5G, IoT,
and cognitive radio systems, where communication resources
are limited [2], [3], [4], [5], and due to privacy concerns
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[6], [7]. Therefore, FL has emerged as a promising solu-
tion to the challenges faced by traditional centralized
ML algorithms, and has received increasing attention in
recent years. In FL, the training process is distributed across
a number of nodes, each of which is associated with a local
loss function or gradient. These nodes communicate with a
central PS to solve the optimization problem (1), sending their
local output to the PS, which aggregates the data and updates
the global model. The updated model is then transmitted
back to the nodes, and the process repeats. This approach
has potential applications in distributed sensing and control
systems as well, and has been the subject of extensive related
research (see related work in Section I-C).

A. LEARNING WITH OTA COMPUTATION
In traditional communication schemes, data signals are trans-
mitted over separate, orthogonal channels (such as FDM or
TDM communications), with each channel dedicated to a
single node’s transmission. Despite efforts to optimize the
scheduling of node transmissions in order to reduce band-
width and energy requirements [8], [9], [10], [11], [12],
[13], [14], [15], this approach still requires a linear increase
in bandwidth as the number of nodes increases, and also
consumes more energy due to the additive noise in each
dimension. Alternatively, nodes can transmit their data using
MAC for tasks that only require the aggregation of trans-
mitted signals (such as the sum of local gradients used to
update the model at the central processing node). By exploit-
ing the nature of the wireless channel, this approach allows
for OTA aggregation of the data signals transmitted by the
nodes, reducing the bandwidth requirement and eliminating
the dependence on the number of nodes. The specifics of this
technique have been thoroughly examined in [16].

OTA federated learning schemes present significant impor-
tance in the context of the edge/fog computing continuum.
These schemes leverage the capabilities of edge and fog
computing infrastructure to enable distributedML algorithms
while addressing the challenges of bandwidth, latency, and
energy requirements in FL systems. Specifically, edge and
fog computing aim to bring computation and processing
closer to the data source, reducing latency and enabling real-
time decision-making. OTA FL schemes aligns with this
objective by facilitating distributed learning directly on edge
devices. OTA schemes involve each node transmitting an ana-
log shaped waveform of its data (e.g., local subgradient in this
paper) over MAC, and the server receiving a superposition of
the noisy analog signals, resulting in a bandwidth-efficient
OTA computation used to update the learned model. This
enables rapid updates and minimizes the latency associated
with transmitting data to the server. By contrast to tradi-
tional orthogonal multiple access schemes (e.g., TDMA,
FDMA), where the bandwidth requirement increases linearly
with the number of nodes N , in OTA schemes, the band-
width requirement is independent of N . Furthermore, tra-
ditional orthogonal multiple access schemes consume more
energy due to the additive noise in each dimension. These

advantages are significant for time-sensitive applications,
such as autonomous vehicles, industrial IoT, and real-time
surveillance.

Overall, OTA FL schemes play a significant role in extend-
ing the capabilities of edge and fog computing systems. They
provide resource efficiency, low latency, and FL at the net-
work edge. The potential applications are vast, ranging from
healthcare monitoring and smart manufacturing to smart grid
management and autonomous systems, where edge devices
can learn and adapt with efficient resource consumption.
For example, in the context of intelligent systems, smart
cities, and environmental monitoring, OTA FL can enhance
the efficiency and intelligence of various infrastructure and
autonomous systems. Edge devices, such as traffic sensors,
surveillance cameras, and environmental sensors, can learn
from local data to optimize traffic management, improve
public safety, monitor environmental conditions, and anoma-
lous processes. OTAFL enables collaborative learning among
these devices, with significant improvements in bandwidth
and energy consumption, as well as low latency. Moreover,
it has been explored in the context of fading MAC. In a
recent study [17], the authors proposed a solution that tackles
channel fading through the use of dynamic learning rate.
Other relevant studies in this context explored the use of
power control and beamforming techniques to mitigate the
effects of channel fading in OTA systems [18], [19], [20],
[21], [22], [23].

In this paper, we adopt a gradient-based transmission
scheme overMAC as studied recently in [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], and [34] and subsequent
studies. In [24], [25], [33], and [34], the authors developed
the compressed analog distributed stochastic gradient descent
method, in which a sparse parameter gradient vector is trans-
mitted by the nodes over a MAC. In [33], power control
was used to eliminate the fading distortion, where nodes in
deep fading do not transmit to satisfy the power constraint.
In [27], the fading distortion is mitigated at the receiver by
using multiple antennas, where the fading diminishes as the
number of antennas approaches infinity. Channel communi-
cation characteristics have been studied further in [31]. In our
previous work [30], [35], we have developed and analyzed
gradient-based learning, and accelerated learning methods
without using power control or beamforming to cancel the
fading effect. In [28], the authors developed the federated
edge learning algorithm that schedules entries of the gradient
vector based on the channel condition. Energy-efficiency
aspects have been studied in [29]. Quantization methods of
gradient transmissions were developed in [32].

B. MAIN RESULTS
Gradient-based algorithms for OTA learning, as discussed
in Subsection I-A, typically rely on the assumption that the
loss functions are continuously differentiable. In this paper,
we first tackle the learning problem in cases where this
assumption does not necessarily hold. Ourmain contributions
are as follows. First, we propose a novel Sub-Gradient-
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descent Multiple Access (SGMA) algorithm that can solve
the learning problemwhen the loss function is not necessarily
differentiable. SGMA involves the transmission of analog
shaped waveforms of local subgradients by each node, which
can be used even when the loss function is not differentiable.
Unlike some previous approaches [24], [25], [27], [28], [31],
[33], [34], SGMAdoes not use power control or beamforming
to cancel the effect of the channel gain. Instead, the central PS
updates the model based on the noisy (due to additive noise)
and distorted (due to channel fading) subgradients received
from the nodes. Second, we provide theoretical analysis of
SGMA, establishing a finite-sample error bound for both
convex and strongly convex loss functions. We also develop
specific design principles for the learning step and the scaling
of transmission energy that allow SGMA to achieve the con-
vergence rate of the centralized subgradient method in large
networks. Specifically, for the strongly convex case, we show
that the error scales as O

(
1
k

)
, where k is the number of

iterations. For the convex case, we show that the error scales
asO

(
1

√
k

)
. Third, in order to evaluate the effectiveness of the

proposed SGMA algorithm, we conducted simulation exper-
iments using real datasets and compared its performance to
existing methods. The simulation results demonstrate that
SGMA significantly outperforms existing methods.

