
Received 20 April 2023, accepted 24 June 2023, date of publication 30 June 2023, date of current version 24 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3291343

Context Conditioning via Surrounding Predictions
for Non-Recurrent CTC Models
BURIN NAOWARAT , CHAWAN PIANSADDHAYANON, AND EKAPOL CHUANGSUWANICH
Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Ekapol Chuangsuwanich (ekapolc@cp.eng.chula.ac.th)

ABSTRACT Connectionist Temporal Classification (CTC) loss has become widely used in sequence mod-
eling tasks such as Automatic Speech Recognition (ASR) and Handwritten Text Recognition (HTR) due to
its ease of use. Recent sequence models that incorporate CTC loss have been focusing on speed by removing
recurrent structures, hence losing important context information. This paper presents extensive studies
of Contextualized Connectionist Temporal Classification (CCTC) framework, which induces prediction
dependencies in non-recurrent and non-autoregressive neural networks for sequencemodeling. CCTC allows
the model to implicitly learn the language model by predicting neighboring labels via multi-task learning.
Experiments on ASR and HTR tasks in two different languages show that CCTCmodels offer improvements
over CTCmodels by 2.2-8.4% relativewithout incurring extra inference costs.We have also found that higher
order of context information can potentially help the model produce better predictions.

INDEX TERMS CTC, contextualized CTC, non-recurrent, non-autoregressive, automatic speech
recognition (ASR), handwritten text recognition (HTR).

I. INTRODUCTION
Context has been extensively proved to be useful for various
kinds of sequence modeling problems, such as Automatic
Speech Recognition (ASR) [1], Text-to-Speech (TTS) [2],
Handwritten Text Recognition (HTR) [3], Neural Machine
Translation (NMT) [4], and LanguageModeling [5]. In NMT,
the same word can have different meanings in different con-
texts. A NMT systemmust be aware of the context of an input
word to infer its correct meaning. Moreover, when producing
an output translation, the model must also be able to produce
words that are coherent together. Modeling contexts are usu-
ally done using contextual representations and context-aware
inferencing algorithms in order to properly model context
in the input and output spaces. For ASR and HTR, context
awareness is used for making consistent predictions, reducing
misspellings, and handling ambiguous input samples [6], [7],
[8]. Nevertheless, encapsulating contexts usually comes with
additional computational complexity, especially for temporal
contexts, which are typically done in a sequential manner.

Incorporating contextual information into models can
be done using recurrent models and/or contextual hidden

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

representations. Since strong dependencies between letters
within target sequences are usually found in sequence mod-
eling, predictions made by recurrent approaches such as
autoregressive (AR), iterative, and beam search decoding
are generally better than predictions that are independently
produced [6], [9], [10]. However, recurrent models have
to predict letters sequentially since they use conditions
of previous predictions in order to make the next pre-
diction. This sequential nature can be detrimental to the
inference time because the computation cannot be done
in parallel. On the other hand, non-recurrent models can
produce context-dependent predictions based on contex-
tualized hidden representations, which are distilled from
recurrent models [11], [12] or trained by context-dependent
objective functions [6], [13], [14]. Although these meth-
ods do not directly control the predictions in the out-
put layer, improvements over context-independent decoding
could still be observed while retaining parallel decoding
capabilities.

Connectionist Temporal Classification (CTC) has been
commonly used for training non-autoregressive (NAR) ASR
and HTR models due to its effectiveness and efficiency [15],
[16]. CTC estimates the probability for the alignment
between frame-level predictions and character-level ground

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 73531

https://orcid.org/0000-0002-9327-5630
https://orcid.org/0000-0001-6104-4857


B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

truths without the need for expensive frame-level labels.
To make the computation feasible, CTC assumes indepen-
dence between the frame-level outputs. Such assumption
limits the model especially for ambiguous cases that require
contextual information in order to resolve. Early works
typically use CTC with recurrent networks which helps alle-
viate this drawback. However, recent works use CTC with
non-recurrent models instead of recurrent ones to maximize
throughput [17]. Even though this combination worsens the
correctness of CTC’s predictions, the runtime improvement
is often worth the trade-off in latency-sensitive situations.
Many works have tried to re-introduce context into these
models [9], [18], [19].

Previously in [6], we proposed Contextualized CTC
(CCTC), a multi-task leaning framework with a context-
dependent training objective, to incorporate contexts into
non-recurrent and non-autoregressive (NAR) ASR models.
CCTC tries to increase dependencies between predictions
by mitigating the conditional independence assumption of
the regular CTC loss [15] in a way that preserves parallel
decoding capability. Concretely, CCTC frameworks predict
left and right letters as well as the middle letter. We have
shown that CCTC models produced promising results, espe-
cially when dealing with ambiguous predictions. However,
we only used CCTC models that considered adjacent letters
and left investigations on CCTC with larger context sizes
untouched. Moreover, the effectiveness of CCTC on other
sequence modeling tasks is unclear, especially the tasks that
have different modalities to ASR, such as handwritten text
recognition (HTR).

Non-recurrent NAR CTC-based models are also increas-
ingly adopted for HTR with the aim of achieving lower
latency [20], [21]. These models are fast and generally have
impressive performance. Nonetheless, they suffer from the
same disadvantages as non-recurrent NAR ASR. The lack
of dependencies can hinder non-recurrent NAR text recogni-
tion models from correctly recognizing letters in ambiguous
cases. Models with context-dependent prediction usually out-
perform in this situation [8], [22], [23].We believe that CCTC
has the potential to improve HTR performance in the same
manner that it has done for the ASR task.

In this work, we present an extension of [6] on finding opti-
mal context sizes and studying the generalizability of CCTC.
We conduct experiments on four corpora including two dif-
ferent tasks, ASR and HTR, and two different languages,
Thai and English. We chose a Thai Youtube dataset [6] for
Thai-English ASR, and LibriSpeech [24] for English ASR.
As for HTR, we used BEST [25], [26] for Thai, and IAM [27]
for English. Experimental results show that CCTC mod-
els outperform the baseline CTC models, especially when
no external language models are applied. A larger context
further improves the performance of the models. Further
analysis using character-level perplexities shows that, during
inference, CCTC models give a higher priority to language-
related information, in other words, contexts, than regular
CTC models.

To summarize, we make the following contributions.
• We reduce the error rates of CCTC systems by increas-
ing their context sizes, which were previously limited to
only one in our previous publication.

• Wedemonstrate the ability of CCTC to generalize across
tasks by showcasing its performance on HTR in addition
to ASR, which we have already established as effective
in our previous work.

• We formulate a heuristic that effectively reduces the con-
text weight search space, which increases significantly
as the context size grows. This eases hyperparameter
tuning of large context size CCTC training.

• We present analyses on CCTC behaviors including the
relation between CCTC and language modeling, the
trade-off between training costs and performance gains,
and the impact of forced alignments.

The rest of the paper is organized as follows. We highlight
some related works including the regular CTC in Section II.
We presented details about our methods, the proposed CCTC,
in Section III. We described our experimental setups in
Section IV, showed the results in Section V, and provided
some discussions in VI.

