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ABSTRACT This study proposes an adaptive fuzzy state observer-based command filtering technique for
a pneumatic active suspension considering the effects of uncertain parameters, unmeasured states, and non-
ideal characteristics of the air spring actuator. Firstly, a mathematical model is constructed to investigate the
dynamic behavior and examine external disturbances and system errors. The problems of input saturation
and unknown dead zone are also considered in this work. By using fuzzy logic systems, unknown nonlinear
functions of parametric uncertainties and various passenger masses are approximated. Then, a serial-parallel
state observer is designed not only to estimate unmeasured state variables of the suspension system but
also to eliminate the prediction errors of observer estimation. To enhance the suspension performance,
a prescribed performance function (PPF) is applied to ensure the convergence rate of vertical displacement
within specified boundaries. Besides, the ‘‘explosion of complexity’’ issue is eliminated by employing the
command filtering technique. An adaptive fuzzy output feedback controller is then developed to reduce the
tracking error of sprung mass displacement under the effect of unknown parameters, unmeasured states,
and a non-ideal actuator. Moreover, the Lyapunov theorem is applied to prove the stability of the designed
controller. Finally, comparative simulation examples will help verify the effectiveness and reliability of the
developed approach.

INDEX TERMS Active suspension systems (ASSs), fuzzy logic systems (FLSs), serial-parallel observer,
prescribed performance control (PPC), command filtered control (CFC).

I. INTRODUCTION
Pneumatic active suspension systems have been widely
used in modern automobile technology as they can provide
variable stiffness coefficients and flexible active force to
dissipate the external excitations caused by irregular road
profiles [1]. Compared with hydraulic or electromagnetic
actuators [2], [3], a pneumatic spring has performed advan-
tages of low cost, cleanliness, and high power-to-weight
ratio characteristics [4], [5]. However, nonlinearity is one
of the main disadvantages of pneumatic suspension which
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makes it challenging to establish a precise mathematical
model and design a control algorithm. To solve this
problem, many advanced controllers have been proposed to
increase suspension performance such as adaptive [6], output
feedback [7], finite-time [8], and sliding mode control [9].
Vaijayanti et al. [10] designed a nonlinear control to satisfy
the suspension objectives of ride comfort and driving
safety. To investigate the problem of time delay and output
constraint, Li et al. [11] designed a fuzzy output feedback
controller for a vehicle suspension system. Rath et al. [12]
developed a robust sliding mode controller considering
nonlinear parameters to limit the chassis movement of
the hydraulic suspension model. However, chattering and
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singularity problems in the control law are potential limi-
tations associated with SMC approaches [13]. To stabilize
the sprung mass displacement with the effects of uncertain
parameters, the backstepping control is designed for the
nonlinear active suspension to get ride comfort [14]. Nonethe-
less, these control designs assumed that ideal actuators were
investigated while actuator dynamics were ignored. Besides,
the problems of chassis displacement have not been fully
considered under the presence of unknown parameters and
unmodeled dynamics of pneumatic suspension.

Although the majority of most previous studies can ensure
the asymptotic stability of the suspension system, the conver-
gence rate of tracking error of vertical displacement cannot be
seriously considered. Unfortunately, it may lead to handling
instability, and driving safety cannot be ensured if this
constraint bound is violated. To satisfy the output constraint,
a PPF was introduced by Bechlioulis et al. [15], which can
converge the tracking error to zero in the steady state
and guarantee the maximum overshoot. Huang et al. [16]
designed an adaptive control-based PPF to stabilize the verti-
cal displacement and improve passenger comfort. Combining
the prescribed performance with an adaptive controller,
Liu et al. [17] ensured the chassis displacement and pitch
angle of the suspension system with model uncertainty.
Nonetheless, these above control schemes have difficulties
in handling stability and driving safety [18]. Besides, most
above studies are designed based on the conventional
backstepping algorithm which cannot solve the explosion
of complexity issues caused by repeating derivations of
virtual controllers. As an alternative method, a CFC scheme
can eliminate this problem by adopting the outputs of
command filters to avoid using the differentiation of the
intermediate control signal at each step [19], [20]. Besides,
CFC can improve control performance by employing an
error compensation mechanism to minimize the errors of the
command filters [21]. So far, however, a few studies have
applied the CFC for the pneumatic suspension considering
model uncertainties and unmeasured states [20].

Generally, suspension systems always contain unmodeled
dynamics and external disturbances, however, these unknown
parameters are assumed to be linear in almost previous
research. Thus, the control performance will degrade if these
inevitable factors are neglected. Recently, FLSs [22] and
neural networks (NNs) have been increasingly employed
to model and control uncertain suspension systems [23].
Zhang et al. [24] proposed an adaptive dynamic surface
controller in which the unknown functions are addressed by
NNs to ensure the vertical constraint of the sprung mass.
To approximate the parametric uncertainties of nonlinear sus-
pension, Li et al. [25] designed an adaptive event-triggered
fuzzy control that can solve the actuator failure and improve
the ride comfort. It should be noted that thementioned control
schemes are all suitable for the ASSs where the system states
are completely known, and actuator dynamics are ignored.
The results in [26] required that all state variables of the
system dynamics be directly measured even though they

are usually immeasurable or difficult to define. To design
the output feedback control in the case of unmeasured
system states, an adaptive state observer based on intelligent
techniques was developed in [27], [28], [29]. Pan et al. [7]
proposed an output feedback finite-time control to approxi-
mate parametric uncertainties and unknown states for active
suspension. Nonetheless, the aforementioned studies did not
pay attention to improving the approximation performance.
Moreover, the problem of the unmodeled dynamic and non-
ideal actuator should be carefully investigated to enhance the
high accuracy of pneumatic suspension.

In practical applications, hysteresis, backlash, and dead
zone are three generally unknown non-smooth characteristics
of actuators, which degrade control performance and even
cause system instability [30], [31]. Particularly, dead zone
nonlinearities always exist in pneumatic suspension systems
because of the response characteristic of proportional control
valves. Nevertheless, in fact, most suspension controllers are
considered ideal actuators for system modeling and ignore
these uncertainties. Hua et al. [32] proposed a novel adaptive
controller for a half-car active suspension to overcome the
adverse effects of the dead-zone problem. To compensate for
the effects of dead-zone and hysteresis actuator, Pan et al. [6]
designed an adaptive tracking control scheme to improve
ride comfort and handling stability. Besides, most previous
studies of ASSs ignored the input saturation problem of
pneumatic suspension, however, the control performance
depends on the limitation of the input control signal. For
this purpose, some FLSs or NNs approximation techniques
are employed to deal with the effects of dead zone and
saturation. Zhang et al. [33] developed a novel fuzzy sliding
mode control to guarantee the ride comfort of half-car
suspension considering an unknown dead zone and actuator
saturation. However, none of the results of studies considered
the dead-zone actuator of pneumatic active suspension under
the presence of unmeasurable states, which are considered in
this study.

