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ABSTRACT Although the concepts of imprecision are captured by both rough sets and intuitionistic fuzzy
sets, investigations combining these two ideas and their applications in incompletely ordered information
systems are scarce. The semantics of many kinds of missing information still lacks consensus on a global
level. Rule extraction is also an important task in a sort of decision system in which condition attributes
are treated as intuitionistic fuzzy values and decision attributes are crisp ones. The main goal of this paper
is to address semantic issues related to incomplete information. This paper contributes to the following
aspects: First, four types of incomplete information are classified (i.e., ‘‘do-not-care value’’, ‘‘partially-
known value’’, ‘‘class-specific value’’ and ‘‘non-applicable value’’), and then a complete information system
is introduced using novel semantics, followed by a ranking approach to create each object’s neighborhood
using intuitionistic fuzzy values for condition attributes. Further, a dominance-based intuitionistic fuzzy
decision table is proposed. Second, the lower and upper approximation sets of an object and crisp classes
validated by decision attributes are determined by comparing their relationships. Third, the rule extraction
approach is developed using the discernibility matrix and discernibility function to collect knowledge
from existing dominance intuitionistic fuzzy decision tables. Finally, the provided approach is used for the
estimation of inflation rates in LDCs with inadequate data.

INDEX TERMS Incomplete ordered information, possible-world semantics, intuitionistic fuzzy set,
dominance-based rough set approach, dominance relation, discernibility matrix, rule extraction.

LIST OF ABBREVIATIONS
Symbols Description
RST Rough Set Theory
DRSA Dominance-based Rough Set Approach
IFIS Intuitionistic Fuzzy Information System
DIFIS Dominance-based Intuitionistic Fuzzy

Information System
OISs Ordered Information Systems
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DIFDT Dominance-based Intuitionistic Fuzzy-valued
Decision Table

DIFRSA Dominance-based Intuitionistic Fuzzy Rough
Set Approach

LDCs Least Developed Countries

I. INTRODUCTION
Rough set theory (RST) was first introduced by Pawlak [1]
as a formal mathematical tool for addressing vagueness and
discrepancy in information systems [2]. The main benefit of
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the rough set approach is that it does not require any prelimi-
nary or supplementary data, such as probability distributions
in probability theory or grades of membership in fuzzy set
theory. This theory is based on the observation that objects
with the same description cannot be distinguished based on
the information that is currently available about them [3],
[4]. The equivalence classes form a partition of the universe
of discourse and constitute the basic granules of knowledge.
Fundamental ideas of RST include the lower and upper
approximations of sets that are created by these equivalence
classes. The RST has been successfully used in a variety of
fields, including decision analysis, expert systems, machine
learning, pattern recognition, and knowledge discovery [5],
[6], [7], [8], [9], [10], [11].

However, the rough set theory is not able to discover
and process inconsistencies coming from consideration of
criteria, that is, attributes with preference-ordered domains
(scales), such as test scores, university rankings, and house
pricing.

To solve this issue, Greco et al. [12], [13] suggested the
dominance-based rough set approach (DRSA), an extension
of RST that takes into consideration the ordering patterns of
criteria. This invention is primarily based on the substitution
of the indiscernibility (or equivalence) connection by a dom-
inance relation, which allows for ordered set approximations
in multi-criteria decision-making and multi-criteria sorting
issues. The information to be approximated in DRSA is a col-
lection of upward and downward unions of decision classes,
and the dominance classes are sets of objects defined by
utilizing a dominance relation. Furthermore, the DRSA con-
siders monotonic connections between object descriptions
based on condition criteria and their class labels. DRSA has
been expanded since its beginnings to deal with knowledge
acquisition in many types of ordered information systems
(OISs) [14], [15], [16], [17], [18], [19], [20], [21], [22].

Rough set approximations have lately been integrated into
intuitionistic fuzzy sets [23], [24], [25], [26], [27], [28].
Based on the notion of fuzzy rough sets provided by Nanda
and Majumdar [29], Chakrabarty et al. [27], and Jena and
Ghosh [30], intuitionistic fuzzy rough sets were presented,
in which the lower and higher approximations are both intu-
itionistic fuzzy sets. Samanta and Mondal [31] also proposed
this concept, which they call a rough intuitionistic fuzzy set.
From the perspective of Nanda and Majumdar, this fuzzy
set with the membership and non-membership functions is
no longer a fuzzy set but a fuzzy rough set. Zhou and Wu
[32], [33] investigated fuzzy rough approximation operators.
Huang et al. [34], [35] explored and applied dominance-based
(interval-valued) intuitionistic fuzzy rough set models.

Pawlak’s rough set analysis assumes that an object has
only one value for each attribute and that we know what
that value is. However, in many cases, accessible information
about some objects is inadequate, and we may not know
their real values for some attributes. Moreover, two types
of values may be considered: ‘‘applicable value’’ and ‘‘non-
applicable value.’’ The real values must exist for the category

of applicable values, although we may not know the values or
just know a range of possibilities. For non-applicable values,
some attributes do not apply to certain objects; as a result,
their values cannot be specified. It might be considered a
subtype of missing value. Since we may not be aware of the
precise descriptions of certain objects in these situations of
incomplete information, the idea of equivalence relations is
no longer applicable. Many authors propose and investigate
different types of non-equivalence relations to model similar-
ity, including tolerance relations [36], similarity relations [4],
conditional tolerance relations [37], and characteristic rela-
tions [38], [39], [40], [41], [42], [43], [44]. Indiscernibility
is a special type of similarity. An indiscernibility relation is
required for deriving rules with complete information, but a
similarity relation is required for generating rules with lim-
ited knowledge. Various types of similarity relations models
are based on various semantics of incomplete information.
However, there is no conceptual framework for investigating
incomplete information from the perspective of semantics.

Kryszkiewicz [36] deals with incomplete information as
a ‘‘do-not-care value’’ that may be changed with any rec-
ognized values of an attribute. Stefanowski and Tsoukiàs
[4] consider two types of incomplete information: ‘‘missing
value’’ and ‘‘absent value’’. The ‘‘missing value’’ seman-
tics allows comparison operations on a missing value.
The ‘‘absent value’’ semantics does not allow any com-
parison. Grzymala-Busse [39], [41] recognize two types
of incomplete information: ‘‘do-not-care value’’ and ‘‘lost
value’’. He further divides ‘‘do-not-care value’’ into three
categories according to their comparison ranges: ‘‘do-not-
care value’’, ‘‘restricted do-not-care value’’, and ‘‘attribute-
concept value’’. For a ‘‘do-not-care value’’, it can be
substituted by any known attribute value. For a ‘‘restricted
do-not-care value’’, It can only be replaced by any known
attribute values, except ‘‘lost values’’. For an ‘‘attribute-
concept value,’’ any known values that are restricted to the
same concept may be used in their place. For a ‘‘lost value,’’
the original value already existed but is no longer there for a
variety of reasons.

Based on the existing studies of different semantics of
incomplete information, we generalized four types of seman-
tics for incomplete ordered information systems (IOISs):

➢ (D) ‘‘Do-not-care value’’ denoted by ‘‘∗’’:
➢ (P) ‘‘Partially-known value’’ denoted by ‘‘†’’:
➢ (C) ‘‘Class-specific value’’ denoted by ‘‘∇’’:
➢ (N) ‘‘Non-applicable value’’ denoted by ‘‘NA’’:

Despite the previous research initiatives, intuitionistic
fuzzy and rough set hybrid models are rarely generated.
In both traditional and generalized rough set theory [45], [46],
[47], [48], [49], [50], [51], [52], knowledge reduction and
rule extraction are crucial tasks. However, in the domain
of intuitionistic fuzzy circumstances, these problems have
seldom ever been addressed. For this shortcoming, the current
work focuses on the development of intuitionistic fuzzy-
rough models based on dominance and the simplification
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FIGURE 1. Ten-steps flowchart for DIFRSA in an IOIS by using novel
semantics.

of decision rules in intuitionistic fuzzy information systems.
This approach combines the strengths of rough set theory,
incomplete dominance, and intuitionistic fuzzy sets to han-
dle uncertainty, enhance discrimination power, and generate
interpretable rules. This generalization gives better results
then other fuzzy generalizations. First, we use novel seman-
tics to turn an intuitionistic fuzzy-valued incomplete ordered
information system into an intuitionistic fuzzy-valued deci-
sion table, and then combine it with a dominance relation
to create a notion known as dominance intuitionistic fuzzy-
valued decision tables (DIFDT). Second, we develop a
dominance-based rough set model based principally on the
replacement of the indiscernibility relation in conventional
rough set theory with a dominance-based relation. Then, from
discernibility matrices, we suggest rule extraction method-
ologies. Third, the suggested intuitionistic rough models and
rule extraction procedures are used to estimate inflation rates
in low-income countries with inadequate data.