It should be noted that there is no requirement for nodes
to have equal-sized local datasets. While heterogeneity in
data sizes among nodes can impact convergence analysis in
alternative schemes where nodes upload the updated mode
itself, e.g., trained local neural networks (see for example
our recent work [16], [36]), our focus here is on gradient-
based transmissions. Specifically, in these schemes gradient-
based functions are uploaded (or subgradient in our case)
rather than the weights themselves. The local gradient-based
functions at the nodes are computed and summed over the
entire local data, allowing the aggregation at the PS to
generate the desired global gradient. However, it is worth
noting that in practice, it is advantageous to have relatively
equal-sized local datasets among nodes for other implemen-
tation considerations. This helps ensure that computational
resources and processing time are relatively equal among the
nodes.

C. OTHER RELATED WORK
Earlier andmore recent studies on inference tasks usingMAC
have typically assumed that the observation distributions are
known, and have focused on model-dependent settings (see
e.g., [37], [38], [39], [40], [41], [42], [43] and our previous
work [44], [45], [46]). However, in the context of ML and
FL tasks, which are the focus of this paper, this assumption
does not hold. As a result, different algorithms and methods
are required to address these tasks, and this research direction
has received increasing attention in recent years, as discussed
in Subsection I-A. Other aspects that have been explored in
recent years in the context of OTA learning involve the use of
heterogeneous data [3], [16], [36], [47] redundant data [48],

the use of sub-Gaussian fading and noise distributions in OTA
computation [49], digital gradient transmissions [32], relay
transmissions [50], and privacy over MAC [51].

II. SYSTEM MODEL AND PROBLEM STATEMENT
Consider a network consisting of N nodes indexed by the
set N = {1, 2, . . . ,N } and a PS. Each node communicates
directly with the PS. The transmission time is slotted, indexed
by {ti}, i = 1, 2, . . .. Each node n ∈ 1, . . . ,N experiences at
time tk a block-fading channel h̃n,k with gain hn,k ≜ |h̃n,k | ∈

R+ and phase φn,k ≜ ̸ h̃n,k ∈ {x ∈ R| − π ≤ x ≤ π}. The
channel fading is assumed to be i.i.d. across time and nodes,
with mean µh and variance σ 2

h as in [25], [28], [30], and [33].
Each node is associated with a local loss function fn, and the
objective function at the PS is to minimize the average loss
(i.e., empirical risk):

θ∗ = argmin
θ∈2

F(θ ), (2)

where

F(θ ) ≜
1
N

N∑
n=1

fn(θ ). (3)

As commonly assumed in the literature [30], [36], [52], [53],
we assume for purposes of analysis convexity and strong-
convexity of fn, and a bounded expectation of the subgradient
energy: E[∥∂fn(·)∥2] ≤ M . Each node n is only aware of
its local loss function fn. By contrast to previous studies
of OTA FL that assumed differentiable loss functions, here
the loss function is not necessarily differentiable. Therefore,
we develop OTA algorithm based on the subgradient ∂fn(θ )
which always exists for all node n ∈ N and θ ∈ 2 [54].

III. THE SUB-GRADIENT-DESCENT MULTIPLE ACCESS
(SGMA) ALGORITHM
In SGMA, the nodes transmit their local subgradient as an
analog signal to the PS using a noisy fading MAC. The
PS receives an aggregated OTA noisy distorted subgradi-
ents, updates the model based on the received signal, and
broadcasts the updated model back to the nodes. This pro-
cess repeats until convergence, as illustrated in Fig. 1. The
subsequent sections provide a detailed exposition of the algo-
rithmic steps and a convergence analysis of the proposed
method. Since the gradient may not always exist in the present
setting, we formulate and analyze SGMA using subgradient
updates. Also, SGMA does not require power control or
beamforming techniques to mitigate the impact of channel
fading on the performance of the algorithm. Here, the PS
updates the model based on the noisy distorted gradients
directly. Avoiding power control or beamforming simplifies
the implementation as discussed in [30].
We adopt the OTA FL transmission scheme, where s(t) =

(s1(t), . . . , sd (t)) , 0 ≤ t < T , denotes a vector of d orthog-
onal baseband equivalent normalized waveforms, satisfying∫ T
0 s2m(t)dt = 1,

∫ T
0 sm(t)sr (t)dt = 0, for m ̸= r . Prior

to transmitting data signals to the PS, each node possesses
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FIGURE 1. An illustration of the wireless network considered in this paper. Each node communicates directly with the PS at the
network edge, which updates the global model and broadcasts the updated model back to the nodes.

knowledge of the channel state information (CSI), which is
typically obtained by estimating the CSI based on a pilot
signal transmitted by the PS. This assumption is commonly
made in the relevant literature (as can be seen in the references
cited in Subsection I-A). Note that the bandwidth requirement
only depends on d but independent of N . Let θk+1 be the
updated parameter model at iteration k . Let gn(θk ) ≜ ∂f n(θk )
denote the subgradient for node n at value θk . All nodes
compute their local subgradient, and send an analog function
of it to the PS:

yn(θk , t) ≜
√
EN e−jφn,kgn(θk )

T s(t), 0 ≤ t < T . (4)

