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ABSTRACT In the analysis of surface electromyography signals(sEMG), the extraction of suitable features
is one of the key factors affecting pattern recognition. The aim of this paper is to propose an improved sEMG
feature extraction algorithm based on muscle activity regions. The fusion of muscle activity intensity on the
basis of muscle activity regions compensates for the low accuracy of the original features for the recognition
of similar movements. In this paper, the sEMG signals of five leg movements were collected, including
two similar movements: upstairs and downstairs, standing and sitting. The classification performance of
the features before and after the improvement was tested with six classifiers. It proves that the new
characteristic, active muscle position and intensity (AMPI), greatly improves the classification accuracy
of similar movements. The paper also compares the new features with the traditional eight classification
features. The results show that the new features are at the forefront of the classification performance, with
a very small difference in classification accuracy of 4.1% compared to the best performing features. This
confirms the high practical value of the new features. New features are still based on themapping relationship
between movement patterns and active muscle regions. This provides new ideas for the feature extraction
method of sEMG signals. In addition, compared with the traditional features, the new feature still have
the ability to reduce the dimension, which provides a more applicable feature extraction method for the
application of multi-channel electromyogram(EMG) signals acquisition devices and high-density electrodes.

INDEX TERMS Surface electromyography signals, feature extraction, active muscle regions, similar
movements, pattern recognition.

I. INTRODUCTION
In recent years, electromyogram(EMG) signals, are widely
used in the identification of human movement intention,
which is an important way to achieve a flexible and
friendly human-computer interaction environment [1]. EMG
signals are signals that record and analyze the electrical
activity generated by muscle contractions [2]. They are
useful electrophysiological signals which are non-stationary,
non-linear, and high complex signals and carry the distinct
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signature of voluntary intent of central nervous system [3].
EMG signals are classified as invasive or surface EMG
according to the placement of the measurement electrodes,
surface electrodes are widely used due to their non-invasive
nature [4]. Surface electromyography(sEMG) is widely used
in the fields of exoskeleton control, muscle fatigue and
contraction measurement, ergonomics and human-computer
interaction [5], [6].

The control of lower limb exoskeleton robots is an
important aspect of the application of surface electromyo-
gram signal. With the continuous development of the lower
limb exoskeleton robot, it has become an assisted walking
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device that incorporates mechanical, sensing and control
technologies [7]. It is widely used in many fields such as
military, medical and aviation [8], [9]. Such as: BLEEX
[10], ReWalk [11], skeletal rehabilitation robots [12] and
Space remote robot [13]. The key issue in lower limb
exoskeleton research is to achieve precise perception of the
wearer’s movement intentions and achieve the coordination
of man-machine movements. Many researchers have used
EMG signals for motor intent recognition and exoskeleton
control. Feature extraction is a key step in achieving
accurate intention recognition and developing flexible control
strategies [14], [15]. Researchers have made many efforts in
this area. Such as: Region-Cable News Network and wavelet
feature extraction methods [16], feature extraction methods
based on minimum entropy deconvolution adjustment [17],
feature extractionmethods based onmulti-method integration
combining wavelets, fractals and statistics [18] and feature
extraction methods based on improved small-world leaky
echo state networks [19].

Gongfa Li et al. proposed a feature named activity muscle
regions (AMR) in 2019 [20]. The feature is based on the
mapping relationship between limb movements and active
muscle regions. This feature has been applied to hand
motion recognition and good classification results have been
obtained. However, the feature does not work well for
classifying similar movement patterns. The core of limb
movement is joint movement, and different joint movements
constitute different movement patterns. For limb movements,
the number of joints is limited while the variety ofmovements
is immeasurable. For leg movements in particular, there are
only three leg joints: hip, knee and ankle, but the resulting
leg movement patterns are not limited to walking, running,
upstairs and downstairs, etc. It is therefore likely that different
movement patterns call for the same movement joints.
Different muscle contractions drive different motor joints.
Therefore, the samemotor joint means that the active muscles
are the same. This imposes significant limitations on the
classification performance of muscle activity regions (AMR).
To address this issue, this paper introduces muscle activity
intensity on the basis of muscle activity regions. The fusion of
the two types of information constitutes a new feature, namely
the Active Muscle Position and Intensity (AMPI). Five
leg movement patterns were tested for classification using
new features. The new features show better classification
of similar leg movements compared to the activity muscle
regions (AMR) before the improvement. This paper also
compares the improved new features with the traditional
eight features. The experimental results show that the new
feature still has good classification performance compared
with the commonly used classification features. This proves
that the new features have high utility in motion pattern
recognition.