Based on the above summary, we propose an adaptive
fuzzy observer output feedback control to improve the control
performance of the pneumatic suspension with unknown
parameters, input saturation, and dead zone characteristics.
Firstly, a mathematical model of the air spring actuator is
contributed based on thermodynamic theory to investigate the
suspension behavior. To mitigate the effect of the actuator
nonlinearities, the inverse dynamic functions are employed
for the dead zone and input saturation problems. However,
it is difficult to design the ideal controller to stabilize the
sprung mass under the effects of unmodeled dynamics,
external disturbances, and different masses of passengers.
Besides, due to unmeasurable variables of chassis velocity
and internal pressure of air spring, all system states become
unavailable for controller design. Therefore, FLSs are applied
to approximate unknown continuous functions caused by
parametric uncertainties while a fuzzy state observer is then
proposed to approximate unmeasured variables. Compared
with a general observer, a serial-parallel approximation
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technique was constructed while the prediction errors of the
state observation model are considered in this design. Thus,
the control algorithm is designed with a smoother parameter
adaptation which can improve the faster state tracking and
better parameter convergence. Besides, by constructing a PPF
constraint, the proposed scheme can enhance the convergence
rate and guarantee the maximum overshoot of tracking
error to stabilize the chassis displacement. Finally, with
the help of the CFC technique, the issue of the explosion
complexity of traditional backstepping is eliminated. The
main contributions of this research are described as follows.
1. An adaptive output feedback control is proposed for the

pneumatic suspension to guarantee the chassis stability
under the presence of uncertain parameters, unmeasurable
states, input saturation, and dead zone actuator.

2. The serial-parallel approximation model based on the
fuzzy observer technique is designed to approximate
unmeasured variables while the prediction errors are
incorporated with the developed scheme to enhance better
control performance.

3. PPF and CFC techniques not only ensure the tracking error
of chassis displacement but also eliminate the explosion of
complexity issue of conventional backstepping.
The remainder of the manuscript is arranged as follows.

The pneumatic suspension descriptions and actuator charac-
teristics of the quarter vehicle are described in Section II.
An adaptive output feedback CFC scheme with PPF based
on a serial-parallel observer will be proposed in Section III.
Then, the stability of the closed-loop system is proved.
Moreover, the comparative simulations are performed in
section IV to verify the efficiency of the designed method.
Finally, some conclusions about pneumatic suspension are
given in Section V.

II. PNEUMATIC SUSPENSION DESCRIPTION AND
PRELIMINARIES
The quarter model of pneumatic active suspension with air
bellow is described in Fig. 1. In this design, the sprung mass
ms denotes the weight of the chassis and the total mass of
the passengers. The mechanical assembly of the suspension
structure is expressed by the unsprung massmu. To define the
sprung mass and unsprung mass positions, symbols zs and zu
are usedwhile the disturbance of road profile is denoted by zr .
The stiffness and damping coefficients of spring and damper
are described by ks and ca, respectively. Besides, kst , cat are
stiffness coefficient and damper values of the tire. To provide
an active force to dissipate external excitation, a pneumatic
spring with the stiffness coefficient kp is placed between the
sprung mass and unsprung mass.

Besides, the nonlinearity model of pneumatic spring
contains parametric uncertainties caused by the twisted-wire
rubber material under the effect of external forces. Thus, the
dynamic model of the pneumatic spring must consider these
parametric deviations, which will be detailed in this study.
The dynamic equations of the quarter ASSs are described
based on [22].

FIGURE 1. Pneumatic active suspension model.

As we know the air spring can provide a flexible force
for regulating the sprung mass to get passenger comfort.
However, the dissipation of vibration capacity should be
carefully considered due to the limitation of the pneumatic
system. Hence, the characteristic of input saturation is
examined in this study. The definition of actuator saturation
can be expressed by

us = sat (u) =

{
u, |u| < uL
uLsign (u) , |u| ≥ uL

(1)

where us is the saturation signal and uL is the known
boundary.

Generally, the saturation nonlinearity (1) cannot be directly
used in the controller design because of the sharp corners
u = uL . To solve this drawback, a Gaussian error function
is applied to indicate the input saturation signal as follows

us = sat (u) = uE × erf
(√

π

2uE
u
)

(2)

where uE = uLsign(u) and erf (x) is the Gauss error function.
Definition 1 [34]: Gauss error function is a continuously

differentiable function, which is used to express a nonelemen-
tary function of sigmoid shape

erf (x) =
2

√
π

∫ x

0
e−t

2
dt (3)

To apply the input saturation for the control design,
we obtain the output signal us as [35]

us = huu+ d (u) (4)

where hu is the smooth function and d (u) is bounded by
|d(u)| ≤ 1.

On the other hand, the dead zone phenomenon often occurs
in the pneumatic system because most proportional valves
are commonly designed to clog the orifice. Hence, there is
an overlapping phenomenon of the valve spool at the null
condition. This will keep the output constant until the control
signal magnitude is over a threshold value. Then, the actual
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opening of the orifice area can be considered as dead-zone
nonlinearity, which is expressed by

u = DZ (usd (t)) (5)

where DZ denotes the dead zone operator and usd (t) is the
input nonlinearity. Based on [36], we can write

DZ
(
usd (t)

)
=


ka
(
usd (t) − qa

)
, for usd (t) ≥ qa

0, for − qb < usd (t) < qa
kb
(
usd (t) + qb

)
, for usd (t) ≤ −qb

(6)

where kb > 0 and ka > 0 are the left and right slope of
the dead zone while qb > 0 and qa > 0 are the dead zone
parameters, respectively. To simplify the control design, the
dead zone can be transferred by

u = k(t)usd (t) + q(t) (7)

k(t) =

{
ka, if usd (t) > 0
kb, if usd (t) ≤ 0

(8)

q(t) =


−kaqa, for usd (t) ≥ qa
−k(t)ud (t), for − qb < usd (t) < qa
kbqb, for usd (t) ≤ −qb

(9)

For a practical system, the dead zone parameters kb, ka, and
q (t) are bounded. Hence, we can obtain{

min (ka, kb) ≤ |k (t)| ≤ max (ka, kb)
min (kaqa, kbqb) ≤ |q (t)| ≤ max (kaqa, kbqb)

(10)

Finally, considering the actuator characteristics (4), (7),
and unmodeled parameters of air bellow, we establish the full
dynamic equations for the quarter pneumatic suspension as

ẋ1 = x2 + d1 (t)

ẋ2 = x5 +
1
ms

[−ks(x1 − x3) − ca(x2 − x4)] + d2 (t)

ẋ3 = x4

ẋ4 =
1
mu

[
−kst (x3 − zr ) − cat (x4 − żr ) + ks(x1 − x3)

+ca(x2 − x4) − msx5 − msd2

]
ẋ5 =

κRT
ms (zas0 + x1 − x3)

σsvqas
(
hu
(
kusd + q

)
+ d

)
−

γ

(zas0 + x1 − x3)
(x2 − x4) x5 + p (t) (11)

where d1 (t) is the position error of chassis displacement
and p (t) is the time-varying modeling error of pneumatic
spring which contains unmodeled dynamics and unknown
parameters.

Besides, the nonlinearity model of pneumatic spring
contains parametric uncertainties caused by the twisted-wire
rubber material under the effect of external forces. Thus,
the dynamic model of the pneumatic spring must consider
these parametric deviations, which will be detailed in the next
section.