Here, EN is the transmission energy coefficient set to sat-
isfy the energy requirement, and e−jφn,k is used to correct
the phase reflection to yield coherent aggregated signals at
the receiver, need to be estimated only with error of less
than π/2 to have positive channel gains at the receiver as
discussed in [30]. After matched filtering the received sig-
nal at the PS by the waveform sj(t) for each dimension j,
we have:

ṽk ≜
N∑
n=1

√
ENhn,kgn(θk ) + w̃k , (5)

where w̃k is a zero-mean additive Gaussian noise vector,
distributed as w̃k ∼ N (0, σ 2

wId ), where Id is the d×d identity
matrix. Let us define:

vk ≜
ṽk

N
√
EN

=
1
N

N∑
n=1

hn,kgn(θk ) + wk , (6)

where wk ≜ w̃k
N

√
EN

∼ N (0,
σ 2
w

N 2EN
Id ). The PS updates the

model θk+1 as follows:

θk+1 = θk − αkvk , (7)

where αk is the step size. Then, the PS broadcasts the updated
model back to the nodes via an error-free channel, as com-
monly assumed in the OTA learning literature [24], [25],
[27], [28], [29], [30], [31], [32], [33], [34], as the band-
width requirement for the downlink transmission does not
scale with N , and digital communications can be imple-
mented [16]. The nodes set their updated model to θk+1
and start the next iteration until convergence. Note that vk
represents a noisy distorted version of the global subgradi-
ent. The effect on the convergence rate will be analyzed in
Section IV. The pseudocode of the SGMA algorithm is given
in Algorithm 1.

It should be noted that the uplink phase (from nodes to PS)
and the downlink phase (from PS to nodes) are utilized in
separate time slots due to the serial implementation of the
learning task. During the uplink phase, nodes upload their
data, which is then aggregated at the PS. Subsequently, the PS
updates the model and broadcasts the updated model back to
the nodes. This iterative process continues until convergence.
Consequently, time-division duplexing (TDD) is employed to
facilitate communication between these two phases over the
same channel.

A. COMMUNICATION TIME AND COMPUTATIONAL
COMPLEXITY
Regarding the communication time, each iteration involves
both uplink transmissions (from nodes to PS) and downlink

94626 VOLUME 11, 2023



T. L. S. Gez, K. Cohen: Subgradient Descent Learning Over Fading MAC With Over-the-Air Computation

Algorithm 1 SGMA Algorithm
1: initializing: PS broadcasts θ0 for all nodes
2: for iteration k = 0, 1, . . . do
3: Each node calculates local subgradient gn(θk )
4: Each node transmits simultaneously a linear combina-

tion of d
amplified orthogonal analog signals yn(zk , t) accord-

ing to (4)
5: PS receives the aggregated signal and computes vk

according to (6)
6: PS updates its estimate θk+1 according to (7)
7: PS broadcasts θk+1 to the nodes
8: end for (until convergence)

transmissions (from PS to nodes). Prior to the uplink trans-
missions, the PS broadcasts a control signal to all nodes,
allowing them to estimate the channel phase. Similar mech-
anisms are also required in other OTA schemes and com-
munication schemes that involve channel phase or channel
gain estimation. Also, the inclusion of uplink and downlink
phases is not unique to our proposed method but is a common
requirement in FL tasks using other communication schemes
as well.

When it comes to broadcasting the control signal to
the nodes, it requires O(1) transmission time in both OTA
transmission schemes and traditional digital communication
schemes. This time complexity is independent of the net-
work size N and the problem dimension d . For the downlink
transmission, both OTA transmission schemes and traditional
digital communication schemes require O(d) transmission
time.

The significant advantage of OTA schemes lies in the
uplink transmissions. In OTA transmission schemes, the
uplink transmission requires O(d) transmission time, which
is independent of the network size N . In contrast, in tradi-
tional digital communication schemes, the uplink transmis-
sion requires O(d · N ) transmission time due to the linear
scaling of the bandwidth requirement with N .
In terms of computational complexity, at the node (say

node i), computing the subgradient requires O(d · ni) compu-
tations, where ni is the data size at node i. Updating the model
at the PS requires O(d) computations. The computational
complexity order is similar among the competitor learning
algorithms.

IV. PERFORMANCE ANALYSIS
The error, or excess risk, of gradient descent-type algorithms
is typically defined as the difference between the objective
value of the loss function at iteration k and the optimal
value [54], [55]:

E[F(θk )] − F(θ∗), (8)

where the expectation is taken with respect to the randomness
of the generated estimate θk , i.e., with respect to the random
channel fading and the additive noise.

We start by analyzing the performance under the strongly
convex case.
Theorem 1: Let the objective function be µ-strongly con-

vex, M be the bound of the expected subgradient energy,
αk =

1
µ(k+1) , and θ∗ denote the solution of the optimiza-

tion problem in (2). Then, ∀k , the error under SGMA is
bounded by:

E [F(θk )] − F(θ∗) ≤
2M̃2

µ(k + 1)
, (9)

where

M̃2
= µ2

hM
2
+

σ 2
h

N
M2

+
dσ 2

w

ENN 2 . (10)

The proof is given in the Appendix. Theorem 1 requires
the following convergence conditions for the strongly con-
vex case: (i) The objective function is µ-strongly convex;
(ii) the step size is set to αk =

1
µ(k+1) ; and (iii) bounded

expected subgradient energy. The theorem implies that the
error scales as O

(
1
k

)
, which is the convergence rate of the

centralized subgradient method, and the bound approaches
the best centralized leading constant as N → ∞, when
the transmission energy is set to EN = �

(
N ϵ−2

)
for some

ϵ > 0. This implies that the system can improve performance
by increasing the number of nodes which participate in the
learning task while making the total transmission energy in
the network arbitrarily close to zero.