The rest of this paper is organized as follows: In Section II,
the basic concepts of IFSs, information systems, intuitionistic
fuzzy information systems, dominance-based intuitionistic
fuzzy rough set approach to ordered information systems are
briefly reviewed. Section III introduces four types of novel
semantics for intuitionistic fuzzy incomplete ordered infor-
mation systems. In Section IV, we discussed the application
of novel semantics in a Dominance-based Intuitionistic Fuzzy
Rough Set Approach (DIFRSA) for rule extraction from
incompletely ordered information systems. In Section V,
an approach is illustrated by a numerical example. Finally,
Section VI concludes this article and declaration of interests
with Section VI.

II. PRELIMINARIES
This section sums up some basic ideas and properties related
to intuitionistic fuzzy values, recalling some notions related
with dominance-based intuitionistic fuzzy information sys-
tems that will be used in the next section.

A. IFSs
Definition 1 [53]: Let (µ, ν) be an ordered pair, where

0 ≤ µ, ν ≤ 1 and 0 ≤ µ + ν ≤ 1. Then we call (µ, ν)
an intuitionistic fuzzy value.

Definition 2 [54]: Let αi = (µi, νi) , (1 ≤ i ≤ 2) be two
intuitionistic fuzzy values, then
1. α1 = α2 ⇔ µ1 = µ2 ∧ ν1 = ν2;

2. α1 ∩ α2 = ((min{µ1, µ2},max{ν1, ν2}) ;

3. α1 ∪ α2 = (max{µ1, µ2},min{ν1, ν2}) ;

Obviously, if α1 and α2 are two intuitionistic fuzzy values,
then so are α1 ∩ α2 and α1 ∪ α2. From the intersection
and union of two intuitionistic fuzzy values, it is easy to
generalize those of n intuitionistic fuzzy values as follows.
Definition 3 [54]: Let αi = (µi, νi) , (1 ≤ i ≤ n) be

n intuitionistic fuzzy values, on which we can define the
intersection

⋂
1≤i≤nαi and union,

⋃
1≤i≤nαi of αi(1 ≤ i ≤ n)

as follows: ⋂
1≤i≤nαi =

(
min
1≤i≤n

µi, max
1≤i≤n

νi

)
,

⋃
1≤i≤nαi =

(
max
1≤i≤n

µi, min
1≤i≤n

νi

)
.

Definition 4 [54]: Let U be a universe of discourse.
An intuitionistic fuzzy set ‘A’ in U is an object having the
form A = {< x, µA(x), νA (x) >: x ∈ U}, where µA : U →

[0, 1] and νA : U → [0, 1] satisfy 0 ≤ µA(x)+νA (x) ≤ 1 for
all x ∈ U , and µA (x) and νA (x) are, respectively, called the
degree of membership and the degree of non-membership of
the element x ∈ U to U .
Obviously, every fuzzy set A = {< x, µA(x) >: x ∈ U}

can be identified with the intuitionistic fuzzy set of the form
{< x, µA (x) , 1 − µA(x) >: x ∈ U} and is thus an intuition-
istic fuzzy set.
Definition 5 [55]: Let α1 = (µ1, ν1) and α2 = (µ2, ν2)

be two intuitionistic fuzzy values, S (α1) = µ1−ν1 and
S (α2) = µ2−ν2 be the score of α1 and α2, respectively; and
h (α1) = µ1+ν1 and h (α2) = µ2+ν2 be the precisions of α1
and α2, respectively, then
1. If S (α1) < S (α2) then α1 ≺ α1;
2. If S (α1) = S (α2)

a) and h (α1) = h (α2), then α1 = α2;
b) and h (α1) < h (α2), then α1 ≺ α2;
c) and h (α1) > h (α2), then α1 ≻ α2;

B. INFORMATION SYSTEM
Definition 6: An information system is a quadruple S =

(U ,AT ,V , f ), where U is a finite non-empty set of objects,
AT is a finite nonempty set of attributes, V =

⋃
a∈ATVa and

Va is the domain of attribute a, and f : U × AT → V is a
total function such that f (x, a) ∈ Va for every a ∈ AT , x ∈ U ,
called an information function.
Definition 7 [56]: An information system is called an

ordered information system if all attributes are criteria.
Definition 8: An information system with incomplete

information is called an incomplete information system.
There are different types of semantics for incomplete infor-
mation system in the literature [36], [41], [57], some of them
are:
(D) ‘‘Do-not-care value’’ denoted by ‘‘∗’’:
(P) ‘‘Partially-known value’’ denoted by ‘‘†’’:
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(C) ‘‘Class-specific value’’ denoted by ‘‘∇’’:
(N) ‘‘Non-applicable value’’ denoted by ‘‘NA’’:
‘‘Do-not-care value’’ denoted by ‘‘∗’’. It does not affect

the final result of an incomplete information system. For
example, most covid 19 diseases do not act by age. This
disease can be found at any age period. So this missing value
can be replaced by any value of same attribute domain for
given information.

‘‘Partially-known value’’ denoted by ‘‘†’’. This value lies in
some given range of missing value. For example if someone
asks about a university student who does not know his disci-
pline or department, this is partial information. This missing
value can be replaced with one of the value from subset of
same attribute domain.

‘‘Class-specific value’’ denoted by ‘‘∇’’. It depends on
another special attribute of the same object. For example, the
government job salary employees depends on their pay scale.
This missing value can be replaced with one of the value of
the objects with the same value on this special attribute.

‘‘Non-applicable value’’ denoted by ‘‘NA’’. This attribute
value is not applicable for that object. For example, some
birds can’t fly. Thus, the attribute fly in same birds is non-
applicable for that type of bird. So, that type of missing value
will not replace with any other value, this treated as NA.
Definition 9: An incomplete information system is a tuple

IIS = (U ,AT ,V ′,F), where U is a finite non-empty set of
objects called the universe, AT is a finite nonempty set of
attributes, V ′

= V ∪ {∗} ∪ {†} ∪ {∇} ∪ {NA}, where V =⋃
a∈ATVa, Va is the domain of attribute a. ∗, †, ∇, and NA are

special symbols for do-not-care value, partially-known value,
class-specific value, and non-applicable value, respectively.
F = {fa|a ∈ AT}, fa : U → V ′

a is an information function
such that fa (x) ∈ V ′

a, x∈ U,V ′
a = Va∪{∗}∪{†}∪{∇}∪{NA}.

Two objects are similar with respect to an attribute if they
have at least one same value for their possible attribute values
on the attribute. If we denote Pa (x) as the set of all possible
attribute values of object x with respect to an attribute a,
where:
(K) ‘‘Known value’’: If fa (x) ∈ Va, then Pa (x) = {fa (x)};
(D) ‘‘Do-not-care value’’: If fa (x) = ∗, then Pa (x) = Va;
(P) ‘‘Partially known value’’: If fa (x) = †xa, then Pa (x) =

fa (x);
(C) ‘‘Class-specific value’’: If fa (x) = ∇

x
(a,b), then

Pa (x) = V∇b
a (x)

= {fa (y) |fb (x) = fb (y) ∧ fa (y) ∈ Va} , b ∈ AT ;

(N) ‘‘Non-applicable value’’: If fa (x) = NA, then Pa (x) =

{NA};
Based on these different semantics of incomplete information
system, we can define the complete information system that
replaces the incomplete information with its possible values.