The rest of the paper is organized as follows. Section II
describes the experimental data acquisition method and
the signal processing methods. Section III provides an
improved feature extraction method. Section IV discusses the

FIGURE 1. The EMG acquisition equipment.

performance evaluation programme in detail. The experi-
mental results are analyzed in section V. Finally, section VI
reaches conclusions and discusses future directions for the
work.

II. sEMG SIGNALS COLLECTION
Eight subjects took part in this experiment, five men
and three women, aged between 20 and 30 years. The
subjects were physically healthy and had no neurological or
muscular disorders. Before participation, all subjects agreed
to participate in this study and were briefed about the
experiment.

The sEMG is typically collected by one or more electrodes
placed on the surface of the skin. The distribution of
electrodes and the position of the attachment point can
significantly affect the accuracy of the recognition of
movement patterns [21]. As shown in Figure 1, The EMG
acquisition equipment from PLUX in Portugal was used
to collect the experimental data. In order to obtain better
skin impedance, the subject must wash the skin of the leg
with alcohol before the experiment [22]. In this paper, the
sEMG sampling frequency is set to 1 kHz, which is twice the
maximum frequency, consistent with the Nyquist sampling
theorem.

In total, five sEMG signals for common leg movements
were collected for each subject. The five movements are
walk, upstairs, downstairs, stand and sit. The experimental
scenario is shown in Figure 2. Each action was repeated
10 times.

The muscles in each joint of the body are divided into
extensor and flexor muscles according to the different modes
of action. When selecting the test point, the larger or longer
of the human lower limb muscles should be chosen in
order to make the experiment simple and easy to perform.
In this way, the test point has good discrimination, which
will not lead to errors in the subsequent experiment due
to the position deviation of the electrode patch. Through
in-depth analysis of the production mechanism of human
lower limb action and the function of the muscle group, the
six muscles of the human lower limb, namely Medial and
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FIGURE 2. Diagram of the experimental scenarios (walk (1), upstairs (2),
downstairs (3), sit (4), stand (5).

lateral femoral muscles of the quadriceps, Biceps femoris,
the tibialis anterior muscle on the calf, the medial head and
the lateral head of gastrocnemius, were selected as the sEMG
signal acquisition points for the fivemovement patterns of the
human lower limb. As shown in Figure 3.

During the experiment, each movement was repeated
10 times in 20 seconds and 50 data were collected from each
subject. In order to avoid the influence of redundant signals,
this paper eliminates all but the active signal, As shown in
Figure 4. In this paper, A total of 400 leg movement signals
were collected.

As a reflection of the electrophysiological activity of motor
nerve cells in the spinal cord in the surface of skeletal
muscle, sEMG is essentially a complex physiological signal
with non-smooth properties. In the process of picking up
and processing of sEMG signals on the skin surface, the
interference signal of the internal circuit of the electrode
piece and the physiological noiseare inevitably intermingled.
Therefore, the extracted activity signals need to be denoised
with a Butterworth band-pass filter from 50 HZ to 350 HZ
and a 50 HZ notch filter before feature extraction [23], [24].

III. FEATURE EXTRACTION
The sEMG can assess and record the extent of muscle activity
and can also quantify muscle contraction. Different joint
movements constitute different movements, while various
muscles and muscle contraction degree will cause diverse
joint movements. For a movement, the contraction rate of
the main active muscle is significantly higher than the others,
and the degree of muscle contraction is positively correlated
with the strength of the sEMG signal. Different muscles are
distributed in different areas of the limb, and the movements
of the limb and the main active muscle areas will show a
mapping relationship. However, this mapping relationship
is not completely one-to-one. For different movements,
especially leg movements, the number of muscles is limited,
but the type of movements is incalculable. muscle activity
regions do not fully characterize all limb movements.
Introducingmuscle activity intensity based on activitymuscle
position has a better representation ability for complex and
numerous limb movements.