Next, we analyze the performance under the convex case.
Theorem 2: Let the objective function be a convex func-

tion, M be the bound of the expected subgradient energy,
θ∗ denote the solution of the optimization problem in (2),
and � ≥

1
2∥θ0 − θ∗

∥
2. Then, ∀k , the error under SGMA

is bounded by:

E [F(θk )] − F(θ∗) ≤
�̃ +

1
2

∑k
i=1 α2

k M̃
2∑k

i=1 αk
, (11)

where

�̃ =
�

µh
, and M̃2

= µ2
hM

2
+

σ 2
h

N
M2

+
dσ 2

w

ENN 2 .

(12)

The proof is given in the Appendix. Theorem 2 requires the
following convergence conditions for the convex case: (i) The
objective function is convex; (ii) the step size is set to αk =
1

k1+q
for q > 0 (as shown in the Appendix); and (iii) bounded

expected subgradient energy. The theorem implies that the
error scales as O

(
1

√
k

)
, which is the convergence rate of the

centralized subgradient method.We show in the proof that for
other different selections of αk with the knowledge of the time
horizon, we can achieve the convergence rate of O

(
1

√
k

)
as

well. Also, the bound approaches the best centralized leading
constant as N → ∞, when the transmission energy is set to
EN = �

(
N ϵ−2

)
for some ϵ > 0.
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As for θ0, it represents the initial parameter values or the
starting point of the optimization process. It is common in
learning algorithms and optimization to initialize the starting
point randomly based on prior knowledge about the optimum
vicinity to speed up the convergence time. However, it does
not improve the convergence rate order (see our previous
work on projected SGD [56] and references therein). With
no prior knowledge about the parameter set, θ0 is selected
randomly.

V. SIMULATION RESULTS
In this section, we present numerical examples to showcase
the performance of the SGMA algorithm in two distinct
problem settings. For the first set of simulations, we consider
a federated learning task where the goal is to predict the
release year of a song based on its audio features. We utilize
the real-data Million Song Dataset [57] and partition the data
among multiple edge devices. In the second set of simula-
tions, we examine a federated learning problem involving
real data on global stock prices. Specifically, we aim to
predict the closing stock price of the following day based on
historical price data [58]. The code for the simulations can be
found at [59].
In each simulation, we compare the performance of SGMA

with other smooth algorithms, as well as algorithms that have
been shown to perform well in federated learning tasks in the
literature: (i) the Error Compensated Entry-wise Scheduled
Analog Distributed Stochastic Gradient Descent (ECESA-
DSGD) algorithm [33], which transmits the gradient at each
iteration only if the channel state exceeds a certain threshold;
(ii) the FDM-GD algorithm, which assigns each node a dedi-
cated orthogonal channel for transmission and calculates the
mean signal at the PS [16]; (iii) ECESA-DSG, which employs
the logic of ECESA-DSGDbut utilizes a subgradient method;
and (iv) the FDM-SGD algorithm, which is similar to FDM-
GD but transmits the subgradient instead of the smooth
function gradient. In all cases, the transmission parameters
are set such that the average transmitted energy per node is
the same for all algorithms. It is known that for non-smooth
problems, the use of smoothing can hinder convergence to
the minimum by the level of smoothing. For example, when
addressing the absolute value function, f (x) = |x|, one may
employ a smoothing technique such as the Huber function,
defined as:

fµ(x) =


x2

2µ
, if |x| ≤ µ,

|x| −
µ

2
, otherwise,

(13)

and the function is µ-Lipschitz continuous.
It has been established in [60] that the error rate will be

bounded by the following:

f (xt ) − f∗ ≤ O
(

∥A∥
2
2D

2
X

µt
+ µD2

Y

)
, (14)

where we define for matrix A the norm: ∥A∥2 =

maxx{∥Ax∥2 : ∥x∥2 ≤ 1}, whereA is the Nesterov smoothing
scale, and D2

Y = maxy∈Y {d(y)}, where DY is the bounding
diameter over the image space. Similarly, DX is defined as
the bounding diameter over the source space.

In each set of simulations, we modeled the problem using
the elastic loss function, which is defined as follows:

Lelastic(θ , x, y)

=

M∑
n=0

(θxTn − yn)2 + α

N∑
i=0

|θi| +
β

2

N∑
i=0

θ2i

= LMSE (θ , x, y) + α∥θ∥1 +
β

2
∥θ∥

2
2, (15)

where the problem can be defined to be a Lasso problem by
setting β = 0, and a Ridge problem by setting α = 0. This
problem is µ-strongly convex with µ =

β
2 , and convex when

β = 0. Note that the absolute value function does not possess
a derivative at zero. Therefore, we define the subgradient of
the absolute value function as the sign function, with a value
of zero at zero, which is a valid subgradient [54], enabling us
to define the derivative as:

∂Lelastic(θ , x, y)
∂θ

=

M∑
n=0

(θxTn − yn)xTn + αsign(θ ) + βθ .

(16)

For the smoothed function we obtain:

f (θ ) = ∥θ∥1 =

N∑
i=0

|θi|

⇒ fµ(θ ) =

∑
|θi|≤µ

θ2i

2µ
+

∑
|θi|≥µ

(
|x| −

µ

2

)
, (17)

and the derivative is defined by:

∂Lelastic(θ , x, y)
∂θ

=

M∑
n=0

(θxTn − yn)xTn + α
∂fµ(θ )

∂θ
+ βθ ,

(18)

where: [
∂fµ(θ )

∂θ

]
i
=


x
µ

, if |x| ≤ µ,

sign(x), otherwise.
(19)