C. INTUITIONISTIC FUZZY INFORMATION SYSTEM
Definition 10 [34]: An intuitionistic fuzzy information

system (IFIS) is a quadruple S = (U ,C ∪ D,V , f ), where

U is a finite non-empty set of objects called the universe, C
is a finite non-empty set of conditional attributes, D = {d}

is a singleton of decision attribute d , and C ∩ D = ∅. V is
the set of all intuitionistic fuzzy values, and V = V1 ∪ V2,
where V1 and V2 are domains of condition and decision
attributes, respectively. The information function f is a map
from U ×C ∪D onto V , such that f (x, c) ∈ Vc for all c ∈ C ,
Vc ⊆ V1, and f (x, d) ∈ V2 for D = {d}, where f (x, c) and
f (x, d) are intuitionistic fuzzy values, denoted by f (x, c) =

(µc (x) , νc (x)) and f (x, d) = (µd (x) , νd (x)).
We call f (x, c) the intuitionistic fuzzy value of object x,

under the condition attribute c, f (x, d) the intuitionistic fuzzy
value of x under the decision attribute d . In particular, f (x, c)
and f (x, d) would degenerate into fuzzy value if µc (x) =

1 − νc(x) and µd (x) = 1 − νd(x) for every x ∈ U . Under
this consideration, we regard a fuzzy information system as a
special form of intuitionistic fuzzy information systems.

When doing a practical examination of a decision-making
process, we always take into account a binary dominance
connection between objects that might be dominant in terms
of the values of a set of characteristics in an intuition-
istic fuzzy information system. A decision-maker often
takes into account both growing and decreasing preferences.
An attribute is a criterion if the domain of the attribute is
arranged in descending or ascending order of preference.
We restrict our analysis to dominant intuitionistic fuzzy infor-
mation systems without losing any generality.

Comparing and ranking objects using condition attributes
with intuitionistic fuzzy values is a crucial task in dominant
intuitionistic fuzzy information systems. For this, we use the
score function and accuracy function for the ranking mecha-
nism of two intuitionistic fuzzy values.
Definition 11 [34]: Let DIFIS = (U ,C ∪ D,V , f ), and

B ⊆ C , for x, y ∈ U denoted by x ≼B y ⇔ f (x, b) ≼
f (y, b) ⇔ f (y, b) ≺ f (y, b) ∨ f (y, b) = f (y, b) , ∀b ∈ B.
Obviously, ≼B is a binary relation in U , that is

≼B= {(x, y) ∈ U × U | f (y, b) ≼ f (y, b), ∀b ∈ B}.

We call the binary relation defined above a dominance rela-
tion in DIFIS.

If we adopt definition 11 to compare two intuitionistic
fuzzy values, it is possible that the two intuitionistic fuzzy
values may not be comparable. For example, α1 = (0.2, 0.3)
and α2 = (0.3, 0.4) are intuitionistic fuzzy values, there are
α1 ≰ α2 and α2 ≰ α1 but α1 ≺ α2. Despite this definition’s
rigor, another simple and useful ranking method for objects
in U should be introduced.
Definition 12: Let DIFIS = (U ,C ∪ D,V , f ) and B ⊆ C ,

for x, y ∈ U , x ≼B y ⇔ f (x, b) < f (y, b) ∨ f (x, b) =

f (y, b) ∀b ∈ B.

Obviously, ≼B is also a dominance binary relation in U ,
that is

≼B= {(x, y) ∈ U × U | f (y, b) < f (y, b) ∨ f (x, b)

= f (y, b), ∀b ∈ B}.
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We call ≼B a rigorous dominance relation in terms of B in
DIFIS.
Proposition 1: Let DIFIS= (U ,C∪D,V , f ) and E ⊆ B ⊆

C , then

1. ≼B and ≤B are reflexive, transitive and anti-symmetric.
2. ≼B= ∩ ≼b∈B≼{b} and ≤B= ∩b∈B ≤{b}.
3. ≼E⊆ ≼B and ≤E ⊆ ≤B.
4. ≤B ⊆ ≼B.

The dominance class induced by the dominance relation,
≼B, in terms of B ⊆ C , is the set of objects dominating
x, ie [x]≼B = {y ∈ U | (x, y) ∈≼B} where [x]

≼
B describes the

set of objects that may dominate x in terms of B ⊆ C
and is called the B-dominating set with respect to x ∈ U .
Meanwhile, the B-dominated set with respect to x ∈ U can be
defined as [x]≽B = {y ∈ U | (y, x) ∈≼B}. Similarly, [x]≤B =

{y ∈ U | (x, y) ∈ ≤B} and [x]
≥

B = {y ∈ U | (y, x) ∈ ≤B}.

D. DOMINANCE-BASED INTUITIONISTIC FUZZY ROUGH
SET APPROACH TO ORDERED INFORMATION SYSTEM
In this section, we examine at the set approximation chal-
lenges in connection to the dominance intuitionistic fuzzy
relation in the dominance intuitionistic fuzzy information
system (DIFIS).
Definition 13: Let DIFIS = (U ,C ∪ {d},V , f ), and

B⊆C .the universe, U , is partioned into m equivalence
classes by the decision attribute d that is, U/{d} =

{U1,U2, . . . ,Um}, where U1 ≺ U2 ≺ . . . ≺ Um and Ui ≺

Uj denotes that ∀x ∈ Ui, y ∈ Uj implies f (x, d) <

f (y, d) . Denote Uk =
⋃

1≤j≤kUj(1 ≤ k ≤ m),U≽
k =⋃

k≤j≤mUj(1 ≤ k ≤ m) and let:

AppB
(
U≽
k

)
=

{
x|[x]≽B ⊆ U≽

k

}
(1 ≤ k ≤ m) ;

AppB
(
U≽
k

)
=

{
x| [x]≼B ∩ U≽

k ̸= ∅

}
=

⋃
x∈U≽

k
[x]≼B (1 ≤ k ≤ m);

BNDB
(
U≽
k

)
= AppB

(
U≽
k

)
− AppB

(
U≽
k

)
;

AppB
(
U≼
k

)
=

{
x|[x]≼B ⊆ U≼

k

}
(1 ≤ k ≤ m) ;

AppB
(
U≼
k

)
=

{
x| [x]≽B ∩ U≼

k ̸= ∅

}
=

⋃
x∈U≼

k
[x]≽B (1 ≤ k ≤ m);

BNDB
(
U≼
k

)
= AppB

(
U≼
k

)
− AppB

(
U≼
k

)
;

App≽
B

(x) =
⋂

[x]≽B ∩U≼
k ̸=φ

U≼
k ;

App
≽
B (x) =

⋂
[x]≽B ⊆U≼

k
U≼
k ;

BND≽
B (x) = App

≽
B (x) − App≽

B
(x) ;

App≼
B

(x) =
⋂

[x]≼B ∩U≽
k ̸=φ

U≽
k ;

AppB (x) =
⋂

[x]≼B ⊆U≽
k
U≽
k ;

BND≼
B (x) = App

≼
B (x) − App≼

B
(x) ;