II. RELATED WORKS
This section describes how traditional ASR and HTR models
handle contexts, how they adopt CTC, and how they deal with
the shortcomings from context independent training.

A. CONTEXT FOR ASR
Context modeling has always been an important component
in the ASR model. Traditional HMM-based ASR models
comprise three components: an acoustic model (AM), a lex-
icon model, and a language model (LM), which model
context on different levels. The AM is typically based on
context-dependent (CD) units, which model several acous-
tic units together. On the other hand, the lexicon and LM
focus on the word and grammatical structure of the sentence,
disambiguating homophones and imperfections in the pro-
nunciations [28].

For models based on deep learning, CTC has been
proposed for training end-to-end models. CTC typically pro-
duces letters instead of CD units. Context dependencies
are modeled implicitly using recurrent hidden states [15].
Transducers [29] and Sequence-to-Sequence models [30],
which have been introduced later, explicitly model context by
making predictions sequentially based on previous outputs.
However, sequential prediction can become a computational
bottleneck as the model size increases. Additional language
model rescoring or beam search can be further introduced
to reinforce context modeling with the cost of additional
computation.

Recently, end-to-end ASR models have become enor-
mous and require extensive computation resources [31].
The community interests have increasingly shifted towards
models with non-recurrent and NAR, in which no further
sequential decoding and post-processing are applied. Though

73532 VOLUME 11, 2023



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

non-recurrent CTC models have low decoding latency, they
suffer from performance degradation. Potential remedies
include using rescoring or iterative decoding where suc-
cessive refinements are performed on the previous outputs
[9], [17], [32].

B. CONTEXT FOR HTR
HTR frameworks heavily rely on contexts as they have to
extract a sequence of dependent characters from an image.
One of the early approaches is a HMM-based framework,
which is analogous to lexicon-free ASR models [33], [34].

The combination of CTC and RNN was firstly adopted as
an alternative to the existing HMM frameworks [16], [35],
[36]. As CTC lacks dependencies, it was used with context
rich models such as RNN and multi-dimensional RNN [37],
[38], [39], [40]. Recently, non-recurrent models have shown
promising results while reducing the latency. This introduces
a wave of research based on non-recurrent models as they
have no computation bottlenecks [20], [21], [41].

C. CONNECTIONIST TEMPORAL CLASSIFICATION
CTC [15] is an alignment-free objective function for
sequence-to-sequence tasks such as ASR and HTR, where
the input sequence length, T , is greater than or equal to the
output sequence length, U . Given a set, A, that contains
the entire allowed letters in the language, the goal of CTC
models is to produce a variable-length letter sequence, y =
(y1, y2, . . . , yU ) : yu ∈ A, from an input sequence, x =
(x1, x2, . . . , xT ) : xt ∈ RM . In order to do so, an extra
blank alphabet, ϵ, is introduced for handling blank spaces
in images or silences in audios. CTC models produce a
frame-level intermediate output path, π = (π1, π2, . . . , πT ) :
πt ∈ A′ = A ∪ {ϵ}. A letter that spans many consecu-
tive input frames will cause consecutive duplicate outputs.
Blank tokens can also be output in-between double letters
to distinguish them from consecutive duplicates. Finally, the
output path, π , is post-processed to an inferred sequence,
y = B(π ), using a mapping function B : A′ → A, which
merges consecutive duplicates and removes excessive blank
tokens.

CTC models are trained using the CTC loss, which is the
negative log probability of all valid paths for the ground
truth. The idea is to strengthen the probability of any path
that can be mapped to the target sequence instead of relying
on the ground truth alignment. CTC assumes conditional
independence between tokens within a path to ease the cal-
culation. Thus, the probability for a path, P(π |x), can be
factorized as a product of the probability in each position
as shown in (1). We depict the calculation of the CTC loss
in (2).

P(y∗|x) =
∑

π∈B−1(y∗)
P(π |x) =

∑
π∈B−1(y∗)

∏
t

P(πt |x) (1)

LCTC = − logP(y∗|x) (2)

where an inverse function, B−1, is used to find valid paths,
and the ground truth sequence is y∗ = (y∗1, y

∗

2, . . . , y
∗
U ):

y∗u ∈ A.
The independence assumption encourages the model to

isolate its predictions. Consequently, CTC models mostly
produce blank tokens, πt = ϵ, and only predict the
actual alphabets, πt ∈ A, when they are extremely
confident. Thereby, actual alphabets in paths have low depen-
dencies as alphabets are surrounded by non-informative
blanks, making context conditioning without external tools
difficult.

D. CONTEXT-DEPENDENT CTC
Incorporating context dependencies into CTC models
has been mostly based on using subword modeling
such as Byte-Pair Encoding [42], WordPiece [43], and
context-dependent output units [44], which are the compo-
sition of several letters. A natural extension to contextualized
CTC is to use these subwords as the alphabet. The transcrip-
tions are pre-tokenized based on available output units and
used as ground truths for trainingCTCmodels.Moreover, dif-
ferent letter segmentations, such as different letter-grams [3]
or differentWordPiece sizes [45], can be used together to train
a single CTC model simultaneously via multi-task learning,
capturing different scales of context. Unlike our work, the
distinct prediction heads have no relationship between them
because they are trained by dedicated CTC losses on different
pre-tokenized targets.

CTC has also been extended to handle modeling
inter-dependencies between output letters. Gram CTC [46]
introduces a modification of the CTC loss that can aggregate
the different possible segmentations of the output tokens
on-the-fly. Recurrent transducer [47] autoregressively wraps
posteriors of a CTC encoder with a language model and
trains both modules together. Imputer [32] iteratively predicts
missing letters in previous outputs. The Imputer model is
trained using a modified CTC that is suitable for partial tran-
scriptions, which mimics incomplete predictions. However,
this line of work explicitly model inter-dependencies and is
very distinct from ourwork that implicitly encourages context
dependencies for CTC. Closest works to ours are [48] and
[49] that predicted future ground truths for recurrent hybrid
ASR models.

III. METHODOLOGY
In this section, we present the CCTC framework, which
simultaneously predicts the middle and surrounding letters.
We use CTC and cross entropy (CE) losses for training the
main and context predictions, respectively. CE training gen-
erally requires an alignment between input frames and the
output token, which is not available in the CTC framework.
The main contribution of CCTC is an algorithm that can
obtain target labels for the CE loss on-the-fly. We provide
further details of CCTC training and context label generating
in III-A and III-B, respectively.

VOLUME 11, 2023 73533



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

A. CONTEXTUALIZED CONNECTIONIST TEMPORAL
CLASSIFICATION LOSS
CCTC softens the strength of independent predictions by
implicitly introducing context conditioning to non-recurrent
NAR models without the need of sequential processing.
CCTC allows the model to predict the output as well as
estimate the contexts for its own predictions. The context
estimation raises the awareness of surroundings, which helps
mitigate the interference between consecutive outputs and
improves the coherency of the predicted sequence. The con-
texts are predicted simultaneously with the actual prediction
in a multi-task manner since we do not want the model to wait
for the previous outputs as in sequential decoding.