To guarantee passenger comfort, the active suspension
must dissipate the external vibrations that cause excitation to

the sprung mass. Then, the controller design will concentrate
on the mechanical equations of the chassis by

ẋ1 = f1 + g1x2 + d1 (t)

ẋ2 = f2 + g2x5 + d2 (t)

ẋ5 = f3 + g3usd + d3 (t) (12)

where f1 = 0 f2 = 1
/
ms[−ks(x1 − x3) − ca(x2 − x4)],

f3 = [−κ
/
(zas0 + x1 − x3)](x2 − x4)x5, g1 = 1,

g2 = 1, g3 = {κRT
/
[ms(zas0 + x1 − x3)]}σsvqashuk(t),

d3(t) = p(t) + g3q(t)/k(t) + g3d(u)/ (huk(t)).
Obviously, it can be concluded from the general dynamic

model (12) that f2 and f3 are unknown nonlinear functions
since state variables x3 and x4 are disregarded in the control
algorithm. Therefore, the suspension control performance
will be degraded if these unknown parameters are neglected.
To enhance the control objective under the above problems,
some following assumptions and lemmas are suggested.
Assumption 1: di (t) , i = 1, 2, 3 is the unknown bounded

time-varying disturbance and satisfies |di (t)| ≤ D̄i,
i = 1, 2, 3.
Besides, to estimate unknown nonlinear functions caused

by parametric uncertainties, the fuzzy approximation tech-
nique is employed. There are four parts of FLSs structure:
fuzzifier, fuzzy rule base, fuzzy inference engine, and
defuzzifier. The knowledge-based consists of a series of If-
Then rules as follows

Rl : Ifx1 is E l1 and x2 is E
l
2 and . . .xn is E ln,

then y is F l, l = 1, . . . ,N (13)

where X = [x1, x2, l, xn]T is FLSs input while y represents
FLSs output; E li and F l denote fuzzy sets corresponding
with fuzzy membership functions µE li

(xi) and µF l (y); and
N denotes for the total of fuzzy rules.
Applying singleton fuzzifier, center average defuzzifica-

tion, and product inference, FLSs are defined by

y (X) =

∑N
l=1 ȳl

∏n
i=1 µE li

(Xi)∑N
l=1

(∏n
i=1 µE li

(Xi)
) (14)

where ȳl = max
y∈R

{
µF l (y)

}
.

Thus, we can receive the fuzzy basic function

sl =

∏n
i=1 µE li

(Xi)∑N
l=1

(∏n
i=1 µE li

(Xi)
) (15)

From (14), the fuzzy logic approximation is determined by

y (X) = θT S (X) (16)

where S(X ) = [s1(X ), s2(X ), . . . , sN (X )]T denote the
basis function vector and θT = [ȳ1, ȳ2, . . . , ȳN ] =

[θ1, θ2, . . . , θN ].
Lemma 1 [37]: Determine any continuous vector function

f (X) on a compact set �, there exists a positive constant
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η > 0 satisfying the FLSs estimation

sup
X∈�

∣∣∣f (X) − θT S (X)

∣∣∣ ≤ η (17)

where θ is the ideal FLSs weight matrix, η is an error
value of the fuzzy approximation in comparison with an
unknown function, and S (X) is bounded by a positive
constant λ-, ∥S (X)∥ ≤ λ-.
In this study, unknown functions f (X) determined on the

compact set X ∈ � will be approximated by the FLSs
technique

fi (X) = θTi Si (Xi) + ηi (18)

Lemma 2 [19]: The command filtered theory is applied to
eliminate the explosion of complexity issues caused by the
derivative of virtual controllers

ξ̇i1 = ρmξi2

ξ̇i2 = −2ρmomξi2 − ρm (ξi1 − αi−1) (19)

where xci = ξi1 and ẋci = ξ̇i1 are the output of each filter
designed to determine tracking error ei = xi − xci , ρm and om
the control parameters while αi−1 denotes the intermediate
signal. When the input signal αi−1 and their derivatives are
bounded by |α̇i−1| ≤ ℓ1 and |α̈i−1| ≤ ℓ2, there exist
om ∈ (0, 1] and ρm > 0 satisfied the following inequality∣∣xci − αi−1

∣∣ ≤ ℓ3 (20)

where ℓi > 0, i = 1, 2, 3 are positive parameters.
Remark 1: The command filter technique (19) can

estimate the virtual control signal xci and ẋci without
differentiation. Therefore, the issue of ‘‘explosion of com-
plexity’’ in the traditional backstepping control can be
dismissed.
Lemma 3 [19]: The errors of the command filtered control

(θi1 − αi−1) is removed by the compensation mechanisms µi

µ̇1 = −k1µ1 + g1µ2 + g1
(
xc2 − α1

)
µ̇i = −kiµi − gi−1µi−1 + giµi+1 + gi

(
xci+1 − αi

)
µ̇n = −knµn − gn−1µn−1 (21)

where ki are control parameters and the initial condition
is chosen µi(0) = 0 for t ∈ [0,T1]. The compensation
mechanisms are bounded by invoking [38]

∥µi (t)∥ ≤
ℓ3Ḡ31

2k0

(
1 − e−2k0(t−T1)

)
(22)

where k0 =
(
1
/
2
)
min (ki) and |g3| ≤ Ḡ31.

Control objectives: The control design is developed to
guarantee three objectives of pneumatic suspension

1) Ride comfort: The proposed method can stabilize the
chassis movement to isolate passengers from continuous
excitation of road disturbances.

2) Handling stability: This objective limits the suspen-
sion deflection to the maximum allowable space of

the mechanical structure. It means that the rela-
tive suspension deflection (RSD) must be smaller
than 1.

RSD =
zs − zu
zM

(23)

where zM is the maximum sprung mass displacement.
3) Driving safety: This standard ensures that the tire is

in continuous contact with the road surface. For this
purpose, the relative tire fore (RTF) is kept at less than 1.

RTF =
Fst + Fat
[ms + mu] g

(24)

Remark 2: It is challenging to design a novel controller that
can satisfy these suspension requirements since improving
the passenger comfort will require larger suspension deflec-
tion and reduce the road holding objective. This proposed
control can ensure three objectives by employing the PPF
technique.