Then, AppB
(
U≽
k

)
, AppB

(
U≽
k

)
and BNDB

(
U≽
k

)
are called

the lower approximation, upper approximation and boundary
of the dominated class,U≽

k with respect to condition attribute

subset B; AppB
(
U≼
k

)
,AppB

(
U≼
k

)
and BNDB

(
U≼
k

)
are

the lower approximation, upper approximation and boundary
of the dominating class, U≼

k with respect to B; In terms

of B,App≽
B

(x) ,App
≽
B (x) and BND≽

B (x) are the ≽ lower
approximation, upper approximation and boundary of x.
App≼

B
(x) ,App

≼
B (x) and BND≼

B (x) are the ≼ lower approx-
imation, upper approximation, and boundary of x.
Susmaga et al. [45] introduced a discernibility matrix to

dominance-based decision tables and addressed the com-
putation of dominance-based reducts using the dominance
information table in DRSA. And investigate an attribute
reduction approach for the ≼ and ≽ lower approximations in
DIFDT. Moreover, it can be easily generalized to the ≼ and
≽ upper approximations in DIFDT.
Definition 14: Let DIFIS = (U ,C ∪ {d},V , f ), and

U = {x1, x2, . . . , xn}. Define ≼ and ≽ lower approximations
discernibility matrices of DIFIS as M≼

=

(
d≼
ij

)
n×n

and

M≽
=

(
d≽
ij

)
n×n

where

d≼
ij

=

{ {
c ∈ C|f (xj, c) ≻ f (xi, c)

}
, f

(
xj, d

)
>

∣∣∣App≼
c

(xi)
∣∣∣ ,

C otherwise

}
;

d≽
ij

=

{ {
c ∈ C|f (xj, c) ≺ f (xi, c)

}
, f

(
xj, d

)
<

∣∣∣App≽
c

(xi)
∣∣∣ ,

C otherwise

}
.

Definition 15: Let DIFIS = (U ,C ∪ {d},V , f ), and
U = {x1, x2, . . . , xn}. We define≼ and≽ lower discernibility
functions of xi as

f ≼ (xi) =
∧

j(
∨
d≼
ij ) and f

≽ (xi) =
∧

j(
∨
d≽
ij ).

III. THE NOVEL SEMANTICS FOR INTUITIONISTIC FUZZY
INCOMPLETE ORDERED INFORMATION SYSTEM
Now we generalize different semantics. Do-not-care value
‘‘∗’’, Partially-known value ‘‘†’’ Class-specific value ‘‘∇’’
and Non-applicable value ‘‘NA’’ for the intuitionistic fuzzy
incomplete ordered information system.

In an intuitionistic fuzzy incomplete ordered information
system IFIOIS = (U ,C ∪ D,V ∪ {∗} ∪ {†} ∪ {∇}, f ). If we
denote p (x, c) as the set of all possible attribute values of
object x with respect to attribute c. Then:
The semantics of the applicable values are as follows.

• Do-not-care value
‘‘Do-not-care value’’ denoted by ‘‘∗’’: For f (x, c) = ∗,
although the value of an object x ∈ U on an attribute c ∈ C
is missing, we do not care what is its actual value. In other
words, if we replace ∗ by any value in Vc or take average of
values from same attribute domain, we will obtain the same
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result independent of the choice of c value in Vc. Then,

f (x, c) = ∗ =
(
µi (x), νi (x)

)
, p (x, c)

= (µi (x) , νi (x)) ∀x ∈ U , c ∈ C, µi (x) ∈ [0, 1] ,

νi (x) ∈ [0, 1] with 0 ≤ µi (x) + νi (x) ≥ 1.

• Partially-known value
‘‘Partially-known value’’ denoted by ‘‘†’’: For f (x, c) = †xc ,
the value of an object x ∈ U on an attribute c ∈ C is missing,
we know that the actual value is in a subset p (x, c) of Vc such
that

f (x, c) = †xa = (µ̂i (x) , ν̂i (x)) ,

p (x, c) = (µi (x) , νi (x)) ∀x ∈ U , c ∈ C, µ̂i (x)

∈
[
minµi (x) ,max µi (x)

]
∧ ν̂i (x)

∈ [min νi (x) ,max νi (x)] , µi (x) ∈ [0, 1] ,

νi (x) ∈ [0, 1] with 0 ≤ µi (x) + νi (x) ≥ 1.

• Class-specific value
‘‘Class-specific value’’ denoted by ‘‘∇’’: For f (x, c) =

∇
x
(c,c′), the value of an object x ∈ U on an attribute c ∈ C

is missing, we know that the value depends on the attribute
value of a special attribute c′ ∈ C . The class specific value
may be the average of the values of the objects with the same
value on this special attribute. In other word, ∇

x
(c,c′) will be

any value in

f (x, c) = ∇
x
(c,c′) =

(
µi (y), νi (y)

)
,

p (y, c) = (µi (y) , νi (y)) |f
(
x, c′

)
= f

(
y, c′

)
∧ f

(
y, c′

)
= p (y, c) ∈ Va ∀c, c′ ∈ C and x, y ∈ U ,

µi (x) ∈ [0, 1] , νi (x) ∈ [0, 1] with

0 ≤ µi (x) + νi (x) ≥ 1.

The semantics of the non-applicable values is as follows.
• Non-applicable value

‘‘Non-applicable value’’ denoted by ‘‘NA’’: For f (x, c) =

NA, we know that the value of an object x ∈ U on an attribute
c ∈ C does not exist. Although the ‘‘Non-applicable value’’
is a type of incomplete information, we regard it as a special
known value.
Example 1:Table 1 represents an incomplete ordered infor-

mation system of heart patients of age 60 plus, whose values
are intuitionistic fuzzy values. There are four different types
of missing attribute values. The attributes are:
a = Age, b = Residential space (above 2000 square feet),

c = Salary (above 500 $) and d = Socially active scale (0-5).
In Table 1, there are 6 objects and 4 attributes. Some

attribute domain values are missing. The age of Michael is
missing.We replace this by ‘‘do-not-care value’’ sign because
we know that, all heart patients are of age 60 plus. So its
value is any value in Vc or take average of values from same
attribute domain. The salary domain value of Richard is also
missing. We replace this by the ‘‘non-applicable’’ value sign
because Richard is not doing a job. So, the attribute ‘‘salary’’

is non-applicable for him. The salary attribute value for
Katherine is alsomissing.We replace this by the sign of class-
specific value because generally salary depends on residential
space of the people. So, the attribute ‘‘salary’’ depends on
the attribute ‘‘residential place’’. Lastly, the attribute value of
the attribute ‘‘socially active scale’’ for Victoria is missing.
We replace this by partially-known value because Victoria is
a female and in our information system Elizabeth and Kather-
ine are also females. Their social active scale is batter then
males socially active scale. So, we have some information
about that missing attribute of Victoria.

IV. APPLICATION OF NOVEL SEMANTICS IN DOMINANCE
BASED INTUITIONISTIC FUZZY ROUGH SET APPROACH
FOR RULES EXTRACTION TO INCOMPLETE ORDERED
INFORMATION SYSTEM
In this section, we use novel semantics in Dominance-
based Intuitionistic Fuzzy Rough Set Approach to Incomplete
Ordered Information System. Let U = {x1, x2, . . . , xn}
be the universe set of ‘‘n’’ objects. Each is described by
‘‘m’’ attributes. The condition attributes set ‘‘C’’ is C =

{c1, c2, . . . , cm} with incomplete information. The decision
attributes D = {d} is singleton set of d . For intuitionistic
fuzzy incomplete information system IFIIS = (U ,C∪D,V∪

{∗}∪{†}∪{∇}, f ). Where f (x, c) is intuitionistic fuzzy value,
denoted by f (x, c) = (µc (x) , νc (x)) and f (x, d) is a crisp
value.