FIGURE 1. The CCTC architecture used in this work. The baseline models
are modified by adding 2K extra prediction heads. The models are now
aware of contexts as it learns to predict left, middle, and right characters
simultaneously.

The overview of our framework is depicted in Fig. 1.
A CCTCmodel has three groups of prediction heads: middle,
left context, and right context. Given an input xt , the output
from the middle head (πt ) is the main output found in a
typical CTC model. The left (lt ) and right (rt ) characters,
predicted by context heads, are the likeliest contexts for the
middle letter. We gather outputs from the middle head to form
a single sequence for CTC training. The context heads are
separately optimized for each input frame using context loss.

The context loss is the negative probability for the context
labels, which is the CE loss for the frame-level context refer-
ences. We denote l∗t and r

∗
t as labels for left and right context

heads, respectively. The context loss, LCT, can be defined as
shown in (3).

LCT = −
∑
t

α logP(l∗t )+ β logP(r∗t ) (3)

where α and β are weights for the left and right contexts.
In addition to contextualizing adjacent letters, the context size
can actually be further increased to any arbitrary size. For
the context size of K ∈ Z, the CCTC(K ) model predicts K
consecutive letters to the left and K consecutive letters to the

right. We introduce the superscript (k) for l∗t , r
∗
t , α, and β to

indicate that l∗(k)t and r∗(k)t are kth left and right labels for the
input xt , respectively. The α(k) and β(k) are weights for l∗(k)t
and r∗(k)t . We can construct the general form of the context
loss as follows:

LCT = −

T∑
t

K∑
k

α(k) logP(l∗(k)t )+ β(k) logP(r∗(k)t ) (4)

Finally, the training loss for CCTC frameworks is the
summation of the CTC loss and the normalized context loss
as shown in (5).

LCCTC = LCTC +
LCT

U
(5)

For inference, only the middle head is kept. Thus, CCTC
models have the same runtime as the base model, which is
especially important for low latency applications. CCTC can
also be incorporated into any model structure and decoding
scheme without any additional changes since CCTC only
affects the training stage. This is themain advantage of CCTC
over other methods that also try to incorporate context.

B. ACQUIRING CONTEXT LABELS
The CTC algorithm is alignment-free which means that there
are no explicit frame-level ground truths for the context
heads. Therefore, the frame-level labels for the context losses
are obtained from the paths that are predicted by the middle
head. In other words, the context heads aim to predict the out-
puts produced by the middle head for the neighboring frames.
However, the model may learn little to no context information
from learning to predict blank tokens. Thus, we opt to train
the context heads with dense character supervision from the
prediction, y = B(π ), instead. Concretely, the contexts l∗(k)t
and r∗(k)t are the kth-nearest characters to the left and right
of πt that are not a blank token or a consecutive duplicate.
The labels can be retrieved by conducting a naive search on
a path. However, a naive search is computationally expensive
as it has the time complexity of O(T ) for every position t ,
which results in the total of O(T 2). Alternatively, we propose
to obtain the labels using an efficient algorithm that operates
in 2(KT ).

To reduce the time complexity in the label obtaining
procedure, we propose to search on a dense path, h =
(h1, h2, . . . , hL) : L ≤ T , instead of the usual CTC path,
π . A dense path, h, is an intermediate result of applying B,
in which all consecutive duplicates are already merged but
blanks are not yet removed. In order to search on a dense path,
we have to know where the surroundings of πt are in h. To do
so, we store the relation between a path, π , and a dense path,
h, in an index list, p = (p1, p2, . . . , pT ) : pt ∈ [1,L], pt ≤
pt+1. An index pt indicates that a letter hpt is derived from
a path token πt . As we know that hpt is the representative
of πt , we can directly conduct a naive search on h using the
predetermined start position of pt . Since a dense path has no
consecutive duplicates and only two categories of characters

73534 VOLUME 11, 2023



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

exist: the blank and the actual alphabet, we can obtain kth non-
blank characters within 2K operations, regardless of the input
length. In total, we can obtain the labels for an input length
T within a tight bound of 2(KT ). We use blanks as context
labels for the edge cases where the dense path has insufficient
context on either side. Since blanks have no other uses for
context prediction, the model can learn to exclusively use
blanks for no-context scenarios. We summarize the algorithm
in Algorithm 1 and demonstrate this process with an example
in Fig. 2.

C. MODEL INITIALIZATION
Since the labels for context heads are obtained from the
main head predictions on-the-fly, optimizing context loss for
random networks may cause training difficulties due to noisy
labels. In our experiments, we used pretrained weights as
the initialization to prevent the issue and reduce the training
time. This also highlights the use case where one might
choose to further improve an existing CTC-trained model by
incorporating additional CCTC training afterwards.

IV. EXPERIMENTAL SETUPS
In this section, we presented the experimental setups designed
to highlight the effectiveness of the proposed CCTC model
over the baseline regular CTC model. In order to show the
generalizability of the proposed method, we evaluated CCTC
using two sequence modeling problems, namely ASR and
HTR, in two different languages, Thai and English.

The section is organized as follows. We described datasets
in IV-A. We provided the training details for each dataset in
IV-B. The methods we used for selecting context losses are
described in IV-C. The setups for LMs, metrics, statistical
testing, and baselines are presented in IV-D, IV-E, IV-F, and
IV-G, respectively.

A. CORPORA
For our experiments, we used two ASR corpora and two HTR
corpora as follows.

1) ASR CORPORA
We investigated two kinds of ASR tasks, monolingual and
code-switching (CS). Monolingual speech is spoken audio
in which only one language is presented. In contrast, many
languages can be found within a single utterance for code-
switched speech. Context is especially important for the
code-switched dataset in order to produce a coherent spelling.
We used LibriSpeech [24] for monolingual English and Thai
YouTube [6] for Thai-English code-switching corpus. Both
datasets have 16kHz sampling rates and 16-bit depth audios.
Table 1 summarizes the ASR corpora.
LibriSpeech [24] is a common ASR corpus for English.

We used the train-clean-100 subset for small-scale experi-
ments and the total 960 hours for large-scale comparisons.
The evaluations were conducted on dev-clean and test-clean.
Thai YouTube [6] is a 200-hour speech corpus taken from

public Thai podcast YouTube channels. The training subset

Algorithm 1 Acquiring Labels for Context Losses
Given: π - CTC path, K - context size
Result: l∗ - left context labels, r∗ - right context label
T ← Length(π)
h← H (π ) ▷ H merges consecutive duplicates.
p← Indexing(h, π) ▷ pt indicates that hpt is derived from
πt .
t ← 1
while t ≤ T do

l∗t ← LeftSearch(h, pt ,K ) ▷

l∗t = (l∗(1)t , l∗(2)t , . . . , l∗(K )
t )

r∗t ← RightSearch(h, pt ,K ) ▷

r∗t = (r∗(1)t , r∗(2)t , . . . , r∗(K )
t )

t ← t + 1
end while

FIGURE 2. Label generation procedure for the CCTC context losses. Given
a path from the output of the middle head’s softmax, the labels for the
left and right heads can be found by searching on a dense path h. For
frame index t , the first target to the left and right are f and e. The second
targets are o and e, respectively. The correspondences between π and y
are color coded. A letter, yi , is derived from the token, πt , with the same
background color.

of Thai YouTube contains both monolingual Thai (TH) and
CS Thai-English utterances. As for validation and testing
sets, monolingual and CS utterances were separated into TH
and CS subsets, respectively. Concretely, the dataset has one
TH-CS training set, two validation sets: dev-th and dev-cs,
and two testing sets: test-th and test-cs. Unlike the previous
work [6], we included additional CS utterances into test-
cs, increasing the size by three times. Any hyperparameter
tunings were done together on the combined validation set.