III. ADAPTIVE FUZZY OUTPUT FEEDBACK CONTROL
WITH PPF AND SERIAL-PARALLEL OBSERVER
A. FUZZY SERIAL-PARALLEL STATE OBSERVER
To overcome this drawback of unmeasured states, a serial-
parallel approximation technique was developed in this
section. Firstly, a fuzzy state observer is proposed to
approximate unmeasurable states. Then, the prediction errors
are solved by the serial-parallel estimation model. Hence,
the proposed observer can improve the tracking performance
for control design as it can estimate unmeasured states and
eliminate estimation errors. Now, the system dynamics (12)
can be converted into the following general form

ẋ = Ax + Ky+ B1f1 (x̄1) + B2f2 (x̄2) + B3f3 (x̄3)

+B3g3 (x̄1) usd
yf = Cx (25)

where x = [x1, x2, x5]T , x̄2 = [x1, x2]T , x̄3 = [x1, x2, x5]T

A =

−a1 1 0
−a2 0 1
−a3 0 0

 ; B1 = [1, 0, 0]T ; B2 = [0, 1, 0]T ;

B3 = [0, 0, 1]T ; C = [1, 0, 0] ; K = [a1, a2, a3]T

According to Lemma 1, FLSs are applied to estimate
unknown nonlinear functions fi (x̄i) , i = 1, 2, 3 and g3 (x̄1)
via f̂i (x̄i|θi) = θTi Si (x̄i), ĝ3 (x̄1|θG) = θTGSG (x̄1) by

fi (x̄i) = f̂i
(
x̄i|θ∗

i
)
+ εi = θ∗T

i Si (x̄i) + εi (26)

g3 (x̄1) = ĝ3
(
x̄1|θ∗

G
)
+ εG = θ∗T

G SG (x̄1) + εG (27)

where θi and θG are the estimations of the ideal weights θ∗
i , θ∗

G

θ∗
i = arg min

θi∈�i

[
sup
x̄i∈Ui

∣∣∣f̂i ( ˆ̄xi|θi
)

− fi
(
ˆ̄xi
)∣∣∣]

θ∗
G = arg min

θG∈�G

[
sup

x̄G∈UG

∣∣∣ĝ3 ( ˆ̄x1|θG
)

− g3
(
ˆ̄x1
)∣∣∣]

where �i and Ui are the compact regions of θi and x̄i.
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The minimum fuzzy approximation errors εi and εG are
determined by

εi = fi (x̄i) − f̂i
(
x̄i|θ∗

i
)

εG = g3 (x̄1) − ĝ3
(
x̄1|θ∗

G
)

(28)

Assumption 2: There are positive constants ε∗
i and ε∗

G
satisfying ∥εi∥ ≤ ε∗

i and ∥εG∥ ≤ ε∗
G.

A normal state observer with the FLSs technique can be
proposed to estimate unmeasurable system variables (25)

˙̂x1 = x̂2 + f̂1
(
ˆ̄x1|θ1

)
+ a1

(
x1 − x̂1

)
˙̂x2 = x̂5 + f̂2

(
ˆ̄x2|θ2

)
+ a2

(
x1 − x̂1

)
˙̂x5 = ĝ3

(
ˆ̄x1|θG

)
usd + f̂3

(
ˆ̄x3|θ3

)
+ a3

(
x1 − x̂1

)
(29)

The general form of state observer (29) can be written by

˙̂x = Ax̂ + Ky+ B1 f̂1 (x̄1|θ1) + B2 f̂2 (x̄2|θ2) + B3 f̂3
(
ˆ̄x3|θ3

)
+B3ĝ3

(
ˆ̄x1|θG

)
usd (30)

where x̂ =
[
x̂1, x̂2, x̂5

]T is defined to estimate x.
Let x̃i = xi − x̂i = [x̃1, . . . , x̃i] as the observer error. Then,

the observer error is defined based on (25) and (30) as follows

˙̃x = Ax̃ + B1
(
f1 (x̄1) − f̂1

(
ˆ̄x1|θ1

))
+B2

(
f2 (x̄2) − f̂2

(
ˆ̄x2|θ2

))
+B3

(
f3 (x̄3) − f̂3

(
ˆ̄x3|θ3

))
+B3

(
g3 (x̄1) − ĝ3

(
ˆ̄x1|θG

))
usd + D

= Ax̃ +

3∑
i=1

Biδi + B3δGusd + D (31)

where D = [d1(t), d2(t), d3(t)]T and δi, δG denotes fuzzy
approximation errors which can be calculated by

δi = fi (x̄i) − f̂i
(
ˆ̄xi|θi

)
δG = g3 (x̄1) − ĝ3

(
ˆ̄x1|θG

)
(32)

From (26) and (27), we can write (32) as follows

δi = θ∗T
i

(
Si (x̄i) − Si

(
ˆ̄xi
))

+ θ̃Ti Si
(
ˆ̄xi
)

+ εi (33)

δG = θ∗T
G

(
SG (x̄1) − SG

(
ˆ̄x1
))

+ θ̃TGSG
(
ˆ̄x1
)

+ εG (34)

Assumption 3: Define υi = εi − δi, υG = εG − δG. There
are positive constants υ∗

i and υ∗
N satisfying ∥υi∥ ≤ υ∗

i and
∥υG∥ ≤ υ∗

G.
From (31), there are errors between system states and

estimation values that cannot be solved by the above
estimation technique. Hence, a serial-parallel observer is
designed by

˙̂
x̂1 = x̂2 + f̂1

(
ˆ̄x1|θ1

)
+ ϖ1

(
x̂1 − ˆ̂x1

)
˙̂
x̂2 = x̂5 + f̂2

(
ˆ̄x2|θ2

)
+ ϖ2

(
x̂2 − ˆ̂x2

)
˙̂
x̂5 = ĝ3

(
ˆ̄x1|θG

)
usd + f̂3

(
ˆ̄x3|θ3

)
+ ϖ3

(
x̂3 − ˆ̂x3

)
(35)

where ϖ1, ϖ2, ϖ3 are designed parameters.

Then, the prediction error is defined by

νi = x̂i − ˆ̂xi (36)

Substituting (29) and (35) into (36), we obtain

ν̇i = ai
(
x − x̂1

)
− ϖi

(
x̂i − ˆ̂xi

)
(37)

B. ADAPTIVE FUZZY OUTPUT FEEDBACK CONTROL WITH
PRESCRIBED PERFORMANCE AND SERIAL-PARALLEL
OBSERVER
This section presents a novel command filtered control law
based on the modified backstepping technique. Besides, the
Lyapunov theorem is employed to examine the stability of the
developed method and prove the convergence of the observer.
Step 1: In this step, the PPF is employed to guarantee the

sprung mass displacement within the boundary constraint.
Firstly, the tracking error of x1 is determined by

e1 = x1 − xd (38)

where xd is the desired trajectory.
Definition 2: A PPF is defined by a positive smooth

function

λ (t) =
(
λ0 − λ∞

)
e−γ t

+ λ∞ (39)

where γ > 0 describes the convergence rate, λ0 is the initial
constraint, and λ∞ denotes the allowable steady-state error,
which are selected to satisfy the initial conditions lim

t→0
λ (t) =

λ0 > 0, lim
t→∞

λ (t) = λ∞ > 0, and λ0 > λ∞.
According to (39), the constraint condition is transformed

by the following inequality

−τminλ (t) < e1 < τmaxλ (t) , t > 0 (40)

where τmin, τmax > 0 are the constant parameters.
Remark 3: From (39) and (40), the lower bound of

undershoot and the upper bound of overshoot are limited by
−τminλ (0) while τmaxλ (0), respectively. Besides, the tran-
sient performance of the system can be ensured by choosing
the appropriate positive constants τmin, τmax, λ0, λ∞, γ .
To apply the control design, a smooth and strictly

increasing function Q (z) is recommended to convert the
prescribed performance boundary into an equality form

Q (z) =
τmaxez − τmine−z

ez + e−z
(41)

From (41), two conditions of −τmin < Q (z) < τmax
and lim

z→∞
Q (z) = τmax, lim

z→−∞
Q (z) = −τmin are satisfied.