Step 1. Find the complete ordered information system.
(U ,C ∪ D,V , f ) through semantics do-not-care value ‘‘∗’’,
partially known value ‘‘†xc’’ and Class-specific value ∇

x
(c,ć):

The complete ordered information system is

(U ,C ∪ D,V , f ) = ⟨f (xi, cj), f (xi, d)

for (i = 1, 2, . . . , n) and (j− 1, 2, . . . ,m)⟩

Step 2.Determine dominance classes induced by the dom-
inance relation, ≼C and ≽C :

[x]≼C = {y ∈ U | (x, y) ∈ ≼C } ,

[x]≽C = {y ∈ U | (y, x) ∈ ≼C }

Step 3. Partition universeU in to m equivalence classes by
decision attribute d :

U/{d} = {U1,U2, . . . ,Um},U1 ≺ U2 ≺ . . . ≺ Um

Denote U≼
k =

⋃
1≤j≤kUj(1 ≤ k ≤ m), U≼

k =
⋃

k≤j≤m
Uj(1 ≤ k ≤ m).
Step 4. Determine ≼ and ≽ low/upper approximations

with respect to C :

AppB
(
U≼
k

)
=

{
x|[x]≼B ⊆ U≼

k

}
(1 ≤ k ≤ m) ;

AppB
(
U≼
k

)
=

{
x| [x]≽B ∩ U≼

k ̸= ∅

}
=

⋃
x∈U≼

k
[x]≽B (1 ≤ k ≤ m);

AppB
(
U≽
k

)
=

{
x|[x]≽B ⊆ U≽

k

}
(1 ≤ k ≤ m) ;
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TABLE 1. Incomplete ordered information system for heart patients of age 60 plus.

AppB
(
U≽
k

)
=

{
x| [x]≼B ∩ U≽

k ̸= ∅

}
=

⋃
x∈U≽

k
[x]≼B (1 ≤ k ≤ m);

Step 5. Determine the and ≼ lower ≽ approximations
discernibility matrices:

(a) M≼
=

(
d≼
ij

)
n×n

Where,

d≼
ij

=

{{
c ∈ C|f (xj, c) ≻ f (xi, c)

}
, f

(
xj, d

)
>

∣∣∣App≼
c

(xi)
∣∣∣ ,

C otherwise

}
;

(b) M≽
=

(
d≽
ij

)
n×n

Where,

d≽
ij

=

{ {
c ∈ C|f (xj, c) ≺ f (xi, c)

}
, f

(
xj, d

)
<

∣∣∣App≽
c

(xi)
∣∣∣ ,

C otherwise

}
.

Step 6. Determine the ≼ and ≽ lower discernibility func-
tions for xi:

f ≼ (xi) =
∧

j(
∨
d≼
ij ), f ≽ (xi) =

∧
j(
∨
d≽
ij ).

Step 7. Interpretation of these rules.

V. APPLICATION EXAMPLE
The intuitionistic fuzzy approach has been successfully used
to execute multi-criteria decision-making, group decision-
making, and grey relational analysis as a beneficial tool that
manages incomplete imperfect data and information, as well
as incomplete imprecise knowledge. [26], [58], [59]. The
suggested DIFRSA can likewise be similarly used in these
fields. We provide its application to illustrate its potential.
We apply our method to extract the lower and upper bound
intuitionistic fuzzy rules in their simplest form.
Example 2: Inflation rate assessment in the least developed

countries with incomplete information.
Amulti-criteria decision-making problem concernsNGOs,

which want to assess the inflation rates in the least
developed countries. The ten least developed countries in
the world are considered. They are denoted by U =

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} , as object set. Each
is described by six inflation attributes: (c1)‘‘Demand-
pull inflation’’, (c2)‘‘Cost-push inflation’’, (c3)‘‘Increased
money supply’’, (c4)‘‘Devaluation’’, (c5)‘‘Rising wages’’,

and (c6)‘‘Policies and regulations’’ with incomplete infor-
mation. So the condition attributes set ‘‘C’’ is C =

{c1, c2, c3, c4, c5, c6}. Every value to which a condition
attribute applies has a unique actual meaning. For exam-
ple, f (x1, c6) = (0.7, 0.2) means that the membership
degree of policies and regulations is 0.7, and the non-
membership degree of policies and regulations is 0.2. The
decision attribute set, ‘‘d’’ is the inflation level. The domain
of d = {1, 2, 3, 4, 5}, where 1 means ‘‘Inflation level is
(2.5 to 7.9)%’’, 2 means ‘‘Inflation level is (8.0 to 10.5)%’’,
3 means ‘‘Inflation level is (10.6 to 12.5)%’’, 4 means ‘‘Infla-
tion level is (12.6 to 14.5)%’’, and 5 means ‘‘Inflation level
is (14.6 to 20.0)%’’.

For ‘‘do-not-care value’’ f (x, c) = ∗:

fc1 (x7) = (0.38, 0.50), fc1 (x9) = (0.38, 0.50),

fc2 (x3) = (0.42, 0.47), fc3 (x5) = (0.73, 0.20),

fc3 (x10) = (0.73, 0.20), fc4 (x6) = (0.50, 0.43),

fc5 (x2) = (0.59, 0.36), fc5 (x4) = (0.59, 0.36),

fc6 (x8) = (0.67, 0.21).

For ‘‘partially known value’’ f (x, c) = †xc:

†x1c1 = (0.47, 0.45), †x4c1 = (0.39, 0.32), †x8c2 = (0.41, 0.32),

†x2c3 = (0.62, 0.34), †x7c4 = (0.51, 0.35), †x3c6 = (0.65, 0.29),

†x10c6 = (0.66, 0.28).

For ‘‘Class-specific value’’ f (x, c) = ∇x
(c,ć):

∇
x5
(c2,c4)

= (0.41, 0.48), ∇
x6
(c2,c5)

= (0.50, 0.47),

∇
x1
(c4,c5)

= (0.49, 0.30), ∇
x9
(c5,c6)

= (0.60, 0.34).

For U/ {d} = {U1,U2,U3,U4,U5}, where U1 =

{x3, x4} ,U2 = {x1, x2, x5} ,U3 = {x6} ,U4 = {x7, x8},
U5 = {x9, x10}, then U≼

1 = U1 = {x3, x4}, U
≼
2 =

U1 ∪ U2 = {x1, x2, x3, x4, x5}, U≼
3 = U1 ∪ U2 ∪

U3 = {x1, x2, x3, x4, x5, x6}, U
≼
4 = U1 ∪ U2 ∪ U3 ∪ U4 =

{x1, x2, x3, x4, x5, x6, x7, x8},U
≼
5 = U1∪U2∪U3∪U4∪U5 =

U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.
U≽
1 = U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 = U =

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, U
≽
2 = U2 ∪U3 ∪U4 ∪

U5 = {x1, x2, x5, x6, x7, x8, x9, x10}, U
≽
3 = U3 ∪ U4 ∪

U5 = {x6, x7, x8, x9, x10}, U
≽
4 = U4 ∪U5 = {x7, x8, x9, x10},

U≽
5 = U5 = {x9, x10}.

66620 VOLUME 11, 2023



I. U. Haq et al.: Incomplete Dominance-Based Intuitionistic Fuzzy Rough Sets

TABLE 2. An incomplete ordered information system inflation rate assessment decision table.

TABLE 3. A complete ordered information system inflation rate assessment decision table.

TABLE 4. Dominating and dominated classes induced by ≼C and ≽C .

The ≼ lower approximations discernibility matrix, as
shown in the equation at the bottom of the next page.

The ≽ lower approximations discernibility matrix,
as shown in the equation at the bottom of the next
page.

The ≼ lower discernibility functions of xi(6 ≤ i ≥ 10)
are:

f ≼ (x6) = c4,

f ≼ (x7) =
(
c2

∨
c3

∨
c5

) ∧ (
c1

∨
c2

∨
c3

)
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TABLE 5. ≼ and ≽ low/upper approximations with respect to C .

= c2
∨
c3

∨ (
c1

∧
c5

)
,

f ≼ (x8) =
(
c1

∨
c2

∨
c6

) ∧ (
c1

∨
c2

)
= c1

∨
c2,

f ≼ (x9) =
(
c1

∨
c4

) ∧
(c4)

∧ (
c4

∨
c5

) ∧
(c1) =

(
c1

∧
c4

)
,

f ≼ (x10) = (c1)
∧ (

c4
∨
c6

) ∧ (
c3

∨
c4

∨
c5

∨
c6

)∧ (
c2

∨
c3

∨
c5

∨
c6

)
=

(
c1

∧
c6

) ∨
(c1

∧
c2

∧
c4)

∨
(c1

∧
c3

∧
c4)∨

(c1
∧
c4

∧
c5).