2) HTR CORPORA
We used two line-level handwritten text corpora, the Thai
dataset, BEST, and the English dataset, IAM. An overview
of the two corpora are presented in Table 2.
IAM is a standard English HTR dataset [27]. It is composed

of grayscale line-level handwritten images from 657 writ-
ers. IAM has 79 characters in total, including 26 English
lowercase, 26 English capital letters, 10 Arabic numbers, and

VOLUME 11, 2023 73535



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

TABLE 1. The statistics of the ASR corpora used in this work. Numbers
shown are in hours.

17 special symbols. There are several versions of data split-
ting for IAM. We chose the one with 6482 training images,
976 validation images, and 2915 test images, similar to [20].
We also followed the data preprocessing methods in [20],
including grayscaling the images, normalizing the heights to
64 pixels, and standardizing the intensity values.
BEST is a standard benchmark for handwritten text

recognition provided by The National Electronics and Com-
puter Technology Center (NECTEC) [25], [26] as part of
the 2019 Thai handwritten text recognition contest1. BEST
corpus has a total of 3550 images, including 417 unique
sentences, 71 unique Thai alphabets, and 10 Arabic num-
bers. We combined the original BEST dataset with additional
220 images. We resized the height and width of the images
to 64 and 625 pixels, respectively. We converted them to
grayscale and standardized their intensities, following the
same procedure as in IAM. We applied brightness and con-
trast augmentation to the images. The dataset has two test
sets, test-seen and test-unseen. The test-seen set comes from
the same source as the training and validation sets. However,
test-unseen comes from a completely different domain.

B. IMPLEMENTATION DETAILS
In this section, we presented models, training conditions, and
other details for experiments conducted on each dataset.

1) LIBRISPEECH
We chose the pretrained Wav2Letter+ model from [6] as
the base model for train-clean-100 experiments. We added
context heads to the base model and additionally trained for
100 epochs using a learning rate of 1e−4.

Adam optimizer [50] and exponential learning rate sched-
uler were kept identical to the previous work. We re-tuned
LM weights for the baseline CTC and CCTC(1) using grid
search with a wider boundary and a finer step size using the
validation set.

As for LibriSpeech 960 hours, we used the implemen-
tation of QuartzNet-5 × 5 [18] from NeMo toolkit [51].
We trained the base model for 300 epochs from scratch using
the default configuration2. Afterwards, we added the extra
heads and context losses and resumed the training for a total
of 600 epochs. The training was done using 8 GPUs with a
batch size of 32 per GPU.

1https://www.nectec.or.th/
2https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels

TABLE 2. The number of images for each HTR corpus.

2) THAI YOUTUBE
The pretrained Wav2Letter+ model from [6] was used for
Thai YouTube. We attached context heads to the pretrained
network and additionally trained the model for 100 epochs.
Following [6], we used the initial learning of 4e−5 with
an exponentially decaying rate of 0.98 every epoch and a
mini-batch size of 64.We took the baseline CTC andCCTC(1)

models from [6] and tuned new LM weights for them using
the larger search space.

3) IAM
We used Gated Fully Convolutional Networks (GFCN) pro-
posed in [20] as the base model for the IAM dataset.
The model comprises 12 2D-depthwise separable convo-
lutional [52] and 18 2D-convolutional layers. We added
the context heads to the pretrained networks, provided by
the authors3, and resumed the training for an additional
400 epochs. We followed the training batch size of 2, the
learning rate of 1e−4, and all other training hyperparameters
as described in the original paper. The model was imple-
mented using PyTorch [53]. We selected the checkpoint with
the best validation CER for the comparison.

4) BEST
The base model for BEST consists of 12 layers of
2-dimensional (2D) convolution, 2 layers of 2D depthwise
separable convolution [52], and 4 layers of 1-dimensional
convolution. We followed the two-step training methodology
proposed in [6].We initially trained the basemodel using only
CTC loss for 300 epochs. We attached context heads to the
pretrained CTC network and additionally trained the model
for another 400 epochs. Adam optimizer [50] was used with
the fixed learning rate of 1e−4 and batch size of 64. The
checkpoints with the best validation CER were selected for
the comparison.

C. CONTEXT LOSS WEIGHTS
In higher order context losses, tuning the loss weights by grid
search becomes impractical. In order to reduce the search
space of context loss weights, we propose to derive the high
order weights through closed-form formulas, based on the
weight of the 1st-order context losses, α(1). We simply set
α(1)
= 1 in most of our experiments as we found this value

performs well in general. For maximum gains, one can obtain
the better weight α(1) through grid searching within the range
of 0.5 to 2.54. As for weights of high order context losses,

3https://github.com/FactoDeepLearning/LinePytorchOCR
4This range is effective for the NeMo implementation of CTC loss, which

is not normalized by the number of letters as in the default setting of PyTorch.

73536 VOLUME 11, 2023



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

α(k)
: k > 1, we have tried several heuristic approaches and

found two effective methods.
The first approach equally assigns α(1) as weights for every

context loss order, ∀kα(k)
= α(1). The second approach sets

the highest order context loss weight to one, α(K )
:= 1. Then,

we exponentially decrease weights as the order of the context
loss shrinks, ∀kα(k)

= α(K )/2K−k .
Note that we set the weights of the right and left context

losses to be the same, ∀kβ(k)
= α(k).

D. LM RESCORING
For LibriSpeech, we used the official word-based 3-gram
LM. The LM was applied to beam search decoding with a
beam size of 64. The LM weights and insertion penalties of
each model were tuned on the validation set using grid search
from 0.0 to 2.0 and 0.0 to 5.0, respectively. The step size was
0.1 for both hyperparameters.

As for Thai YouTube, the word-level 3-gram LM was
trained using text corpora from Thai Wikipedia and the Thai
Q&A forum [6]. The beam size was set to 64. LM weights
and insertion penalties were obtained through grid search in
the same manner as LibriSpeech.

E. EVALUATION METRICS
As for the evaluation, we opted for the standard metrics,
Character Error Rate (CER) and Word Error Rate (WER).
Bothmetrics are defined similarly as the Levenshtein distance
for correcting the hypothesis into the ground truth over the
length of the ground truth. A concrete definition is defined in
(6).

Lev =
I + D+ S

R
(6)

where Lev is Levenshtein distance, and R is the length of
references. The number of insertion, deletion, and substitu-
tion operations are written as I , D, and S, respectively. The
operations are calculated at the character level for CER and
word level for WER.