Hence, the constraint performance (40) can be rewritten

e1 = λ (t) Q (z) (42)

Since Q (z) is a strictly monotonically increasing
function and the initial condition is defined to satisfy
λ (t) > λ∞ > 0, we can receive the inverse transfer function
z = Q−1

(
e1
/

λ (t)
)
.
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Set φ = e1
/

λ (t), we have the transform function of the
intermediate variable z (t)

z (t) =
1
2
ln
(

φ + τmin

τmax − φ

)
(43)

Then, one defines the following state transformation

z1 = z (t) −
1
2
ln

τmin

τmax
(44)

Lemma 4 [15]: On the basis of the above analysis,
the convergence of the error signal e1 can be ensured
inside boundaries according to the prescribed performance
constraint (40) under the transformation of the smooth
function Q (z).
Remark 4: The control parameters λ0, λ∞, γ, τmin, τmax

are selected for the control design. Since these parameters
λ0, τmin, τmax satisfy the initial condition −τminλ (0) <

e1 (0) < τmaxλ (0), the new variable z1 is kept within the
boundaries and the inequality −τmin < Q (z) < τmax is
maintained. The control problem is, therefore, guaranteed
under the constraint −τminλ (t) < e1 (t) < τmaxλ (t).
Step 2: Propose the intermediate control α1.
The time derivative of z1 is inferred from (43) by

ż1 =
1
2

(
1

φ + τmin
−

1
φ − τmax

)(
ẋ1
λ

−
x1λ̇

λ 2

)

= β

(
x2 −

x1λ̇

λ

)
(45)

where β =
1
2λ

(
1

φ+τmin
−

1
φ−τmax

)
.

Define the error variable z2

z2 = x̂2 − α1 (46)

The candidate Lyapunov function is chosenV1 =
(
1
/
2
)
z21,

one can express the time derivative of V1 as

V̇1 = z1ż1 (47)

Based on the traditional backstepping, we get V̇1

V̇1 = z1β

(
z2 + α1 + x̃2 −

x1λ̇

λ

)
(48)

Then, the virtual control α1 is designed

α1 = −k1β−1z1 +
x1λ̇

λ
(49)

Substituting (49) into (48), we can rewrite V̇1 as follows

V̇1 = −k1z21 + βz1z2 + βz1x̃2 (50)

Step 3: Propose the intermediate control α2.
The command filtered technique is employed to design

the controller in this step. Firstly, the tracking error e2 is
calculated by using the state observer variable

e2 = x̂2 − xc2 (51)

where xc2 represents the output signal of the virtual
controller α1.

The compensated tracking error is determined by

z2 = e2 − µ2 (52)

The effect of command filtered error is diminished by the
error compensation (21)

µ̇2 = −k2µ2 − g2µ3 + g2
(
xc3 − α2

)
(53)

where xc3 denotes the output signal of the virtual controller α2
which is defined in this step.

Using (12) and (29), we can express the time derivative
of z2

ż2 = θT2 S2
(
ˆ̄x2
)

+ θ̃T2 S2
(
ˆ̄x2
)

+ υ2 + a2x̃1 + e3 + α2 − ẋc2
+ k2µ2 − µ3 (54)

where θ̃2 = θ∗

2 − θ2 is the estimation error.
Select the candidate Lyapunov function V2

V2 = V1 +
1
2
z22 +

1
2ς2

ν22 +
1

2ω2
θ̃T2 θ̃2 (55)

Taking the derivative of V2 using (54) we have

V̇2 = −k1z21 + z2 (βz1 + ż2) + ς−1
2 ν2ν̇2

− ω−1
2 θ̃T2 θ̇2 + βz1x̃2 (56)

Using (51), (52), and (53), we can write (56) as follows

V̇2 = −k1z21

+ z2

(
βz1 + θT2 S2

(
ˆ̄x2
)

+ θ̃T2 S2
(
ˆ̄x2
)

+ υ2 + a2x̃1
+e3 + α2 − ẋc2 + k2µ2 − µ3

)
+ ς−1

2 ν2ν̇2 − ω−1
2 θ̃T2 θ̇2 + βz1x̃2 (57)

Choose the virtual control α2

α2 = −βz1 − θT2 S2
(
ˆ̄x2
)

− k2e2 − a2x̃1 + ẋc2 (58)

Besides, the adaptive law is proposed as

θ̇2 = ω2

((
z2 +

ν2

ς2

)
S2
(
ˆ̄x2
)

− ξ2θ2

)
(59)

where ω2 > 0, ς2 > 0, and ξ2 > 0 are design parameters.
From (37), we can write

ν̇2 = θ̃T2 S2
(
ˆ̄x2
)

+ a2x̃1 − ϖ2ν2 − θ̃T2 S2
(
ˆ̄x2
)

(60)

Using (58) and (59), we can write (57) based on Young’s
inequality

V̇2 = −k1z21 −

(
k2 −

1
2

)
z22 + z2z3 +

1
2
υ∗2
2

+ ξ2θ̃
T
2 θ2 + βz1x̃2

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

(61)

Step 4: Design the actual control usd .
The tracking error e3 can be defined similarly to step 3

e3 = x̂5 − xc3 (62)
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Then, the compensated tracking error is defined

z3 = e3 − µ3 (63)

From (21), the compensating signal is used

µ̇3 = −k3µ3 − g2µ2 (64)

Using (29) and (62), we can acquire the time derivative of
z3 (63) by

ż3 = ė3 − ϕ̇3

=

(
θ∗T
G SG

(
ˆ̄x1
)

+ υG

)
usd + θ∗T

3 S3
(
ˆ̄x3
)

+ υ3

+ a3
(
x1 − x̂1

)
− ẋc3 + k3µ3 + µ2 (65)

where θ̃3 = θ∗

3 − θ3 and θ̃G = θ∗
G − θG are estimation errors.

The candidate Lyapunov function V3 is selected by

V3 = V2 +
1
2
z23 +

1
2ς3

ν23 +
1

2ω3
θ̃T3 θ̃3 +

1
2ωG

θ̃TG θ̃G (66)

Then, the time derivative of V3 using (61) can be
expressed

V̇3 = −k1z21 −

(
k2 −

1
2

)
z22 +

1
2
υ∗2
2 + ξ2θ̃

T
2 θ2 + z2z3

+ βz1x̃2 + z3ż3 + ς−1
3 ν3ν̇3 + ω−1

3 θ̃T3
˙̃
θ3 + ω−1

G θ̃TG
˙̃
θG

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

(67)

Substituting (65) into (67), we obtain

V̇3 = −k1z21 −

(
k2 −

1
2

)
z22 +

1
2
υ∗2
2 + ξ2θ̃

T
2 θ2 + z2z3

+ βz1x̃2 + ς−1
3 ν3ν̇3 − ω−1

3 θ̃T3 θ̇3 − ω−1
G θ̃TG θ̇G

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

+ z3

((
θ∗T
G SG

(
ˆ̄x1
)

+ υG

)
usd + θ∗T

3 S3
(
ˆ̄x3
)

+ υ3

+ a3
(
x1 − x̂1

)
− ẋc3 + k3µ3 + µ2

)
(68)