The simplified ≼ upper bound rules for information
system inflation rate assessment are:

f (x, c4) ≼ (0.2, 0.6) H⇒ f (x, d) ≤ 3 (supported by x6) ,

f (x, c2) ≼ (0.4, 0.5) H⇒ f (x, d) ≤ 4 (supported by x7) ,

f (x, c3) ≼ (0.6, 0.2) H⇒ f (x, d) ≤ 4 (supported by x7) ,

f (x, c1) ≼ (0.38, 0.50)
∧
f (x, c5) ≼ (0.4, 0.5)

H⇒ f (x, d) ≤ 4 (supported by x7) ,

f (x, c1) ≼ (0.4, 0.6) H⇒ f (x, d) ≤ 4 (supported by x8) ,

f (x, c2) ≼ (0.41, 0.32) H⇒ f (x, d)≤4 (supported by x8),

f (x, c1) ≼ (0.38, 0.50)
∧
f (x, c4) ≼ (0.5, 0.4)

H⇒ f (x, d) ≤ 5 (supported by x9) ,

f (x, c1) ≼ (0.4, 0.5)
∧
f (x, c6) ≼ (0.66, 0.28)

H⇒ f (x, d) ≤ 5 (supported by x10) ,

f (x, c1) ≼ (0.4, 0.5)
∧
f (x, c2) ≼ (0.6, 0.3)∧

f (x, c4) ≼ (0.5, 0.4)

H⇒ f (x, d) ≤ 5 (supported by x10) ,

f (x, c1) ≼ (0.4, 0.5)
∧
f (x, c3) ≼ (0.73, 0.20)∧

f (x, c4) ≼ (0.5, 0.4)

M≼
=



C C C C C C C C C C
C C C C C C C C C C
C C C C C C C C C C
C C C C C C C C C C
C C C C C C C C C C
C C C C c4 C C C C C
C C C C C C C C c2c3c5 c1c2c3
C C C C C C C C c1c2c6 c1c2
C C C C C c1c4 c4 c4c5 C c1
C C C C C c1 c4c6 c3c4c5c6 c2c3c5c6 C


.

M≽
=



C C C C C C C C C C
C C C C C C C C C C
c2c3 c2c3c5c6 C c2c3c5 c2c3 c3c5c6 c2c3c5 C c5 c3c5
c1c4c6 c1c4c6 c1c4c6 C c1c4c6 c4c5c6 c1c4c5c6 c1c6 c1c4c6 c1c4c5c6
c2 c1c2c3c5c6 c1c6 c2c3c5 C c3c5c6 c1c2c3c5 c1c6 c1c5 c5c6
c1c2 c1c2c3c4 c1c2c4 c1c2c3 c1c2c4 C c1c2c3 c1 c1 c1c3
C c1c3c4c6 c1c4c6 c2c3 c4 c4c6 C c1c6 c4 c3c4c6

c2c3c4c5 c2c3c4c5c6 c2c3c4c5c6 c2c3c4c5 c2c3c4c5 c2c3c4c5c6 c2c3c4c5 C c4c5 c3c4c5c6
c2c3 c1c2c3c4c5c6 c1c2c3c5c6 c2c3c5 c2c3c4 c2c3c5c6 c2c3c5 c1c2c6 C c2c3c5c6
c2 c1c2c3c4c6 c1c2c4c6 c2c3 c2c4 c2c3c4 c1c2c3 c1c2 c1 C


.
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H⇒ f (x, d) ≤ 5 (supported by x10) ,

f (x, c1) ≼ (0.4, 0.5)
∧
f (x, c4) ≼ (0.5, 0.4)∧

f (x, c5) ≼ (0.4, 0.5)

H⇒ f (x, d) ≤ 5 (supported by x10) .

The first rule can be interpreted as:
If ‘‘Devaluation’’ is less than (0.2, 0.6), then the Infla-

tion level is at most (10.6 to 12.5)%.
The lower discernibility functions of xi(3 ≤ i ≥ 10)

are:

f ≽ (x3) =
(
c2

∨
c3

) ∧ (
c2

∨
c3

∨
c5

∨
c6

) ∧ (
c2

∨
c3

∨
c5

)∧ (
c3

∨
c5

∨
c6

) ∧
(c5)

∧ (
c3

∨
c5

)
=

(
c2

∧
c5

) ∨ (
c3

∧
c5

)
,

f ≽ (x4) =
(
c1

∨
c4

∨
c6

) ∧ (
c4

∨
c5

∨
c6

)∧ (
c1

∨
c4

∨
c5

∨
c6

) ∧ (
c1

∨
c6

)
= c6

∨ (
c1

∧
c4

) ∨ (
c1

∧
c5

)
,

f ≽ (x5) = (c2)
∧ (

c1
∨
c2

∨
c3

∨
c5

∨
c6

) ∧ (
c1

∨
c6

)∧ (
c2

∨
c3

∨
c5

) ∧ (
c3

∨
c5

∨
c6

)∧ (
c1

∨
c2

∨
c3

∨
c5

)∧ (
c1

∨
c5

) ∧ (
c5

∨
c6

)
=

(
c1

∧
c2

∧
c5

) ∨ (
c1

∧
c2

∧
c6

)∨ (
c2

∧
c5

∧
c6

) ∨ (
c1

∧
c2

∧
c5

∧
c6

)
,

f ≽ (x6) =
(
c1

∨
c2

) ∧ (
c1

∨
c2

∨
c3

∨
c4

) ∧ (
c1

∨
c2

∨
c4

)∧ (
c1

∨
c2

∨
c3

) ∧
(c1)

∧ (
c1

∨
c3

)
= c1,

f ≽ (x7) =
(
c1

∨
c3

∨
c4

∨
c6

) ∧ (
c1

∨
c4

∨
c6

) ∧ (
c2

∨
c3

)∧
(c4)

∧ (
c4

∨
c6

) ∧ (
c1

∨
c6

) ∧ (
c3

∨
c4

∨
c6

)
=

(
c1

∧
c2

∧
c4

) ∨ (
c1

∧
c3

∧
c4

)∨ (
c2

∧
c4

∧
c6

) ∨ (
c3

∧
c4

∧
c6

)
,

f ≽ (x8) =
(
c2

∨
c3

∨
c4

∨
c5

) ∧ (
c2

∨
c3

∨
c4

∨
c5

∨
c6

)∧ (
c4

∨
c5

) ∧ (
c3

∨
c4

∨
c5

∨
c6

)
= c4

∨
c5,

f ≽ (x9) =
(
c2

∨
c3

) ∧ (
c1

∨
c2

∨
c3

∨
c4

∨
c5

∨
c6

)∧ (
c1

∨
c2

∨
c3

∨
c5

∨
c6

) ∧ (
c2

∨
c3

∨
c5

)∧ (
c2

∨
c3

∨
c4

) ∧ (
c2

∨
c3

∨
c5

∨
c6

)∧ (
c1

∨
c2

∨
c6

)
= c2

∨ (
c1

∧
c3

) ∨ (
c3

∧
c6

)
,

f ≽ (x10) = (c2)
∧ (

c1
∨
c2

∨
c3

∨
c4

∨
c6

)∧ (
c1

∨
c2

∨
c4

∨
c6

) ∧ (
c2

∨
c3

) ∧ (
c2

∨
c4

)∧ (
c2

∨
c3

∨
c4

)∧ (
c1

∨
c2

∨
c3

) ∧ (
c1

∨
c2

) ∧
(c1) =

(
c1

∧
c2

)
.