The technique of taking useful information from the
input muscle activity signals into a simplified representative
set of features is called feature extraction. The results of

FIGURE 3. Diagram of human lower limb muscle selection.

FIGURE 4. Removal of redundant signals from sEMG.

classification using sEMG is largely related to the choice
of sEMG features. This paper uses windowing techniques
to calculate features from sEMG signals, extract temporal
features and minimize spectral leakage. The window length
determines how many samples will be used for classification
recognition, and larger window lengths help to improve
identification accuracy. However, there is a trade-off between
latency and recognition accuracy [25]. For the above reasons,
a moving window algorithm with a 1000ms time window
and a 200ms increasing window was used to extract sEMG
features.

In this paper, Mean Absolute Value (MAV) is still chosen
to extract the main active muscle areas and to define the
intensity of muscle activity. The mean absolute value (MAV)
is a typical characteristic parameter in the time domain
analysis of sEMG signals, which can be used to measure the
strength of the surface EMG signal and determinewhether the
muscle is activated [26]. Calculate the mean absolute value
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FIGURE 5. The position relationship and numbers between the muscle
and the electrode.

(MAV) of each leg movement signal. Where I is the number
of sample data segments, xkj is the kth sample data in segment
j, and Nj is the number of samples for this segment. The mean
absolute value is defined as (1).

MAVj =
1
Nj

Nj∑
k=1

|xkj|, j = 1, 2, · · · , I (1)

According to the position of the selected muscle and the
attachment point of the EMG acquisition device, the position
relationship and numbers between the muscle and the
electrode are shown in Figure 5. The experimental location
deviates less from the actual location.

According to the results of Figure 5, each muscle uses an
electrode to measure the muscle activity level and represents
it by a number. In this paper, mean absolute values (MAV)
were used to quantify muscle activity levels. A sliding time
window is used to divide the acquired activity signal into a
number of movement signals. The MAV for each channel
of each signal is calculated to obtain a set of N values (the
calculation results in a set of 6 values in this paper). These N
values form a set X, which is shown in (2).

X =
{
x1, x2,, · · · ,xN

}
(2)

The number of the muscle corresponding to each value in set
X constitutes another set Y. The set is shown in (3).

Y =
{
y1,y2,, · · · ,yN

}
(3)

The elements in the set X are arranged in order from large to
small, and then the r elements located in front are taken out to
form the set M1. M1 is shown in (4). Where r is the number of
activemuscles selected, which can be obtained by the analysis
of the number of selected muscles and sEMG. As shown in
the figure 6, at the same time point, the number of mainly
active muscles is about 2 to 4 pieces. In addition, in order to
avoid increasing the dimension of compositive featurematrix,
the 2r≤N should be guaranteed. Therefore, in this paper,
r is 3.

M1 =
{
xa,xb,, · · ·, xr,

}
(4)

According to M1, X and Y, the number of the muscle
corresponding to each value in set M1 can be obtained,
which constitutes another set M2. As shown in (5).

M2 =
{
ya,yb,, · · · ,yr,

}
(5)

The set M can be obtained from M1 and M2, which is shown
in (6).

M = {(xa,ya) , (xb,yb) , · · · , (xr,yr)} (6)

In this paper, a vector is obtained by using the 3 elements in
the set M. Thus, a 6 (3 × 2) -dimensional feature vector is
obtained from the sEMG signal of each frame. This feature
based on the main active muscle area and muscle activity
intensity is called the active muscle position and intensity
(AMPI).