Propose the actual control usd

usd =

[
θTGSG

(
ˆ̄x1
)]−1(

−θT3 S3
(
ˆ̄x3
)
−a3x̃1+ẋc3−k3e3−e2

)
(69)

Substituting (69) into (68), we have

V̇3 = −k1z21 −

(
k2 −

1
2

)
z22 +

1
2
υ∗2
2 + ξ2θ̃

T
2 θ2 + z2z3

+ βz1x̃2 + ς−1
3 ν3ν̇3 − ω−1

3 θ̃T3 θ̇3 − ω−1
G θ̃TG θ̇G

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

+ z3

((
θ̃TGSG

(
ˆ̄x1
)

+ υG

)
usd + θ̃T3 S3

(
ˆ̄x3
)

+ υ3

−k3z3 − z2

)
(70)

The adaptive law is proposed as

θ̇3 = ω3

((
z3 +

ν3

ς3

)
S3
(
ˆ̄x3
)

− ξ3θ3

)
(71)

θ̇G = ωG

(
z3usdSG

(
ˆ̄x1
)

− ξGθG

)
(72)

where ω3, ωG, ξ3, ξG, ς3 are design parameters.
From (37), we can obtain

ν̇3 = θ̃T3 S3
(
ˆ̄x3
)

+ a3x̃1 − ϖ3ν3 − θ̃T3 S3
(
ˆ̄x3
)

(73)

Assume that the control signal usd is bounded
∣∣usd ∣∣ ≤ u∗

d ,
apply Young’s inequality theory, we receive

z3υGusd ≤
1
2
z23 +

1
2
υ∗2
G u∗2

d

z3υ3 ≤
1
2
z23 +

1
2
υ∗2
3 (74)

Substituting (71), (72), (73), and (74) into (70), we can
write

V̇3 = −k1z21 −

(
k2 −

1
2

)
z22 − (k3−1) z23+ξ2θ̃

T
2 θ2+βz1x̃2

+ ξ3θ̃
T
3 θ3 + ξGθ̃TGθG +

1
2
υ∗2
2 +

1
2
υ∗2
3 +

1
2
υ∗2
G u∗2

d

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

+ ς−1
3 ν3

(
a3x̃1 − ϖ3ν3 − θ̃T3 S3

(
ˆ̄x3
))

(75)

Theorem: Considering the pneumatic active suspen-
sion with actuator characteristics (4) and (7) under
Assumptions 1 - 3, virtual control (49), (58), actual control
(69), and the fuzzy serial-parallel observer (29), (35) are
designed. Based on the proposed method, the tracking errors
and scaled state estimation errors x̃i are guaranteed to be
bounded. Then, all system signals are semi-global uniformly
ultimately bounded. By choosing proper control parameters,
the tracking error e1 converges to the boundary of the PPF
constraints.

Proof: Define a general candidate Lyapunov function V
considering the observer estimation error

V = V3 +
1
2
x̃TPx̃ (76)

where P is the positive symmetric matrix such that
ATP+ PA = −Q.

Using (70), we obtain the time derivative of V by

V̇ = −k1z21 −

(
k2 −

1
2

)
z22 − (k3 − 1) z23 + ξ2θ̃

T
2 θ2+βz1x̃2

+ ξ3θ̃
T
3 θ3 + ξGθ̃TGθG +

1
2
υ∗2
2 +

1
2
υ∗2
3 +

1
2
υ∗2
G u∗2

d

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

+ ς−1
3 ν3

(
a3x̃1 − ϖ3ν3 − θ̃T3 S3

(
ˆ̄x3
))

+
1
2

˙̃xTPx̃ +
1
2
x̃TP ˙̃x (77)
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Set δ = [δ1, δ2, δ3]T , then substitute (31) into (77),
we have:

V̇ = −k1z21 −

(
k2 −

1
2

)
z22 − (k3 − 1) z23 + ξ2θ̃

T
2 θ2 + βz1x̃2

+ ξ3θ̃
T
3 θ3 + ξGθ̃TGθG +

1
2
υ∗2
2 +

1
2
υ∗2
3 +

1
2
υ∗2
G u∗2

d

+ ς−1
2 ν2

(
a2x̃1 − ϖ2ν2 − θ̃T2 S2

(
ˆ̄x2
))

+ ς−1
3 ν3

(
a3x̃1 − ϖ3ν3 − θ̃T3 S3

(
ˆ̄x3
))

+
1
2
x̃T
(
ATP+ PA

)
x̃ + x̃TP

(
δ + B3δGusd + D

)
(78)

Based on (33), (34) and Young’s inequality, we have

x̃TPδ

≤
υ ∥P∥

2
∥x̃∥2

2
+

∑3
i=1

∥∥θ∗
i

∥∥2 STi (x̄i) Si (x̄i)

2υ

+
υ ∥P∥

2
∥x̃∥2

2

+

∑3
i=1

∥∥θ∗
i

∥∥2 STi ( ˆ̄xi
)
Si
(
ˆ̄xi
)

2υ
+

υ ∥P∥
2
∥x̃∥2

2

+

∑3
i=1

∥∥∥θ̃i∥∥∥2 STi ( ˆ̄xi
)
Si
(
ˆ̄xi
)

2υ
+

υ ∥P∥
2
∥x̃∥2

2

+

∑3
i=1 ε∗2

i

2υ

≤ 2υ ∥P∥
2
∥x̃∥2 +

3∑
i=1

∥∥θ∗
i

∥∥2
υ

+

∥∥∥θ̃i∥∥∥2
2υ

+
ε∗2
i

2υ


x̃TPB3δGusd

≤
υ ∥P∥

2
∥x̃∥2

2
+

∥∥θ∗
G

∥∥2 STG (x̄1) Si (x̄1)

2υ
u2

+
υ ∥P∥

2
∥x̃∥2

2
+

∥∥θ∗
G

∥∥2 STG ( ˆ̄x1
)
SG
(
ˆ̄x1
)

2υ
u∗2
d

+
υ ∥P∥

2
∥x̃∥2

2

+

∥∥∥θ̃G∥∥∥2 STG ( ˆ̄x1
)
SG
(
ˆ̄x1
)

2υ
u∗2
d +

υ ∥P∥
2
∥x̃∥2

2
+

ε∗2
G

2υ
u∗2
d

≤ 2υ ∥P∥
2
∥x̃∥2 +

∥∥∥θ̃G∥∥∥2
2υ

u∗2
d +

(∥∥θ∗
G

∥∥2
υ

+
ε∗2
G

2υ

)
u∗2
d

x̃TPD

≤
1
2

∥x̃∥2 +
1
2

∥P∥
2

3∑
i=1

d̄2i

where υ is a positive constant and the FLSs theory proved
that 0 < STi (.) Si (.) ≤ 1. Assume that the disturbances are
bounded by |d1| ≤ d̄i, i = 1, 2, 3.
Similarly, the following inequality can be obtained

βz1x̃2 ≤
1
2
β2z21 +

1
2

∥x̃∥2

ν2a2x̃1 ≤
ν22a

2
2

4
+ ∥x̃∥2

ν3a3x̃1 ≤
ν23a

2
3

4
+ ∥x̃∥2

−ν2θ̃
T
2 S2

(
ˆ̄x2
)