F. STATISTICAL SIGNIFICANCE
We used Sentence-Segment Word Error (MAPSSWE) two-
tailed test to evaluate statistical significant differences [54]
between baselines and proposed methods. For word-level
testing, we used off-the-shelf SCTK implementation5. For
character-level testing, we treated each character unit as a
word. We reported the significant differences between two
ASR systems using the significance threshold of 0.05.

G. BASELINES
To evaluate the effectiveness of the proposed method,
we compared the performances of CCTC models against
the non-contextualized regular CTC model. We used similar
architectures and training conditions for both methods. The
distinctions between baseline and the proposed methods were

5https://github.com/usnistgov/SCTK

TABLE 3. The WER (%) results for the LibriSpeech 100 hours setting. The
∗ symbol shows a significant difference compared to the baseline CTC.

TABLE 4. The WER (%) results for the LibriSpeech 960 hours setting. The
top row refers to the published results, while the second row refers to
our run using the provided code.

the auxiliary context prediction heads, which were not used
in the inference stage.

V. EXPERIMENTS
A. AUTOMATIC SPEECH RECOGNITION
We start by comparing the effect of CCTC on ASR in two
corpora with three different decoding algorithms: argmax,
beam search (beam), and beam search with 3-gram language
modeling (3-gram).

1) LIBRISPEECH
CCTC models consistently outperform the baseline CTC in
the scenario where LM rescoring was unavailable as illus-
trated in Table 3. A larger context can be beneficial as shown
by how CCTC(1) is outperformed by CCTC(2). The CCTC(2)

model tends to achieve the best results for this setting with a
relative improvement over the baseline of 3.8% and 3.3% on
dev and test sets, respectively. On the other hand, the baseline
CTC is slightly superior to the CCTC(2) model in the develop-
ment set when the 3-gram languagemodel was applied during
beam search. Since additional context information is included
in the decoding via the 3-gram language model, the benefits
of CCTC can become smaller in this setting. However, the
CCTC(2) model still outperforms the baseline on the test set.
Similar results can also be found for the larger 960-hour

setup as depicted in Table 4. Overall, the CCTC(2) model
is consistently superior to the baseline by around 4.2%
and 3.0% relative using argmax and beam search decoding,
respectively. If LM rescoring is applied, CTC and CCTC
models are more comparable with each other. We will discuss
more about this discrepancy in Section VI-B.

2) THAI YOUTUBE
Table 5 shows the performance of models on the Thai dataset.
CCTC(2) is also the best model without LM rescoring. The
CCTC(2) model outperforms the baseline by 2.5% on test-th
and 2.0% relative on test-cs. With 3-gram LM, CCTC(1) is
slightly better than CCTC(2). This is expected since the extra
contextual constraint provided by the LM, helps reduce the
dependency on the contexts from the model side. Note that

VOLUME 11, 2023 73537



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

TABLE 5. The WER (%) results for the Thai YouTube corpus setting. The ∗ and † symbols indicate significant differences to the baseline CTC and the
CCTC(1) model, respectively.

TABLE 6. The performance comparison on IAM. The ∗ and † symbols
indicate significant differences to the baseline CTC and the CCTC(1)

model, respectively.

unlike in the English dataset, CCTC outperforms CTC in
all decoder settings. This is due to the fact that context is
more important in code-switching data than in monolingual
in order to correctly predict the language being spoken.

B. HANDWRITTEN TEXT RECOGNITION
In this part, we compare the performance of the model trained
using CTC and CCTC losses on both Thai and English HTR
datasets.We also present qualitative analyses in order to study
the effects of adding context losses.

1) IAM
The results on the IAM dataset are summarized in Table 6.
It is common on the IAM dataset to present both the CER
and WER metrics with only greedy decoding to measure the
performance of the model as a standalone. As the size of
context increases the model becomes better until the context
size of 3. CCTC(3) improves by 5.3% and 7.5% relative to the
baseline CTC model on CER and WER, respectively.

Figure 3 shows examples of the differences between model
outputs. We found that CCTC models do noticeably better
on hard-to-read handwriting. In Fig. 3a, the letter t is highly
ambiguous and looks like A. CCTC(1) would observe only
the left space and the right letter h, which are inadequate for
predicting the correct transcription. After we increased the
context width, the high-order CCTC models were able to fix
the issue. The sample in Fig. 3b is also very vague, and further
contexts are needed to mitigate this problem. In Fig. 3c,
CCTC encourages the consistent spellings of numerical let-
ters. This is expected since context is very important to
decipher ambiguous handwriting. In a sense, CCTC is able to
embed the language model into the model without requiring
an explicit LM. It is also interesting to note that the base
model has a horizontal receptive field of 240 pixels, which
covers roughly 4-7 characters for this dataset. This coincides
with the best context size of three.

FIGURE 3. Selected prediction examples from the IAM test set. The
mispredictions are highlighted in color.

2) BEST
For the BEST dataset, CCTCmodels consistently outperform
the CTC model, as shown in Table 7. We opted for CER as
the only evaluationmetric since BEST transcriptions were not
properly tokenized, and Thai text has no word segmentation
standard. CCTC(4) model achieves the lowest validation CER
of 9.7%. However, this superior performance does not hold
in the test sets. The test-unseen set which comes from a
completely different domain does not work well with the
implicit LM learned by the model. The best scoring model
on the unseen test set is CCTC(2) which gives a good middle
ground. Note that a context of 2 characters is still consider-
ably weak as a LM and would not be detrimental even with
domain mismatch, since it mostly learns about legal character
sequences in the language.

Further inspections suggest that adding context losses can
help improve the performances of character segmentation
and ambiguous handwriting. Fig. 4a depicts handwriting with
very narrow spacing between characters. The CTC model
predicts an extra character that has a similar shape to the

73538 VOLUME 11, 2023



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

TABLE 7. The argmax CER (%) evaluation on the BEST. The ∗ and †
symbols indicate significant differences to the baseline CTC and the
CCTC(1) model, respectively.

FIGURE 4. Output comparison between different models on selected
examples. Highlights indicate prediction differences.

combination of two characters while Fig. 4b also shows a
similar occurrence where the CCTC can help disambiguate
hard-to-decipher handwriting. These errors might get cor-
rected with a LM. However, we would like to emphasize
again that CCTC yields this improvement without any extra
computation cost during inference.

VI. DISCUSSIONS
A. CCTC LEARNS AN IMPLICIT LANGUAGE MODEL
Our experiments have shown that CCTC can help improve
the performance of ASR andHTR systems in various settings.
In this section, we present some supporting evidence showing
that the model trained with CCTC also learns the LM in the
process, thereby improving the model in sequence prediction
tasks. To detect this effect, we computed the perplexity of the
prediction outputs (test set) using the language model learned
from the training text. If the model learns any sequence
information in the training process, this perplexity should
decrease.

We used 7-gram character LMs trained on the training sets
to compute the perplexity. The choice of 7-gram is so that the
context size will cover up to the context size of CCTC(3). The
text used to train the LM was deduplicated.