IV. PERFORMANCE EVALUATION
The performance evaluation in this paper mainly includes
two parts. (1) By verifying the classification performance of
the new features against the features before the improvement
using six commonly used classifiers. The advantages of
using the improved new features in terms of improved
classification accuracy are demonstrated. (2) Comparing the
new features with the traditional eight classification features,
it was verified that the classification performance of the new
features is still at the top compared to the commonly used
features, proving the usefulness of the new features.

This paper compares the improved new features with the
muscle activity region (AMR). Multiple classifiers were used
to obtain classification accuracy and evaluate the applicability
of new features for leg motion classification. In terms of
classifiers, researchers have proposed and applied many
methods for handling and distinguishing sEMG signals.
Including radial basis function artificial neural networks
[27], hidden markov models (HMMs) [28], gaussian mixture
models (GMMs) [29], [30], fuzzy methods [31] and support
vector machines (SVM) [32]. In this study, six classifiers,
support vector machine (SVM), k-nearest neighbor (KNN),
The classification and regression tree (CART), back propa-
gation neural network (BP), random forest (RF) and linear
discriminant analysis (LDA), were selected for classification
and identification. Matlab software was used for the signal
processing and feature extraction steps, and then the extracted
data was classified. Results of the classifier were evaluated
using a 5-fold cross-validation. Classification accuracy is
used as the main metric to evaluate the classification
performance of the new features.

In this study, the improved new features are compared
with the commonly used time domain, frequency domain,
and nonlinear features. Traditional feature sets including root
mean square (RMS), variance (VAR) and zero crossing (ZC)
in the time domain; median frequency (MF) and mean power
frequency (MPF) in the frequency domain; approximate
entropy (ApEn), fuzzy entropy (FuzzyEn) and lempel-ziv
complexity (LZC) for non-linearities.
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FIGURE 6. Diagram of activity signals in different movement modes (upstairs (a), downstairs (b), sit (c), stand (d), walk (e)).

Root mean square (RMS), the root mean square value of all
amplitudes over a period of time, characterizes the average

variation in sEMG over time. Where xi(i=1, 1, 2. . . , N) is
a time series of length N. The root-mean-square value is
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defined as (7).

RMS =

√√√√ 1
N

N∑
i=1

x2i (7)

Variance (VAR), the degree to which a sample deviates from
the mean, reflects the trend in the degree of dispersion of the
sEMG signal. Where xi(i=1, 1, 2. . . , N)is a time series of
length N, and x represents the mean of the signal of length N.
The variance is defined as in (8).

VAR =
1

N − 1

N−1∑
i=0

[xi − x]2 (8)

Zero crossing (ZC) refers to the number of times the
amplitude value of the sEMG crosses the zero y-axis. This
feature provides an approximate estimate of the frequency-
domain properties. Where xi(i=1, 1, 2. . . , N) is a time series
of length N. The definition is as (9).

ZC =

N−1∑
i=1

[
sgn (xi×xi+1) ∩|xi − xi+1| ≥ threshold

]
,

sgn (x) =

{
1, ifx ≥ threshold
0, otherwise

(9)

Median frequency (MF), the intermediate value of the firing
frequency, which is the middle value of the discharge
frequency during muscle contraction. Where P (f) is the
power spectral density function of the signal, and fMF is the
median frequency to be obtained. The definition is as (10).∫ fMF

0
P (f) df =

∫
+∞

fMF
P (f) df =

1
2

∫
+∞

0
P (f) df (10)

Mean power frequency (MPF), the average of frequencies
over a period of time. Where P (f) is the power spectral
density function of the signal. The average power frequency
is defined as (11).

fMPF =

∫
+∞

0 fP (f) df∫
+∞

0 P (f) df
(11)

Approximate entropy (ApEn) is a number used to express the
complexity of the time series. The more complex the time
series, the larger the approximate entropy. It has superior anti-
interference capability, especially for the analysis of sEMG.
Where xi=1,1,2·,N is a time series of length N. With a window
of m, the time series is divided into N-m+1 series.

xi (t) = (xi (t) ,xi+1 (t) , · · · ,xi+m−1 (t)) (12)

Calculate the distance between each sequence and all N-m+1
sequences.

dij= Max
∣∣xi+k (t) − xj+k (t)

∣∣ , k = 0, 1, · · ·,m − 1 (13)

To define the threshold of F = r × SD.Where r = 0.1 ∼ 0.25,
SD is the standard deviation of the sequence. Cm

i (t) is the

ratio of the numbers in the sequence greater than F to the total
numbers. Based on all Cm

i (t), its log average was calculated.