≤
ν22

4
+ θ̃T2 θ̃2

−ν3θ̃
T
3 S3

(
ˆ̄x3
)

≤
ν23

4
+ θ̃T3 θ̃3

ξ2θ̃
T
2 θ2 ≤

ξ2

2

∥∥θ∗

2

∥∥2 −
ξ2

2

∥∥∥θ̃2∥∥∥2
ξ3θ̃

T
3 θ3 ≤

ξ3

2

∥∥θ∗

3

∥∥2 −
ξ3

2

∥∥∥θ̃3∥∥∥2
ξGθ̃TGθG ≤

ξG

2

∥∥θ∗
G

∥∥2 −
ξG

2

∥∥∥θ̃G∥∥∥2
Thus, we can further write (78) as follows

V̇ ≤ −

(
k1 −

1
2
β2
)
z21 −

(
k2 −

1
2

)
z22 − (k3 − 1) z23

− ς−1
2

(
a22
4

+ ϖ2 −
1
4

)
ν22−ς−1

3

(
a23
4

+ ϖ3 −
1
4

)
ν23

−

(
ξ2

2
−ς−1

2 −
1
2υ

)∥∥∥θ̃2∥∥∥2−(ξ3

2
−ς−1

3 −
1
2υ

)∥∥∥θ̃3∥∥∥2
−

(
ξG

2
−
u∗2
d

2υ

)∥∥∥θ̃G∥∥∥2
−

(
λmin (Q) − ς−1

2 − ς−1
3 − 4υ ∥P∥

2
− 1

)
∥x̃∥2

+
ξ2

2

∥∥θ∗

2

∥∥2 +
ξ3

2

∥∥θ∗

3

∥∥2 +
ξG

2

∥∥θ∗
G

∥∥2 +
1
2
υ∗2
2 +

1
2
υ∗2
3

+

(∥∥θ∗
G

∥∥2
υ

+
ε∗2
G

2υ
+
1
2
υ∗2
G

)
u∗2
d +

3∑
i=1

(∥∥θ∗
i

∥∥2
υ

+
ε∗2
i

2υ

)

+
1
2

∥P∥
2

3∑
i=1

d̄2i (79)

Define

9 =
ξ2

2

∥∥θ∗

2

∥∥2 +
ξ3

2

∥∥θ∗

3

∥∥2 +
ξG

2

∥∥θ∗
G

∥∥2 +
1
2
υ∗2
2

+
1
2

∥P∥
2

3∑
i=1

d̄2i

+
1
2
υ∗2
3 +

(∥∥θ∗
G

∥∥2
υ

+
ε∗2
G

2υ
1
2
υ∗2
G

)
u∗2
d

+

3∑
i=1

(∥∥θ∗
i

∥∥2
υ

+
ε∗2
i

2υ

)
� = min

·



2
(
k1−

1
2
β2
)

; 2
(
k2−

1
2

)
; 2(k3−1); ς−1

2

(
a22
4

+ϖ2−
1
4

)

ς−1
3

(
a23
4

+ϖ3−
1
4

)
; 2
(
ξ2

2
−ς−1

2 −
1
2υ

)
;

(
ξ3

2
−ς−1

3 −
1
2υ

)
2

(
ξG

2
−
u∗2
d

2υ

)
; 2
(
λmin(Q)−ς−1

2 −ς−1
3 −4υ ∥P∥

2
−1
)


Then we can simplify (79) as follows

V̇ ≤ −�V + 9 (80)
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FIGURE 2. Block diagram of the proposed control structure.

Multiplying (80) by e�t on both sides and integrating,
we get ∫ t

0

(
e�tV

)′
dt ≤ 9

∫ t

0
e�tdt (81)

V (t) ≤

(
V (0) −

9

�

)
e−�t

+
9

�

≤ V (0) e−�t
+

9

�
(82)

Hence, the following conditions can be proved from (76)

|zi| ≤

√
2
(
V (0) e−�t +

9

�

)
, i = 1, 2, 3 (83)

Based on the above results, we can conclude that
transformation errors zi, i = 1, 2, 3 and compensated signals
µi, i = 1, 2, 3 are bounded, resulting in the tracking
errors e1, e2, e3 are also bounded. Therefore, the stability
of the closed-loop system is proved by choosing the design
parameters.
Remark 5: Since the estimation tracking errors x̃i, θ̃i, i =

2, 3, and θ̃G are bounded according to (82), their estimation
values are also bounded in a finite time by selecting control
gains. Thus, the proposed control scheme can approximate
unmeasured states to guarantee the suspension performance
under the influence of unknown parameters.

The block diagram of the proposed control can be
illustrated in Fig. 2.

C. HANDLING STABILITY AND ROAD HOLDING ANALYSIS
From the above analysis, the developed control method has
satisfied the main objective of passenger comfort. However,
improving the ride comfort will enhance suspension deflec-
tion. Besides, it also contradicts the objective of ensuring tire
contact with the road profile. Therefore, in this section, two
objectives of handling stability and road holding are ensured
by selecting proper design parameters. To analyze these

objectives, we concentrate on unsprung mass mechanical
equations of the pneumatic suspension (11). Besides, the
tracking errors e1, e2, e3 are proved to be bounded based
on the result (83). Using the FLSs approximation for
f2 = θ2S2 (X2) + η2 (X2), we get

Ẋ = EX + FY + X0 (84)
where

X =

[
x3
x4

]
; E =

[
0 1

−
kst
mu

−
cat
mu

]
;

F =

[
0 0
kst
mu

cat
mu

]
; Y =

[
zr
żr

]
X0 =

[
0
Z

]
;

Z =
ms
mu

(
θT2 S2 (X2) + η2 (X2)

)
−

1
mu

(msx5 + msx2)

Based on (83), the unknown term Z is bounded because the
tracking errors z1, z2, and z3 are bounded with the proposed
control. There exists a constant Z̄ so that ∥Z∥ ≤ Z̄ is satisfied.
Choose the candidate Lyapunov function

VA = XTPX (85)

where P is a positive definite symmetric matrix.
Then, we can obtain the time derivative of VA by

V̇A = ẊTPX + XTPẊ (86)

Rewrite (86) using (84), we receive

V̇A = XT
(
ETP+ PE

)
X + 2XTPFY + 2XTPX0 (87)

There exists a positive definite symmetric matrix
Q > 0 so that the equation ETP + PE = −Q is satisfied.
Besides, according to Young’s inequality theorem, the form
of 2XTPFY and 2XTPX0 can be expressed by

2XTPFY ≤
1
π1
XTPFFTPX + π1Y TY

2XTPX0 ≤
1
π2
XTPPX + π2XT0 X.0 (88)

where πi > 0, i = 1, 2 are the design parameters.
Substituting (88) into (87), one obtains

V̇A≤−

λmin

(
P

−1/2QP
−1/2

)
−

1
π1

λmax

(
P
1/2FFTP

1/2
)

−
1
π2

λmax (P)

VA
+ π1Y TY + π2XT0 X0 (89)

where λmax, λmin are the maximal and minimal eigenvalues.
For the control design, the appropriate matrix P, Q can be

selected to satisfy the following inequalities

π1 > 2
λmax

(
P
1/2FFTP

1/2
)