The selection of α and β plays an important role in strik-
ing a balance between model complexity and fitting error,
with regularization loss to constrain the weights of the local
models and prevent overfitting. The parameter α controls
the weight of L1 regularization, promoting sparse solutions
that have many zero weights, while β controls the weight
of L2 regularization, pushing the weights towards zero and
penalizing large weights. It is essential to choose appropriate
values for α and β to ensure that the regularization is neither
too weak nor too strong. In practice, these hyperparameters
are often tuned using a validation set to find an efficient trade-
off between model complexity and fitting error.
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In the experiments, we chose the values of α and β based
on their respective penalty in Lasso and Ridge/Elastic net reg-
ularization. In Lasso, α controls the weight of the L1 penalty,
promoting sparsity by encouraging many coefficients to be
zero. In Ridge/Elastic net, β controls the weight of the
L2 penalty, discouraging large coefficients. In Experiment 1,
we modeled the problem as a Lasso problem to prioritize
sparsity in the learned model coefficients. Given the high-
dimensional feature space, it was essential to reduce the
number of features utilized in the model. By applying Lasso
regularization, we achieved this sparsity by setting small
coefficients to zero, effectively eliminating them from the
model. We chose α to be 0.1, which offered a moderate level
of sparsity while still retaining sufficient features to attain sat-
isfactory accuracy. In Experiment 2, we modeled the problem
as a Ridge/Elastic net problem to prevent overfitting in the
model. Although the feature space was smaller, we aimed to
ensure the learned model’s robustness when exposed to new
data. Ridge/Elastic net regularization allowed us to control
overfitting by reducing the magnitude of the coefficients
while preserving all the features in the model. We chose β

to be 0.1, striking a suitable balance between diminishing
coefficient magnitude and including all the features in the
model. Our choice of regularization parameters was driven
by the specific requirements of each experiment, aiming to
achieve a favorable compromise between accuracy, sparsity,
and generalization. The values we selected allowed us to
strike an efficient trade-off considering these factors.

A. EXPERIMENT 1: PREDICTING A RELEASE YEAR
OF A SONG
To begin, we consider the application of our algorithm to
the task of predicting the release year of a song based on its
audio attributes using federated learning. The Million Song
Dataset [1], which spans the years 1922 to 2011, is utilized
for this purpose. Each song is represented by a feature vector
of size 90, referred to as the audio attributes, which serves as
the input to the model, with the release year serving as the
output. We chose to model the problem as a Lasso problem,
resulting in a convex model (as shown in Equation (15)). For
this purpose, we set β = 0. Additionally, we normalized
the input and output values to the range [0,1], as is stan-
dard for Lasso problems. We also set µ = 10−16 for the
smoothing technique and chose the number of edge nodes
to be 100.

The results can be seen in Figs. 2, 3 for low (σw = 1) and
high (σw = 10) noise levels, respectively. For each run, the
energy of the signal was normalized to 1. As for the low noise
level, all algorithms converge, and SGMA converges signif-
icantly more quickly. Additionally, it can be observed that
SGMA is more stable compared to the other algorithms, and
it achieves the smallest error. For the high noise level, only
SGMA converges. It can be seen again that SGMA achieves
the best convergence speed. These results demonstrated the
significance of using SGMA for OTA computation of non-
differentiable loss functions.

FIGURE 2. Algorithm comparison for the federated learning setting of
predicting a release year of a song, for a low noise level.

FIGURE 3. Algorithm comparison for the federated learning setting of
predicting a release year of a song, for a high noise level.

B. EXPERIMENT 2: PREDICTING STOCK VALUE
AT THE CLOSING CALL
In this part of the study, we attempted to predict the value of a
stock at the end of a day based on its price for the previous N
days. The Stock price data set [58], which contains daily stock
prices for the New York stock exchange from 2012 to 2016,
was utilized for this purpose. The data includes information
on 10,000 stock prices. We selected a 20-day window of
historical data for each stock and sought to predict the price
at the following day based on this information. We split the
data so that the input is the n+21 sample, for input samples
from n to n+20 each time. We chose to model the problem
as an Elastic problem, which is a µ-strongly convex problem,
in order to facilitate comparison with other models. We set
the smooth parameter to µ = 10−20. Furthermore, by setting
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FIGURE 4. Algorithm comparison for the federated learning setting of
predicting a stock value, for a low noise level.

β to a non-zero value in the loss function (15), our model
becomes β

2 -strongly convex.
The results can be seen in Figs. 4, 5 for low (σw = 1)

and high (σw = 10) noise levels, respectively. As in the
previous simulations, for low noise levels, all algorithms
converge, with SGMA exhibiting significantly faster conver-
gence. Additionally, it can be observed again that SGMA is
more stable compared to the other algorithms, and it achieves
the smallest error. For the high noise level, only SGMA
converges again. The simulation results show that in all tested
experiments, SGMA consistently demonstrated superior per-
formance.

VI. DISCUSSION
As can be seen, the proposed SGMA algorithm significantly
outperforms other methods. In what follows, we provide an
interpretation of the results, which can be attributed to two
key factors. Firstly, the utilization of OTA computation in
SGMA leads to higher SNR at the receiver. This advantage
arises from the fact that additive noise is introduced in only
one dimension, in contrast to digital communication schemes
where noise is added in N dimensions. By reducing the
impact of noise, SGMA achieves improved performance in
terms of convergence and accuracy. Secondly, SGMA stands
out as the first OTA scheme specifically designed to handle
non-differentiable loss functions over fading channels. This
capability is crucial in scenarios where the loss functions
involved are non-differentiable, which is often encountered
in practical machine learning applications. SGMA allows
all nodes to simultaneously transmit their sub-gradients over
MAC, ensuring convergence to the best-known centralized
optimizer under carefully selected parameter settings. This
analytical demonstration further reinforces the effectiveness
and practical applicability of SGMA.

It is worth emphasizing that the observed results are sig-
nificant in a wider context, holding broader implications

FIGURE 5. Algorithm comparison for the federated learning setting of
predicting a stock value, for a high noise level.

beyond the specific problems simulated in this paper. Sim-
ilar outcomes can be expected in other types of problems
where non-differentiable objective functions are encountered.
For instance, certain formulations of SVMs incorporate a
hinge loss function, which is known to be non-differentiable.
The hinge loss imposes a penalty when the predicted value
falls outside a predefined margin constraint. In such cases,
SGMA’s ability to handle non-differentiable loss functions
becomes particularly advantageous. Another relevant exam-
ple is robust optimization, which aims to identify solutions
that are resilient to uncertainties or outliers present in the data.
In robust optimization, the objective function often incorpo-
rates non-differentiable components such as absolute devi-
ation or the Huber loss, which exhibit non-differentiability
at specific points. In these problems, SGMA has signifi-
cant advantage, as it collaboratively learns and optimizes the
model without relying on the differentiability assumption of
the objective function.