8m (t) =
1

N − m + 1

N−m+1∑
i=1

ln Cm
i (t) (14)

Increase the window to m+1 and repeat (12)-(14). The
approximate entropy is calculated as (15).

ApEn =8m (t) − 8m+1 (t) (15)

Fuzzy entropy (FuzzyEn), which uses a fuzzy subordination
function to define the similarity of vectors. It exhibits better
monotonicity, relative consistency and greater robustness to
noise when characterizing signals of varying complexity.
Where xi (iC =1, 1, 2 . . ., N) is a time series of length N.
With a window of m, the time series is divided into
N-m + 1 series.

xi (t) = (xi (t) ,xi+1 (t) , · · · ,xi+m−1 (t)) (16)

Calculate the distance between each sequence and all N-m+1
sequences.

dij= Max
∣∣xi+k (t) − xj+k (t)

∣∣ , k = 0, 1, · · ·,m − 1 (17)

where r = 0.1 ∼ 0.25, the fuzzy membership is calculated by
distance d.

Dm
ij = µ

(
dmij ,N, r

)
= exp

−

(
dmij

)N
r

 (18)

Calculate the average of all fuzzy membership except itself.

8m (N, r) =
1

N − m

N−m∑
j=1

 1
N − m + 1

N−m∑
j=1,j̸=i

Dm
ij

 (19)

Increase the window to m+1 and repeat (16)-(19). The
fuzzy entropy is calculated as (20).

FuzzyEn = ln8m (t) − ln8m+1 (t) (20)

Lempel-Ziv complexity (LZC) is a method to characterize the
rate at which new patterns appear in a time series and is used
to measure the rate at which new patterns are added as the
time series increases. It can reflect the degree of disorder of
the sequence. First, the median value of the time series of the
signal is set as a threshold. Time points in the sequence that
are greater than the threshold is 1 and time points that are less
than the threshold are 0. The time series after binarization is
defined as S(S1,S2, · · · ,Sn), where n is the length of the time
series of the signal. The initial value C (n) of LZC was set
to 1. Second, trathrough the time series points to update C (n).
For each new subsequence occurrence in the time series, the
value of C (n) adds 1, until all sequence points are traversed.
Finally, the final C (n)was normalized. For a sufficiently long
random binary sequence, there is defining equation as (21).

(C (n)) = b (n) =
n

log2 n
(21)
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FIGURE 7. The average classification accuracy of the classification tests for activity muscle regions (AMR) and Active Muscle
Position and Intensity (AMPI) by using six classifiers.

TABLE 1. Classification accuracy and average improvement rate for Each subject for activity muscle regions (AMR) and active muscle position and
intensity (AMPI) by using SVM as classifier.

Therefore, the final LZC is shown in (22).

LZC =
C (n)
b (n)

(22)

V. RESULTS AND DISCUSSION
Figure 7 shows the average classification accuracy of the
classification tests for activity muscle regions (AMR) and
active muscle position and intensity (AMPI) by using six
classifiers. It is clear that active muscle position and intensity
(AMPI) has better recognition. The high classification
accuracy obtained shows that the new features can solve more
challenging problems. As can be seen from the figure 6, the
average improvement in classification accuracy for the six
classifiers, namely linear discriminant Analysis (LDA), The

classification and regression tree (CART), k-nearest neighbor
(KNN), support vector machine (SVM), back propagation
neural network (BP) and random forest (RF) was 17.13%,
9.42%, 12.02%, 14.00%, 10.27% and 13.19% respectively.
The results also show that SVM has the highest average
classification accuracy on this data.