Fig. 5 illustrates perplexities on argmax decoding predic-
tions for each test set. The baseline CTC model generally has
the highest perplexity, and the value tends to decrease as the
context size increases. The lower perplexities of CCTC mod-
els indicate that the predictions of the CCTCmodels are more
congruent to the LM than the baseline CTC, supporting the

FIGURE 5. Perplexity comparisons between different context sizes.
Perplexity scores are computed from the predictions using argmax
decoding on each test sets.

FIGURE 6. Selected samples showcasing the possible mismatch between
CCTC and LM rescoring. The words of interested are highlighted.

claim that CCTC can learn an implicit LM. Note that for Thai
YouTube, the ASR models were trained on the entire training
set but tested separately in two different testing subsets. The
Thai YouTube dataset is mostly monolingual Thai, causing
the implicit LM learned by the CCTC models to be more
focused on Thai. Thus the perplexity in the code-switching
test set can increase, which is the case for CCTC(3). BEST is
also another dataset that does not exhibit the expected trend.
A large portion of the training data for BEST is based on the
same set of patterns, which are slightly different from the seen
test set.

B. DISCREPANCY BETWEEN CONTEXT PREDICTIONS AND
LM RESCORING
Even though increasing context sizes for CCTC models
provide performance gains using argmax and beam search
decoding, CCTC models with a shallower context window
tend to be more suitable for external LM rescoring than the
wider ones. From Table 3 and Table 5, CCTC(1) generally
had the highest effectiveness when the external LMwas used.
However, as context size increased, the performance might
drop, especially in the monolingual setup, in which CCTC
models were sometimes inferior to the baseline CTC.

Fig. 6 depicts selected samples of the scenario in which
the CCTC model provides a better prediction with argmax
but underperforms the baseline with 3-gram LM. In Fig. 6a,

VOLUME 11, 2023 73539



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

TABLE 8. The trade-off between the accuracy gains and runtime
performances (perf). Gains are reported in relative improvement over the
original CTC (%rel). Performances are reported as the ratio between
training times using the CTC’s runtime as the baseline.

the sample from dev-cs of Thai YouTube shows that LM
rescoring cannot fix the bad prediction of the CCTC model,
but it can fix CTC’s prediction. Fig. 6b depicts an example
from LibriSpeech dev-clean that the LM causes the error in
the CCTC model.

Aggressive context dependencies from context heads may
cause conflicts between the internal language representations
and the external LM rescorer. Further investigation on meth-
ods that can learn contexts jointly with the external LMmight
reduce this discrepancy.

C. RELATIONSHIP BETWEEN PERFORMANCE GAIN AND
TRAINING TIME
Since the inference time for CCTC is always the same as the
regular base model, we discuss the trade-off between the gain
in evaluation metrics and the increase in training time in this
section. Table 8 summarizes the trade-offs between gains and
runtimes in the argmax decoding setup. The gains are shown
in relative improvements of WER and CER for ASR corpora
and HTR corpora, respectively. The runtime performances
were measured using the ratio between the CTC and CCTC
training time (higher is faster) and were averaged over ten-
batch training, excluding data loading steps.

As expected the training speed of CCTCmodels reduces as
the context size increases. Considering the trade-off, a context
size of two seems to offer most of the benefit. The increase
in training time varies across datasets due to the differences
in encoders, input lengths, and alphabet sizes. For datasets
with more input frames (LibriSpeech), a large proportion of
the computation is used to compute the gradients, lessening
the effect of adding context heads on the computation cost.
Note that, the label generation process is not optimized to
work in GPU memory in our implementation. With proper
implementation, the performance drops should be further
reduced, just like in the CTC loss [31].

D. APPLYING ADAPTIVE WEIGHT ASSIGNMENTS FOR
CONTEXT LOSSES
To reduce the efforts of manual weight searching,
we attempted to use adaptive task balancing methods such
as DTP [55] and DWA [56]. However, we found no improve-
ment due to the distinctive role of context prediction subtasks
in comparison to subtasks of other multi-task learning setups,
which require subtasks to perform well independently on
their respective metrics [57], [58].

TABLE 9. Ablation studies for the WER(%) of wav2letter CCTC(1) models
on LibriSpeech. The g.t. stands for ground truth.

TABLE 10. The weights of context losses used in each experiment.

In CCTC frameworks, the performance of the main task
was exclusively considered. The context prediction tasks of
CCTC are sided tasks, which intend to complement the main
CTC task and heavily depend on the main CTC task. The
degradation of sided tasks is acceptable for gaining the per-
formance of the main task. To the best of our knowledge,
existing frameworks with similar setups also employ fixed
weights tuning [59], [60].

E. CCTC TRAINING FROM RANDOM INITIALIZATION
We found that starting CCTC training from the first itera-
tion was not effective (from-scratch), as shown in Table 9.
We observed training instabilities and worse WER compared
to both the regular CCTC model, which used pre-trained
weights for initialization, and the baseline CTC model. Since
CCTC labels were computed on-the-fly using current model,
the low-quality predictions at the early stage hurt the overall
performance.

We ensured that every setup had the same the number
of model updates. For from-scratch, a randomly initialized
model was trained by CTC and context losses for 400 epochs.
The pre-train approach were trained for 300 epochs using
CTC loss, followed by another 100 epochs of CCTC training.

F. CHOICE OF CONTEXT LABELS
Table 9 illustrates that using labels from forced alignments for
context labels (with g.t. labels) incurred a 2.5% relative degra-
dation in theWER of CCTCmodels compared to utilizing the
labels obtained from argmax predictions (pre-train CCTC).
We hypothesized that the mismatches between the align-
ments and the CCTC model predictions were responsible

73540 VOLUME 11, 2023



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

for the performance degradation. Note that we computed
the forced alignments from the wav2letter CTC model using
CTC-Segmentation described in [61].

VII. LIMITATIONS
There are some considerations for applying CCTC. First,
determining the optimal loss weights and context sizes
requires hyperparameter tuning for the context weights. This
can be mitigated by using search space reduction methods.
Second, although the inference time remains the same, CCTC
increases the training time. Finally, the impact of CCTC is
less pronounced when used in conjunction with a language
model. To address this limitation in future work, we plan to
investigate training CCTC together with a language model.

VIII. CONCLUSION
CCTC is a framework that can incorporate context infor-
mation into the CTC loss for training non-recurrent NAR
models. Experiments on ASR and HTR benchmarks on Thai
and English datasets have shown that CCTC can help improve
the performance by learning an implicit character language
model. CCTC models with a wider context are generally
more superior up to a certain size but can have difficulties
when used in conjunction with an external LM. In the future,
we plan to investigate joint training with the language model
in order to fully utilize the implicit LM learned by CCTC.

APPENDIX
HYPERPARAMETERS
Table 10 depicts the context loss weights assigned to each
model. The weights vary due to the differences in the mag-
nitudes of CTC losses. For the Librispeech 100 hr, Thai
YouTube, and IAM models, the CTC losses were normalized
by the length of transcriptions. In contrast, the remaining
models used unnormalized CTC losses.