The suggested method has the potential to significantly
impact various federated learning applications, demonstrat-
ing its relevance and potential across various domains. For
instance, the utilization of Lasso optimization in Experiment
1 and Elastic Net optimization in Experiment 2 reflects their
wide application in machine learning. These optimization
techniques find utility in tasks related to image processing
and computer vision, such as image denoising, image seg-
mentation, and feature extraction. They are also employed
in regression and classification problems that aim to con-
struct accurate models for predicting outcomes or classifying
instances based on an extensive set of input features. Such
applications span domains like environmental monitoring,
finance, healthcare, marketing, and more. By harnessing
SGMA’s capability to efficiently solve these optimization
problems within resource-constrained communication net-
works, its potential for contributing to federated learning
systems in the Internet of Things (IoT) and autonomous
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networks is significant. In these contexts, edge devices such
as traffic sensors, surveillance cameras, drones, body sensors,
and environmental sensors can collaboratively learn and opti-
mize the desired model.

Despite its advantages, the suggested method has limi-
tations as well. The first limitation is that OTA schemes,
particularly the suggested SGMA, require coherent transmis-
sions overMAC. This requirement may restrict the scalability
and adaptability of SGMA in larger or more diverse networks.
To overcome this limitation, a common approach is to adopt
a hybrid strategy, where OTA is employed in clustered geo-
graphical areas, while OFDMA is used between clusters. The
second limitation is that OTA schemes may not perform well
in scenarios with very low SNR and small network sizes,
as analog transmissions cannot be reliably decoded. In such
cases, digital transmissions are preferred to ensure reliable
signal decoding.

There are several promising avenues for future research in
this area. One potential direction is to investigate hierarchical
SGMA, where nodes communicate in a hierarchical topology
instead of the star topology considered in this paper. This
would provide greater flexibility for data transmission, espe-
cially in scenarios where link connectivity between nodes and
the server is unstable. Developing SGMA with hierarchical
communications poses challenges in terms of practical design
and theoretical convergence analysis. Another research direc-
tion is to design SGMA with a hybrid approach, where OTA
computation is implemented in clustered geographical areas
while using OFDMA between clusters. This approach would
address the limitation of coherent transmissions required for
all nodes over MAC. However, implementing this scheme
introduces challenges in terms of efficient channel allocation
among nodes. It would be desirable to develop dynamic
spectrum access algorithms that can achieve the best per-
formance by balancing learning performance and resource
consumption.

VII. CONCLUSION
We have developed a novel subgradient-based learning
algorithm, SGMA, for distributed optimization problems
over noisy fading MAC. We have theoretically developed
finite bounds on the error for both convex and strongly convex
cases, and showed that SGMA achieves the centralizedmodel
error bound as the number of nodes increases and transmis-
sion energy is set to �

(
N ϵ−2

)
. Extensive simulation results

using real data sets have been presented to demonstrate the
superior performance of SGMA compared to existing meth-
ods. Furthermore, we have demonstrated that under moderate
to high levels of noise, SGMA should be employed instead
of smoothing techniques in order to achieve faster and more
stable convergence of the model.

APPENDIX
In this appendix, we provide the proofs for Theorems 1, 2.
The proof will be divided into two parts. In the first part,
we will derive error bounds for each case, and then in the

second part, we will examine the convergence rate by consid-
ering a range of different learning rates. First, let us define:

∇f = {g(x)∥f (y) ≥ g(x)T (y − x), ∀y ∈ X}. (20)

Under the assumption that f is a convex function, the partial
derivative holds:

f (y) ≥ f (θk ) + gT (θk )(y− θk ), ∀y ∈ X (21)

We will first prove Theorem 2 and then proceed to prove
Theorem 1.

A. PROOF OF THEOREM 2
We utilize the projection function 5X (·) onto some space X ,
so that the update iteration step becomes:

θk+1 = 5X (θk − αkvk ). (22)

Note that
forX = R, we recover the expression within the projection

function. Now, let us denote θ∗ as the solution, then:

r2k = ∥θk − θ∗
∥
2, r2k+1 = ∥θk+1 − θ∗

∥
2. (23)

Consequently, we can write:

r2k = ∥θk+1 − θ∗
∥
2 (22)

= ∥5X (θk − αkvk ) − θ∗
∥
2

≤ ∥θk − αkvk − θ∗
∥
2

= ∥θk − θ∗
∥
2
− 2αkvTk (θk − θ∗) + α2

k∥vk∥
2

= r2k − 2αkvTk (θk − θ∗) + α2
k∥vk∥

2. (24)

Additionally, we have:

∇G(θk ) =
1
N

N∑
n=1

gn(θk), (25)

E[vk ] = µhE[∇G(θk )], (26)

and

E[∥vk∥2]

=
1
N 2

N∑
n=1

N∑
m=1

E[(hn,kgn(θk )T (hm,kgm(θk )] +
dσ 2

w

ENN 2

= µ2
hE[∥∇G(θk )∥

2] +
σ 2
h

N
E[∥∇G(θk )∥2] +

dσ 2
w

ENN 2 . (27)

By taking the expectation of (24), we obtain:

E[r2k+1] ≤ E[r2k ] − 2αkµhE[∇G(θk − θ∗)]

+ α2
kµ

2
hE[∥∇G(θk )∥

2]

+ α2
k
σ 2
h

N
E[∥∇G(θk )∥2] + α2

k
dσ 2

w

ENN 2 , (28)

and we can write (28) as:

2αkµhE[∇G(θk − θ∗)]

≤ E[r2k ] − E[r2k+1] + α2
kµ

2
hE[∥∇G(θk )∥

2]

+ α2
k
σ 2
h

N
E[∥∇G(θk )∥2] + α2

k
dσ 2

w

ENN 2 . (29)
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Since f is convex, from (21), we can write:

E[gTn (θk )(θk − θ∗)] ≥ E[f (θk ) − f (θ∗)]. (30)

By summing from n = 1 to n = N , and dividing each side
by N , we obtain:

E[∇GT (θk )(θk − θ∗)] ≥ E[F(θk ) − F(θ∗)]. (31)

Substituting (31) into (28), we obtain:

2αkµhE[F(θk ) − F(θ∗)]

≤ E[r2k ] − E[r2k+1] + α2
kµ

2
hE[∥∇G(θk )∥

2]

+ α2
k
σ 2
h

N
E[∥∇G(θk )∥2] + α2

k
dσ 2

w

ENN 2 . (32)

By summing both sides of (32) from k = 1 to k = T , we get:

T∑
k=1

αkE[f (θk ) − f (θ∗)] ≤
1

2µh

T∑
k=1

(
E[r2k ] − E[r2k+1]

+ α2
kµ

2
hE[∥∇G(θk )∥

2]

+ α2
k
σ 2
h

N
E[∥∇G(θk )∥2] + α2

k
dσ 2

w

ENN 2

)
telescoping series

=
1

2µh

[
E[r21 ] − E[r2T+1]

+

T∑
k=1

(α2
kµ

2
hE[∥∇G(θk )∥

2] + α2
k
dσw

ENN 2 )
]

≤
1

2µh

(
E[r21 ] +

T∑
k=1

(
α2
kµ

2
hE[∥∇G(θk )∥

2] + α2
k
dσw

ENN 2

))
.

(33)

We can bound the left side by:

T∑
k=1

αkE[F(θk ) − F(θ∗)]

≥

T∑
k=1

αk min
1≤l≤T

(
E[F(θ l) − F(θ∗)]

)
=

( T∑
k=1

αk

)
min
1≤l≤T

(
E[F(θ l) − F(θ∗)]

)
, (34)

and:

T∑
k=1

αkE
[
F(θk ) − F(θ∗)

]
≥

(
T∑
k=1

αk

)
E
[
F(θ̂T ) − F(θ∗)

]
,

(35)

where θ̂T =

∑T
k=1 αkθk∑T
k=1 αk

∈ X is a convex series. Let us denote

the error as:

εT = E
[
F(θ̂T ) − F(θ∗)

]
or εT = min

1≤l≤T

(
E[F(θ l) − F(θ∗)]

)
. (36)

For both definitions, we can conclude from (31), (34), (35)
and (36) the following error bound:

εT ≤
1

2µh
∑T

k=1 αk

[
E[r21]

+

T∑
k=1

(
α2
kµ

2
hE[∥∇G(θk )∥

2] + α2
k
dσw

ENN 2

)]
. (37)

Let us define:

E
[
∥∇G(θk )∥

]
≤ M ⇒ E

[
∥∇G(θk )∥2

]
≤ M2, (38)

1
2
r21 =

1
2
∥θ1 − θ∗

∥
2

≤ �. (39)

Now, we can write (37) as:

εT ≤
1

µh
∑T

k=1 αk

×

[
� +

1
2

T∑
k=1

(
α2
kµ

2
hM

2
+ α2

k
σ 2
h

N
M2

+ α2
k
dσw

ENN 2

)]

=
�̃ +

1
2

∑T
k=1 α2

k M̃
2∑T

k=1 αk
, (40)

where �̃ =
�
µh

and M̃2
= µ2

hM
2
+

σ 2
h
N M

2
+

dσ 2
w

ENN 2 .
Next, we check the convergence for various step sizes.
For a constant step size αk = α, we can write (40) as:

εT ≤
�̃ +

1
2

∑T
k=1 α2M̃2∑T

k=1 α
=

�̃

Tα
+
M̃2

2
α

T→∞
−−−→

M̃2

2
α.

(41)

It can be seen that the error upper-bound does not diminish
to zero as T grows to infinity, which shows one of the draw-
backs of using arbitrary constant step sizes. In addition, for
optimizing the upper bound, we can select the optimal step

size to be α∗
=

√
2�̃

M̃
√
T

which implies εT ≤
�̃

M̃
√
2T

. Then,

with the optimal choice we get εT ∼ O( �̃

M̃
√
T
). However,

one disadvantage of using that constant step size is that the
number of iterations required for convergence, T , is typically
unknown beforehand. This makes it difficult to determine the
optimal value of α∗, as it depends on the value of T .
Next, conisder a scaled step size αk =

α
∥∇G(θk )∥

. In this
case, the error behaves as:

εT ≤
�̃ +

1
2α2M̃2

M2 T
αT
M

T→∞
−−−→

M̃2

2M
α. (42)

Similarly, we can select the optimal α by minimizing the

right-hand side, i.e., α = α∗
=

M
√

2�̃
M

√
T
. Then, we get the

following step size:

αk =
M
√
2�̃

M̃
√
T∥∇G(θk )∥

, (43)

which yields εT ≤
M̃

√
�̃

√
2T

.
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The same convergence rate is achieved as in the constant
step size case. However, the same issue of not knowing
the value of T beforehand persists when choosing αk , as it
impacts the optimal value of the step size.