λmin

(
P

−1/2QP
−1/2

) and π2 > 2
λmax (P)

λmin

(
P

−1/2QP
−1/2

)
(90)
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We can define 2 and ϒ satisfying the condition at (90)

2 ≥ λmin

(
P

−1/2QP
−1/2

)
−

1
π1

λmax

(
P
1/2FFTP

1/2
)

−
1
π2

λmax (P) (91)

ϒ ≥ π1Y TY + π2XT0 X0 (92)

Therefore, we can express the inequality (89) as follows

V̇A ≤ −2VA + ϒ (93)

Multiplying (93) by e2t on both sides and integrating

VA ≤

(
VA (0) −

ϒ

2

)
e−2t

+
ϒ

2
≤ VA (0) e−2t

+
ϒ

2

(94)

According to (85), the system states (11) are bounded by

|xi (t)| ≤

√(
VA (0) e−2t +

ϒ

2

)
/λmin (P), i = 3, 4

(95)

Substituting (95) into the handling stability condition (23)

|zs − zs| = |x1 − x3| ≤ |x1| + |x3|

≤ τmaxλ (0) +

√(
VA (0) e−2t +

ϒ

2

)
/λmin (P)

(96)

From (96), the handling stability condition is guaranteed by
choosing control parameters π1, π2,P, and appropriate PPF
constraints τmax, τmin, λ (0) so that |zs − zs| ≤ zM .

Besides, the tire forcesFst andFat can be expressed by (95)

Fst (zu, zr , t)

= kst (x3 − zr )

≤ kst

√(
VA (0) e−2t +

ϒ

2

)
/λmin (P) + kst ∥zr∥∞

Fat (zu, zr , t)

= cat (x4 − żr )

≤ cat

√(
VA (0) e−2t +

ϒ

2

)
/λmin (P) + cat ∥żr∥∞ (97)

Based on (97) into, we write the relative tire force by

|Ftr | ≤ |Fst | + |Fat |

≤ (kst + cat)

√(
VA (0) e−2t +

ϒ

2

)
/λmin (P)

+ kst ∥zr∥∞ + cat ∥żr∥∞ (98)

Based on (98), choosing appropriate design parame-
ters π1, π2,P which meet the inequality |Fst + Fat | ≤

(ms + mu) g, the relative tire force condition (24) could be
guaranteed.
Remark 6: From the above results, the suspension

objectives of handling stability and road holding can be

TABLE 1. Pneumatic active suspension parameters.

TABLE 2. Control parameters.

archived by selecting appropriate initial conditions and
control parameters. Hence, the pneumatic suspension works
properly under the requirement of mechanical structure and
driving safety.

IV. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION DESCRIPTION
To demonstrate the effectiveness of the control scheme, the
comparative simulation examples are compared with passive
suspension, traditional backstepping, CFC backstepping
(Back-CFC), and PPF backstepping (Back-PPF). Besides, the
root mean square (RMS) values of chassis acceleration are
considered to evaluate passenger comfort, which is dependent
on the human body’s sensitivity to acceleration. Finally,
two objectives of handling stability and road holding are
analyzed by considering RSD and RTF parameters. The
main parameters of the pneumatic suspension are given
in Table 1.

The sinusoidal function with an amplitude of 0.02 m and
frequency of 1 Hz is applied to simulate the road excitation
zr = 0.02 sin (2π t).The initial values of the system states are
selected by x1 (0) = 0.05, x2 (0) = x3 (0) = x4 (0) = 0 ,
and x5 (0) = 1.0 × 105 (Pa). The prescribed performance
constraints are chosen by λ0 = 0.058, λ∞ = 0.0058, γ =

2.2 and design parameters τmin = 0.98, τmax = 0.98.The
detailed control parameters are compared in Table 2.
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FIGURE 3. Simulation result of sprung mass displacement.

FIGURE 4. Simulation result of sprung mass acceleration.

B. SIMULATION RESULTS
Figs. 3 - 7 display the simulation results of sprung
mass acceleration and displacement, relative suspension
deflection, relative tire force, and input control signals of
passive, traditional backstepping, Back-CFC, Back-PPF, and
proposed control. Results show that the developed method
can minimize sprung mass vibration from road excitation
to maximize passenger comfort. By employing the PPF
constraint, the developed scheme can provide the best
vibration dissipation since it can limit the convergence of the
tracking error inside the boundary constraints as shown in
Fig. 3. Besides, chassis displacement can achieve the fasted
convergence to zero at a time t = 2.0 (s). Although back-
PPF can provide the ability to ensure the tracking error
inside the boundaries, the sprung mass displacement cannot
be forced to zero position. Under the effects of unknown
parameters and a non-ideal actuator, traditional backstepping
can provide the normal suspension performance while the
back-CFC cannot assure the tracking error of sprung mass
displacement within the predefined boundary. Besides, from
Fig. 4, the proposed method can enhance passenger comfort
since it can provide the smallest acceleration in comparison
with the other methods. Results showed that the RMS accel-
eration value is reduced by 70.6% compared to the passive
suspension.

To evaluate the objectives of road handling and handling
stability, we can observe that the constraints discussed (23)
and (24) are satisfied as shown in Figs. 5 - 6. With the
help of PPF, the proposed control can regulate the chassis

FIGURE 5. Relative suspension deflection.

FIGURE 6. Relative tire force.

FIGURE 7. Control signal (V).

displacement and ensure the magnitude of RSD within
the limit value as Fig. 5. Moreover, driving safety can
be guaranteed because the RTF value is smaller than 1.
In general, by compensating for unknown parameters and
external disturbances, the proposed method can improve the
suspension objectives more than the other methods. To assess
the effectiveness of the control signal, the simulation results
are displayed in Fig. 7. We can see that the developed
scheme with the fuzzy observer and CFC technique requires
the smallest signal voltage in comparison with the other
controllers. Although the back-CFC can eliminate the
explosion of complexity issue of the traditional backstepping,
it needs more energy to compensate for uncertain parameters.
By applying the serial-parallel estimation technique, the
recommended controller can improve the suspension per-
formance despite unmeasured states and non-ideal actuator
characteristics.
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V. CONCLUSION
In this study, the serial-parallel approximation technique
is introduced into the control algorithm of the pneu-
matic suspension to improve the estimation accuracy for
unmeasured states. By employing fuzzy estimation, the
effects of uncertain parameters, unmodeled dynamics, and
unknown actuator characteristics are compensated to increase
the control performance. Besides, the CFC technique was
constructed into the control design to effectively reduce the
explosion of complexity issue of the traditional backstepping.
With PPF constraint, the proposed controller not only limits
the tracking error of chassis displacement to improve the
ride comfort but also guarantees driving safety and handling
stability under the presence of parametric uncertainties and
non-ideal actuator characteristics. Results show that the
proposed method can decrease the RMS acceleration value
by 70.6% to get passenger comfort. Generally, the developed
approach can solve the suspension objectives and may
provide a promising method for the automotive industry.
Further studies will focus on the optimal control method for
the pneumatic suspension that can be applied in practical
implementation.
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