ACKNOWLEDGMENT
The authors would like to thank CMKL University (Apex
cluster) and Chulalongkorn University Technology Center for
supporting the computational resources.

REFERENCES
[1] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,W. Han, S. Wang,

Z. Zhang, Y.Wu, andR. Pang, ‘‘Conformer: Convolution-augmented trans-
former for speech recognition,’’ in Proc. Interspeech, Oct. 2020, pp. 1–5.

[2] R. J. Weiss, R. Skerry-Ryan, E. Battenberg, S. Mariooryad, and
D. P. Kingma, ‘‘Wave-tacotron: spectrogram-free end-to-end text-to-
speech synthesis,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 5679–5683.

[3] V. Tassopoulou, G. Retsinas, and P. Maragos, ‘‘Enhancing handwrit-
ten text recognition with n-gram sequence decomposition and multitask
learning,’’ in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 10555–10560.

[4] F. Wu, A. Fan, A. Baevski, Y. Dauphin, and M. Auli, ‘‘Pay less atten-
tion with lightweight and dynamic convolutions,’’ in Proc. ICLR, 2019,
pp. 1–14.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and S. Agarwal, ‘‘Lan-
guage models are few-shot learners,’’ in Proc. NIPS, 2020, pp. 1877–1901.

[6] B. Naowarat, T. Kongthaworn, K. Karunratanakul, S. H. Wu, and
E. Chuangsuwanich, ‘‘Reducing spelling inconsistencies in code-
switching ASR using contextualized CTC loss,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 6239–6243.

[7] Z. Qiu, Y. Li, X. Li, F. Metze, and W. M. Campbell, ‘‘Towards
context-aware end-to-end code-switching speech recognition,’’ in Proc.
Interspeech, Oct. 2020, pp. 4776–4780.

[8] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee,
‘‘What is wrong with scene text recognition model comparisons? Dataset
and model analysis,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 4714–4722.

[9] Y. Higuchi, H. Inaguma, S. Watanabe, T. Ogawa, and T. Kobayashi,
‘‘Improved mask-CTC for non-autoregressive end-to-end ASR,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 8363–8367.

[10] J. Gu and X. Kong, ‘‘Fully non-autoregressive neural machine translation:
Tricks of the trade,’’ in Proc. Findings Assoc. Comput. Linguistics, ACL-
IJCNLP, 2021, pp. 1–12.

[11] J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher, ‘‘Non-autoregressive
neural machine translation,’’ in Proc. ICLR, 2018, pp. 1–13.

[12] Z. Li, Z. Lin, D. He, F. Tian, T. Qin, L. Wang, and T.-Y. Liu, ‘‘Hint-
based training for non-autoregressive machine translation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. 9th Int. Joint Conf. Natural
Lang. Process. (EMNLP-IJCNLP), 2019, pp. 1–9.

[13] Y. Wang, F. Tian, D. He, T. Qin, C. Zhai, and T.-Y. Liu, ‘‘Non-
autoregressive machine translation with auxiliary regularization,’’ in Proc.
AAAI, 2019, pp. 5377–5384.

[14] Z. Sun, Z. Li, H. Wang, Z. Lin, D. He, and Z.-H. Deng, ‘‘Fast structured
decoding for sequence models,’’ in Proc. NIPS, 2019, pp. 1–11.

[15] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, ‘‘Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,’’ in Proc. 23rd Int. Conf. Mach. Learn., 2006,
pp. 369–376.

[16] A. Graves, S. Fernandez, M. Liwicki, H. Bunke, and J. Schmidhuber,
‘‘Unconstrained online handwriting recognition with recurrent neural net-
works,’’ in Proc. NIPS, 2008, pp. 1–8.

[17] Y. Higuchi, S. Watanabe, N. Chen, T. Ogawa, and T. Kobayashi, ‘‘Mask
CTC: Non-autoregressive end-to-end ASR with CTC and mask predict,’’
in Proc. Interspeech, Oct. 2020, pp. 1–5.

[18] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin,
R. Leary, J. Li, and Y. Zhang, ‘‘QuartzNet: Deep automatic speech
recognition with 1D time-channel separable convolutions,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 6124–6128.

[19] S.-P. Chuang, H.-J. Chang, S.-F. Huang, and H.-Y. Lee, ‘‘Non-
autoregressive Mandarin-English code-switching speech recognition with
pinyin mask-CTC and word embedding regularization,’’ in Proc. ASRU,
2021, pp. 465–472.

[20] D. Coquenet, C. Chatelain, and T. Paquet, ‘‘Recurrence-free unconstrained
handwritten text recognition using gated fully convolutional network,’’ in
Proc. 17th Int. Conf. Frontiers Handwriting Recognit. (ICFHR), Sep. 2020,
pp. 19–24.

[21] M. Yousef, K. F. Hussain, and U. S. Mohammed, ‘‘Accurate, data-efficient,
unconstrained text recognition with convolutional neural networks,’’ Pat-
tern Recognit., vol. 108, Dec. 2020, Art. no. 107482.

[22] J. Michael, R. Labahn, T. Gruning, and J. Zöllner, ‘‘Evaluating sequence-
to-sequence models for handwritten text recognition,’’ in Proc. Int. Conf.
Document Anal. Recognit. (ICDAR), Sep. 2019, pp. 1286–1293.

[23] D. Yu, X. Li, C. Zhang, T. Liu, J. Han, J. Liu, and E. Ding, ‘‘Towards
accurate scene text recognition with semantic reasoning networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12110–12119.

[24] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, ‘‘Librispeech:
An ASR corpus based on public domain audio books,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 5206–5210.

[25] BEST 2019 (Handwritten Recognition), W Sinthupinyo, Nat. Electron.
Comput. Technol. Center (NECTEC), Pathum Thani, Thailand, 2018.

[26] BEST 2020 (Handwritten Recognition), W Sinthupinyo, Nat. Electron.
Comput. Technol. Center (NECTEC), Pathum Thani, Thailand, 2020.

[27] U.-V. Marti and H. Bunke, ‘‘The IAM-database: An English sentence
database for offline handwriting recognition,’’ Int. J. Document Anal.
Recognit., vol. 5, no. 1, pp. 39–46, Nov. 2002.

[28] D. Jurafsky and J. Martin, Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

VOLUME 11, 2023 73541



B. Naowarat et al.: Context Conditioning via Surrounding Predictions for Non-Recurrent CTC Models

[29] A. Graves, A. Mohamed, and G. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[30] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
‘‘Attention-based models for speech recognition,’’ in Proc. NIPS, 2015,
pp. 1–9.

[31] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, and G. Chen, ‘‘Deep speech 2:
End-to-end speech recognition in English and Mandarin,’’ in Proc. ICML,
2016, pp. 173–182.

[32] W. Chan, C. Saharia, G. E. Hinton, M. Norouzi, and N. Jaitly, ‘‘Imputer:
Sequence modelling via imputation and dynamic programming,’’ in Proc.
ICML, 2020, pp. 1403–1413.

[33] J. Hu, M. K. Brown, and W. Turin, ‘‘HMM based online handwriting
recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 10,
pp. 1039–1045, Oct. 1996.