The simplified ≽ lower bound rules for information
system inflation rate assessment are:

f (x, c2) ≽ (0.42, 0.47)
∧
f (x, c5) ≽ (0.7, 0.3)

H⇒ f (x, d) ≥ 1 (supported by x3) ,

f (x, c3) ≽ (0.8, 0.1)
∧
f (x, c5) ≽ (0.7, 0.3)

H⇒ f (x, d) ≥ 1 (supported by x3) ,

f (x, c6) ≽ (0.8, 0.2)
∨
f (x, c1) ≽ (0.39, 0.32)

∧
f (x, c4)

≽ (0.6, 0.4) H⇒ f (x, d) ≥ 1 (supported by x4) ,

f (x, c1) ≽ (0.39, 0.32)
∧
f (x, c5) ≽ (0.59, 0.36)

H⇒ f (x, d) ≥ 1 (supported by x4) ,

f (x, c1) ≽ (0.4, 0.5)
∧
f (x, c2) ≽ (0.41, 0.48)

∧
f (x, c5)

≽ (0.7, 0.3) H⇒ f (x, d) ≥ 2 (supported by x5) ,

f (x, c1) ≽ (0.4, 0.5)
∧
f (x, c2) ≽ (0.41, 0.48)

∧
f (x, c6)

≽ (0.6, 0.1) H⇒ f (x, d) ≥ 2 (supported by x5) ,

f (x, c2) ≽ (0.41, 0.48)
∧
f (x, c5) ≽ (0.7, 0.3)

∧
f (x, c6)

≽ (0.6, 0.1) H⇒ f (x, d) ≥ 2 (supported by x5) ,

f (x, c1) ≽ (0.4, 0.5)
∧
f (x, c2) ≽ (0.41, 0.48)

∧
f (x, c5)

≽ (0.7, 0.3)
∧
f (x, c6) (0.6, 0.1)

H⇒ f (x, d) ≥ 2 (supported by x5) ,

f (x, c1) ≽ (0.5, 0.4) H⇒ f (x, d) ≥ 3 (supported by x6) ,

f (x, c1) ≽ (0.38, 0.50)
∧
f (x, c2) ≽ (0.4, 0.5)

∧
f (x, c4)

≽ (0.51, 0.35) H⇒ f (x, d)≥4 (supported by x7) ,

f (x, c1) ≽ (0.38, 0.50)
∧
f (x, c3) ≽ (0.6, 0.2)

∧
f (x, c4)

≽ (0.51, 0.35) H⇒ f (x, d)≥4 (supported by x7) ,

f (x, c2) ≽ (0.4, 0.5)
∧
f (x, c4) ≽ (0.51, 0.35)

∧
f (x, c6)

≽ (0.7, 0.2) H⇒ f (x, d) ≥ 4 (supported by x7) ,

f (x, c3) ≽ (0.6, 0.2)
∧
f (x, c4) ≽ (0.51, 0.35)

∧
f (x, c6)

≽ (0.7, 0.2) H⇒ f (x, d) ≥ 4 (supported by x7) ,

f (x, c4) ≽ (0.7, 0.3)
∨
f (x, c5) ≽ (0.8, 0.2)

H⇒ f (x, d) ≥ 4 (supported by x8) ,

f (x, c2) ≽ (0.7, 0.3)
∨
f (x, c1) ≽ (0.38, 0.50)

∧
f (x, c3)

≽ (0.9, 0.1) H⇒ f (x, d) ≥ 5 (supported by x9) ,

f (x, c3) ≽ (0.9, 0.1)
∧
f (x, c6) ≽ (0.7, 0.2)

H⇒ f (x, d) ≥ 5 (supported by x9) ,

f (x, c1) ≽ (0.4, 0.5)
∧
f (x, c2) ≽ (0.6, 0.3)

H⇒ f (x, d) ≥ 5 (supported by x10) .

The first rule can be interpreted as:
If ‘‘Cost-push inflation’’ is greater than (0.42, 0.47) and

‘‘Rising wages’’ is greater than (0.7, 0.3), then the Inflation
level is at least (2.5 to 7.9)%.

VI. CONCLUSION AND FUTURE WORK
The dominance-based rough set approach generalizes rough
set theory by using dominance relations rather than equiv-
alence relations. Due to several factors, incompleteness is
a typical feature of information systems. This paper’s main
goal is to present several interpretations of missing informa-
tion based on various semantics. We review four forms of
incomplete information semantics (i.e., ‘‘do-not-care value’’,
‘‘partially-known value’’, ‘‘class-specific value’’ and ‘‘non-
applicable value’’) and provide a generic description of
an incomplete information table. However, when we con-
sider ranking fuzzy-valued objects rather than classifying
them, conventional rough set theory is unable to solve these
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problems. One of the extensions of the classic rough set
approach is the dominance fuzzy-valued rough set approach.
The intuitionistic fuzzy decision table is an extended version
of fuzzy-valued information systems and a fundamental type
of data. We concentrate on developing a fuzzy-rough set
model and rule extraction in DIFDT that support decision-
making in intuitionistic fuzzy contexts based on dominance.
First, we introduce innovative semantics for incomplete data
to describe the concept of DIFDT. Second, we established a
fuzzy-rough set strategy in DIFDT based on the dominance-
based relation. Third, we employed the discernibilitymatrices
to derive the simplest dominant intuitionistic fuzzy lower and
upper bound rules. Finally, we applied these approaches to
incomplete information systems for the estimation of infla-
tion rates in LDCs with inadequate data. The application
example yielded valuable rules. Moreover, the resulting rules
can aid in knowledge acquisition. Our main contributions
of these novel semantics are also applicable to other vague
complete or incomplete ordered information systems. In our
future work, we will extend our developments to IHF, PF,
FF, q-ROP, SF, and TSF environments. That will be more
effective for DM issues.

DECLARATION OF INTERESTS
The authors affirm that they have no known financial or inter-
personal conflicts that would have seemed to have an impact
on the research described in this publication. Additionally,
the authors affirm that there are no competing interests in the
publishing of this paper.

REFERENCES
[1] Z. Pawlak, ‘‘Rough sets,’’ Int. J. Comput. Inf. Sci., vol. 11, no. 5,

pp. 341–356, Oct. 1982.
[2] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data,

vol. 9. Cham, Switzerland: Springer, 1991.
[3] Z. Pawlak and A. Skowron, ‘‘Rudiments of rough sets,’’ Inf. Sci., vol. 177,

no. 1, pp. 3–27, Jan. 2007.
[4] J. Stefanowski and A. Tsoukias, ‘‘Incomplete information tables and rough

classification,’’ Comput. Intell., vol. 17, no. 3, pp. 545–566, Aug. 2001.
[5] J. Bazan, J. F. Peters, A. Skowron, N. Hung Son, and M. Szczuka, ‘‘Rough

set approach to pattern extraction from classifiers,’’ Electron. Notes Theor.
Comput. Sci., vol. 82, no. 4, pp. 20–29, Mar. 2003.

[6] R. Jensen and Q. Shen, ‘‘Fuzzy–rough attribute reduction with application
to web categorization,’’ Fuzzy Sets Syst., vol. 141, no. 3, pp. 469–485,
Feb. 2004.

[7] G. Jeon, D. Kim, and J. Jeong, ‘‘Rough sets attributes reduction based
expert system in interlaced video sequences,’’ IEEE Trans. Consum. Elec-
tron., vol. 52, no. 4, pp. 1348–1355, Nov. 2006.

[8] Z. Pawlak, ‘‘Rough sets and intelligent data analysis,’’ Inf. Sci., vol. 147,
nos. 1–4, pp. 1–12, Nov. 2002.

[9] R. W. Swiniarski and L. Hargis, ‘‘Rough sets as a front end of
neural-networks texture classifiers,’’ Neurocomputing, vol. 36, nos. 1–4,
pp. 85–102, Feb. 2001.