Third, consider a non summable but diminishing step size.
Here we assume that

∑
∞

k=1 αk = ∞, limk→∞ αk = 0. Then,
the error behaves as:

εT ≤
�̃ +

1
2

∑T
k=1 α2

k M̃
2∑T

k=1 αk

≤
�̃ +

1
2M̃

2∑T1
k=1 α2

k∑T
k=1 αk

+

1
2M̃

2∑T
k=T1+1 α2

k∑T
k=T1+1 αk

, (44)

where 1 ≤ T1 ≤ T , and T → ∞, for selecting large T1, the
first term on the right-hand side goes to 0, since αk is non-
summable, the second term also goes to 0, because α2

k always
approaches zero faster than αk . Consequently, we have εT →

0 as T → ∞. An example of a step size choice is αk ∼

O( 1
kq ) with q ∈ (0, 1]. As in the above cases, if we choose

αk =

√
2�̃

M̃
√
T
, then εT ≤ O(

√
�̃M̃ ln(T )

√
T

)), and if we choose

the averaging from T
2 instead of 1, we have: min T

2 ≤l≤T εl ≤

O(
√

�̃M̃
√
T

).

Fionally, consider a non-summable but square summable
step size. In this case we have:

∑
∞

k=1 αk = ∞,
∑

∞

k=1 α2
k ≤

∞, e.g., αk ∼ O( 1k ). Then, the error behaves as:

εT ≤
�̃ +

1
2

∑T
k=1 α2

k M̃
2∑T

k=1 αk

T→∞
−−−→ 0. (45)

As a typical choice of αk =
1

t1+q
for q > 0, this results in the

rate of O( 1
√
T
), which completes the proof.

B. PROOF OF THEOREM 1
We now assume that f is µ-strongly convex. Thus,

f (y) ≥ f (x) + gT (x)(y− x) +
µ

2
∥x − y∥2. (46)

We can rewrite (31) as:

E
[
∇GT (θk )(θk − θ∗)

]
≥ E

[
F(θk ) − F(θ∗)

]
+ E

[µ
2

∥θk − θ∗
∥
2
]

= E
[
F(θk ) − F(θ∗)

]
+

µ

2
rk2. (47)

Substituting (47) into (29), we can rewrite (32) as:

2αkµh

[
E
[
F(θk ) − F(θ∗)

]
+

µ

2
r2k
]

≤ E
[
r2k
]

− E
[
r2k+1

]
+ α2

kµ
2
hE
[
∥∇G(θk )∥2

]
+ α2

k
σ 2
h

N
E
[
∥∇G(θk )∥2

]
+ α2

k
dσ 2

w

ENN 2 . (48)

Next, consider two choices for the learning step-
size. First, consider αk =

1
µk . For this step-size we can

write (48) as:

2
1

µk
µhE

[
F(θk ) − F(θ∗)

]
+

µh

k
r2k

≤ E[r2k ] − E[r2k+1] +
µ2
h

(µk)2
E
[
∥∇G(θk )∥2

]
+

σ 2
h

N (µk)2
E
[
∥∇G(θk )∥2

]
+

1
(µk)2

dσ 2

ENN 2 . (49)

Then, by: �̃ =
�
µh

and M̃2
= µ2

hM
2

+
σ 2
h
N M

2
+

dσ 2
w

ENN 2 , and
by manipulating the inequality in (49), we obtain:

E
[
F(θk ) − F(θ∗)

]
≤

µ

2µh
(k − µh)E

[
r2k
]

−
µk
2µh

E[r2k+1] +
1

(µk)2

×

(
µ2
hE
[
∥∇G(θk )∥2

]
+

σ 2
h

N
E
[
∥∇G(θk )∥2

]
+

dσ 2
w

ENN 2

)
≤

µ

2µh
(k − µh)E[r2k ] −

µk
2µh

E[r2k+1] +
1

(µk)2
M̃2. (50)

By summing both sides in (50) over k = 1, . . . ,T we obtain:

T∑
k=1

E
[
F(θk ) − F(θ∗)

]
≤

T∑
k=1

1
(µk)2

M̃2

=
1
2µ

M̃2(lnT + 1), (51)

and from (36), we can write:

εT ≤
1

2µT
M̃2(lnT + 1). (52)

Therefore, we obtain: εT ∼ O
(
M̃2

µT lnT
)
.

Next, consider the following step size: αk =
1

µ(k+1) . In this
case, we can write (48) as:

E
[
F(θk ) − F(θ )∗

]
≤

µ

4µh
(k + 1 − 2µh)E[r2k ] −

µ(k + 1)
µh

E[r2k+1]

+
2

µ(k + 1)[
µ2
hE[∥∇G(θk )∥

2] +
σ 2
h

N
E[∥∇G(θk )∥2] +

dσ 2
w

ENN 2

]
(53)

Then, by multiplying both sides of (53) by k , we obtain:

kE
[
F(θk ) − F(θ )∗

]
≤

µ

4µh
(k + 1 − 2µh)kE[r2k ] −

µk(k + 1)
µh

E[r2k+1]

+
2k

µ(k + 1)[
µ2
hE[∥∇G(θk )∥

2] +
σ 2
h

N
E[∥∇G(θk )∥2] +

dσ 2
w

ENN 2

]
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≤
µ

4µh
(k + 1 − 2µh)kE[r2k ] −

µk(k + 1)
µh

E[r2k+1]

+
2
µ

[
µ2
hE[∥∇G(θk )∥

2] +
σ 2
h

N
E[∥∇G(θk )∥2] +

dσ 2
w

ENN 2

]

≤
µ

4µh
(k + 1 − 2µh)kE[r2k ] −

µk(k + 1)
µh

E[r2k+1] +
M̃2

µ
.

(54)

Now, by summing (54) from k = 1 to k = T , we get:
T∑
k=1

kE[F(θk ) − F(θ∗)] ≤
M̃2T

µ
. (55)

Since F is µ-strongly convex, we can write:

T∑
k=1

kE[F(θk ) − F(θ∗)] ≥
T (T + 1)

2
εT . (56)

From (55) and (56), we obtain:

εT ≤
2M̃2

µ(T + 1)
. (57)

Finally, We can see that εT ∼ O
(
M̃2

µT

)
, which completes the

proof.
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