[34] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges, ‘‘LeRec: A NN/HMM
hybrid for on-line handwriting recognition,’’ Neural Comput., vol. 7, no. 6,
pp. 1289–1303, Nov. 1995.

[35] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and
J. Schmidhuber, ‘‘A novel connectionist system for unconstrained hand-
writing recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 5, pp. 855–868, May 2009.

[36] P. Dreuw, D. Rybach, C. Gollan, and H. Ney, ‘‘Writer adaptive training and
writing variant model refinement for offline Arabic handwriting recogni-
tion,’’ in Proc. 10th Int. Conf. Document Anal. Recognit., 2009, pp. 21–25.

[37] P. Voigtlaender, P. Doetsch, and H. Ney, ‘‘Handwriting recognition with
large multidimensional long short-term memory recurrent neural net-
works,’’ inProc. 15th Int. Conf. Frontiers Handwriting Recognit. (ICFHR),
Oct. 2016, pp. 228–233.

[38] A. Graves and J. Schmidhuber, ‘‘Offline handwriting recognitionwithmul-
tidimensional recurrent neural networks,’’ in Proc. NIPS, 2009, pp. 1–8.

[39] J. Puigcerver, ‘‘Are multidimensional recurrent layers really necessary for
handwritten text recognition?’’ in Proc. 14th IAPR Int. Conf. Document
Anal. Recognit. (ICDAR), Nov. 2017, pp. 67–72.

[40] V. Carbune, P. Gonnet, T. Deselaers, H. A. Rowley, A. Daryin, M. Calvo,
L.-L. Wang, D. Keysers, S. Feuz, and P. Gervais, ‘‘Fast multi-language
LSTM-based online handwriting recognition,’’ Int. J. Document Anal.
Recognit. (IJDAR), vol. 23, no. 2, pp. 89–102, Jun. 2020.

[41] A. Sharma andD. B. Jayagopi, ‘‘Towards efficient unconstrained handwrit-
ing recognition using dilated temporal convolution network,’’ Exp. Syst.
Appl., vol. 164, Feb. 2021, Art. no. 114004.

[42] T. Zenkel, R. Sanabria, F. Metze, and A. Waibel, ‘‘Subword and crossword
units for CTC acoustic models,’’ in Proc. Interspeech, Sep. 2018, pp. 1–5.

[43] G. Synnaeve, Q. Xu, J. Kahn, T. Likhomanenko, E. Grave, V. Pratap,
A. Sriram, V. Liptchinsky, and R. Collobert, ‘‘End-to-end ASR: From
supervised to semi-supervised learning with modern architectures,’’ 2019,
arXiv:1911.08460.

[44] J. Chorowski, A. Lancucki, B. Kostka, andM. Zapotoczny, ‘‘Towards using
context-dependent symbols in CTC without state-tying decision trees,’’ in
Proc. Interspeech, Sep. 2019, pp. 1–5.

[45] R. Sanabria and F. Metze, ‘‘Hierarchical multitask learning with CTC,’’
in Proc. IEEE Spoken Lang. Technol. Workshop (SLT), Dec. 2018,
pp. 485–490.

[46] H. Liu, Z. Zhu, X. Li, and S. Satheesh, ‘‘Gram-CTC: Automatic unit
selection and target decomposition for sequence labelling,’’ in Proc. ICML,
2017, pp. 2188–2197.

[47] A. Graves, ‘‘Sequence transduction with recurrent neural networks,’’ 2012,
arXiv:1211.3711.

[48] Y. Zhang, D. Yu, M. L. Seltzer, and J. Droppo, ‘‘Speech recognition
with prediction-adaptation-correction recurrent neural networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 5004–5008.

[49] Y. Zhang, E. Chuangsuwanich, J. Glass, and D. Yu, ‘‘Prediction-
adaptation-correction recurrent neural networks for low-resource language
speech recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 5415–5419.

[50] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. ICLR, 2015, pp. 1–15.

[51] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Ginsburg,
S. Kriman, S. Beliaev, V. Lavrukhin, J. Cook, P. Castonguay, M. Popova,
J. Huang, and J. M. Cohen, ‘‘NeMo: A toolkit for building AI applications
using neural modules,’’ 2019, arXiv:1909.09577.

[52] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807.

[53] A. Paszke, S. Gross, F.Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘‘PyTorch: An imper-
ative style, high-performance deep learning library,’’ in Proc. NIPS, 2019,
pp. 1–12.

[54] L. Gillick and S. J. Cox, ‘‘Some statistical issues in the comparison of
speech recognition algorithms,’’ in Proc. Int. Conf. Acoust., Speech, Signal
Process., 1989.

[55] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, ‘‘Dynamic task
prioritization for multitask learning,’’ in Proc. ECCV, 2018, pp. 270–287.

[56] S. Liu, E. Johns, and A. J. Davison, ‘‘End-to-end multi-task learning
with attention,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1871–1880.

[57] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai,
and L. Van Gool, ‘‘Multi-task learning for dense prediction tasks:
A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7,
pp. 3614–3633, Jul. 2022.

[58] O. Sener and V. Koltun, ‘‘Multi-task learning as multi-objective optimiza-
tion,’’ in Proc. NIPS, 2018, pp. 1–12.

[59] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, ‘‘Hybrid
CTC/attention architecture for end-to-end speech recognition,’’ IEEE J.
Sel. Topics Signal Process., vol. 11, no. 8, pp. 1240–1253, Dec. 2017.

[60] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na,
Y. Wang, and S. Khudanpur, ‘‘Purely sequence-trained neural networks
for ASR based on lattice-free MMI,’’ in Proc. Interspeech, Sep. 2016,
pp. 2751–2755.

[61] L. Kurzinger, D. Winkelbauer, L. Li, T. Watzel, and G. Rigoll, ‘‘CTC-
segmentation of large corpora for German end-to-end speech recognition,’’
in Proc. SPECOM, 2020, pp. 267–278.

BURIN NAOWARAT received the B.S. degree
from Chulalongkorn University, Bangkok,
Thailand, in 2019, where he is currently pur-
suing the M.S. degree in computer engineering
with the Department of Computer Engineering,
Chulalongkorn University. His research interests
include speech processing, representation learn-
ing, language understanding, and self-supervised
learning.

CHAWAN PIANSADDHAYANON received the
B.S. degree in computer engineering from Chu-
lalongkorn University, in 2020. He is currently
pursuing theM.S. degree in computer engineering.
His research interests include computer vision,
deep learning, and medical imaging.

EKAPOL CHUANGSUWANICH received the
B.S. and M.S. degrees in electrical and computer
engineering from Carnegie Mellon University, in
2008 and 2009, respectively, and the Ph.D. degree
from MIT, in 2016. Then, he joined the MIT
Computer Science and Artificial Intelligence Lab-
oratory and Spoken Language Systems Group.
He is currently a Faculty Member of the Depart-
ment of Computer Engineering, Chulalongkorn
University. His research interests include speech

processing, assistive technology, and health applications.

73542 VOLUME 11, 2023