Table 1 shows the average classification accuracy and
Average increase rate of the classification tests for Each
subject for activity muscle regions (AMR) and active
muscle position and intensity (AMPI) by using SVM as
classifier. The difference in classification accuracy between
the different subjects is due to differences in muscle anatomy.
The variation in performance may also be due to differences
in muscle contraction effort and muscle fatigue between the
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FIGURE 8. The confusion matrix showing class wise accuracy for five classes of leg movements for two subjects for activity
muscle regions (AMR) and active muscle position and intensity (AMPI) by using SVM as classifier.

subjects. For all the eight subjects, the classification accuracy
by using AMPI was higher than that by using AMR.

The confusionmatrices for the two subjects using the SVM
is shown in Figure 8. This is because SVM performs slightly
better than other classifiers. As can be seen from the figure 8,
there are difficulties in separating leg movements when using
the AMR for classification, especially for two groups of
movements: upstairs and downstairs, stand and sit. Because
the two groups of movements are similar, and the joints and
muscles used are also similar, it is difficult to distinguish
when using the AMR for classification. This can be well

improved when using the improved feature, namely active
muscle position and intensity (AMPI) for classification.

The confusion matrix of Figure 8 showing class wise
accuracy for five classes of leg movements for two subjects
for activity muscle regions (AMR) and active muscle position
and intensity (AMPI) by using SVM as classifier.

For the investigation of different movement separability
of the proposed AMPI, the confusion matrix across eight
subjects was averaged. The average confusion matrix is as
shown in Figure 9. For using the SVM as the classifier, it can
be seen from the diagonal of the confusion matrix that the
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FIGURE 9. Average classification accuracy across eight subjects using SVM as a classifier
after applying AMPI for classification of five classes of leg movements.

FIGURE 10. The Average classification accuracy of ten features.

classifier successfully classified five leg movement patterns.
However, there are difficulties in separating stand and sit
using SVM as classifier. The misclassification may be due
to too similarity to the movement patterns. The maximum
classification accuracy of AMPI was about 86.2% Using the
SVM as a classifier. This seems acceptable in comparison
to other work in the literature. The results also showed that

classification of five different leg movements using AMPI
was successful.

Figure 10 shows the average classification accuracy of the
classification test by the SVM classifier for AMPI, AMR
and eight other traditional features. The main goal of this
part is to make an overall assessment of the classification
performance of the AMPI. By comparison, the new features
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were found to be in the forefront of the ten features. It is
only secondary to root mean square (RMS) and variance
(VAR), and the average classification accuracy difference is
very small, only 0.041 and 0.015. Moreover, AMPI has the
highest classification accuracy compared with the commonly
used frequency domain features and nonlinear features. This
suggests that the new feature proposed in this study has great
practical value in terms of pattern recognition.

VI. CONCLUSION
This study presents an improved method for extracting
sEMG features. When the pre-and post-improved sEMG
features were compared using six common classifiers, the
new features, namely active muscle position and inten-
sity (AMPI), achieved the highest classification accuracy.
Observing the confusion matrix shows that the new features
classify similar actions better compared to activity muscle
regions (AMR). This makes up for the biggest flaw of feature
before improvement. The AMPI, AMR and the traditional
eight sEMG features were tested for classification using
SVM. The classification performance of the new features is
in the top three and is higher than the common frequency
domain features and non-linear features. This indicates that
the AMPI has great utility in pattern recognition. Moreover,
the new features retain the dimension reduction ability of
the original features. As long as 2r < N(where N is the
number of channels and r is the number of selected active
muscle), the feature dimension reduction can be realized,
and the calculation cost and calculation time of the pattern
recognition method can be reduced.

Future studies will use more channels and information
to optimize and validate the new features. Apply the new
features in more aspects, such as construction of a sEMG
cloud map of the lower limbs, joint angle prediction, and so
on. Ultimately, we want to achieve real-time control of lower
limb exoskeleton robots based on sEMG. In addition, with the
development of multi-channel sEMG acquisition equipment
and the application of high-density electrodes, comparedwith
the traditional time-frequency domain features, the AMPI
based on active muscle areas will have greater utilization
space and use value.
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