[10] R.W. Swiniarski and A. Skowron, ‘‘Rough set methods in feature selection
and recognition,’’ Pattern Recognit. Lett., vol. 24, no. 6, pp. 833–849,
Mar. 2003.

[11] S. Tsumoto, ‘‘Automated extraction of medical expert system rules from
clinical databases based on rough set theory,’’ Inf. Sci., vol. 112, nos. 1–4,
pp. 67–84, Dec. 1998.

[12] S. Greco, B. Matarazzo, and R. Slowinski, ‘‘Rough sets theory for mul-
ticriteria decision analysis,’’ Eur. J. Oper. Res., vol. 129, no. 1, pp. 1–47,
Feb. 2001.

[13] S. Greco, B. Matarazzo, and R. Slowinski, ‘‘Rough approximation by
dominance relations,’’ Int. J. Intell. Syst., vol. 17, no. 2, pp. 153–171,
Feb. 2002.

[14] J. Błaszczyński, S. Greco, R. Słowiński, and M. Szelg, ‘‘Monotonic vari-
able consistency rough set approaches,’’ Int. J. Approx. Reasoning, vol. 50,
no. 7, pp. 979–999, Jul. 2009.

[15] J. Chai and J. N. K. Liu, ‘‘Dominance-based decision rule induction
for multicriteria ranking,’’ Int. J. Mach. Learn. Cybern., vol. 4, no. 5,
pp. 427–444, Oct. 2013.

[16] W. S. Du and B. Q. Hu, ‘‘Approximate distribution reducts in inconsistent
interval-valued ordered decision tables,’’ Inf. Sci., vol. 271, pp. 93–114,
Jul. 2014.

[17] B. Huang, ‘‘Graded dominance interval-based fuzzy objective information
systems,’’ Knowl.-Based Syst., vol. 24, no. 7, pp. 1004–1012, Oct. 2011.

[18] C. Luo, T. Li, H. Chen, and L. Lu, ‘‘Fast algorithms for computing rough
approximations in set-valued decision systems while updating criteria
values,’’ Inf. Sci., vol. 299, pp. 221–242, Apr. 2015.

[19] R. Susmaga, ‘‘Reducts and constructs in classic and dominance-based
rough sets approach,’’ Inf. Sci., vol. 271, pp. 45–64, Jul. 2014.

[20] W.-H. Xu, X.-Y. Zhang, J.-M. Zhong, and W.-X. Zhang, ‘‘Attribute reduc-
tion in ordered information systems based on evidence theory,’’Knowl. Inf.
Syst., vol. 25, no. 1, pp. 169–184, Oct. 2010.

[21] W. Xu, Y. Li, and X. Liao, ‘‘Approaches to attribute reductions based
on rough set and matrix computation in inconsistent ordered information
systems,’’ Knowl.-Based Syst., vol. 27, pp. 78–91, Mar. 2012.

[22] X. Yang, Y. Qi, D.-J. Yu, H. Yu, and J. Yang, ‘‘α-dominance relation
and rough sets in interval-valued information systems,’’ Inf. Sci., vol. 294,
pp. 334–347, Feb. 2015.

[23] A. M. Radzikowska and E. E. Kerre, ‘‘A comparative study of fuzzy rough
sets,’’ Fuzzy Sets Syst., vol. 126, no. 2, pp. 137–155, Mar. 2002.

[24] I. K. Vlachos and G. D. Sergiadis, ‘‘Intuitionistic fuzzy
information—Applications to pattern recognition,’’ Pattern Recognit.
Lett., vol. 28, no. 2, pp. 197–206, Jan. 2007.

[25] R. H. Golan and W. Ziarko, ‘‘A methodology for stock market analysis
utilizing rough set theory,’’ in Proc. Conf. Comput. Intell. Financial Eng.,
1995.

[26] C. Cornelis, M. De Cock, and E. E. Kerre, ‘‘Intuitionistic fuzzy rough sets:
At the crossroads of imperfect knowledge,’’ Expert Syst., vol. 20, no. 5,
pp. 260–270, Nov. 2003.

[27] K. Chakrabarty and T. L. G. Koczy, ‘‘Intuitionistic fuzzy rough set,’’ in
Proc. 4th Joint Conf. Inf. Sci. (JCIS), Durham, NC, USA, 1998.

[28] A. M. Radzikowska, ‘‘Rough approximation operations based on IF sets,’’
in Proc. Int. Conf. Artif. Intell. Soft Comput., Berlin, Germany: Springer,
Jun. 2006.

[29] L. Lin, X.-H. Yuan, and Z.-Q. Xia, ‘‘Multicriteria fuzzy decision-making
methods based on intuitionistic fuzzy sets,’’ J. Comput. Syst. Sci., vol. 73,
no. 1, pp. 84–88, Feb. 2007.

[30] S. P. Jena, S. K. Ghosh, and B. K. Tripathy, ‘‘Intuitionistic fuzzy rough
sets,’’ Notes IFS, vol. 8, no. 1, pp. 1–18, 2002.

[31] S. K. Samanta and T. K.Mondal, ‘‘Intuitionistic fuzzy rough sets and rough
intuitionistic fuzzy sets,’’ J. Fuzzy Math., vol. 9, no. 3, pp. 561–582, 2001.

[32] L. Zhou and W. Wu, ‘‘On generalized intuitionistic fuzzy rough approxi-
mation operators,’’ Inf. Sci., vol. 178, no. 11, pp. 2448–2465, Feb. 2008.

[33] L. Zhou, W.-Z. Wu, and W.-X. Zhang, ‘‘On characterization of intuition-
istic fuzzy rough sets based on intuitionistic fuzzy implicators,’’ Inf. Sci.,
vol. 179, no. 7, pp. 883–898, Mar. 2009.

[34] B. Huang, H.-X. Li, and D.-K.Wei, ‘‘Dominance-based rough set model in
intuitionistic fuzzy information systems,’’ Knowledge-Based Syst., vol. 28,
pp. 115–123, Apr. 2012.

[35] B. Huang, D.-K. Wei, H.-X. Li, and Y.-L. Zhuang, ‘‘Using a rough set
model to extract rules in dominance-based interval-valued intuitionistic
fuzzy information systems,’’ Inf. Sci., vol. 221, pp. 215–229, Feb. 2013.

[36] M. Kryszkiewicz, ‘‘Rough set approach to incomplete information sys-
tems,’’ Inf. Sci., vol. 112, nos. 1–4, pp. 39–49, Dec. 1998.

[37] G.Wang, ‘‘Extension of rough set under incomplete information systems,’’
in Proc. IEEE World Congr. Comput. Intell., IEEE Int. Conf. Fuzzy Syst.,
Mar. 2002.

[38] J. W. Grzymala-Busse and M. Hu, ‘‘A comparison of several approaches
to missing attribute values in data mining,’’ in Proc. 2nd Int. Conf. Rough
Sets Current Trends Comput., Oct. 2000.

[39] J. W. Grzymała-Busse, ‘‘Characteristic relations for incomplete data:
A generalization of the indiscernibility relation,’’ in Proc. 4th Int. Conf.
Rough Sets Current Trends Comput., Uppsala, Sweden, Jun. 2004.

66624 VOLUME 11, 2023



I. U. Haq et al.: Incomplete Dominance-Based Intuitionistic Fuzzy Rough Sets

[40] Y. Leung, J.-M. Ma, W.-X. Zhang, and T.-J. Li, ‘‘Dependence-space-based
attribute reductions in inconsistent decision information systems,’’ Int.
J. Approx. Reasoning, vol. 49, no. 3, pp. 623–630, Nov. 2008.

[41] J. W. Grzymala-Busse, ‘‘Incomplete data and generalization of indiscerni-
bility relation, definability, and approximations,’’ in Proc. 10th Int. Conf.
Rough Sets Current Trends Comput., 2005.

[42] W. Grzymala-Busse, ‘‘Rough set strategies to data with missing attribute
values,’’ in Foundations and Novel Approaches in Data Mining. Berlin,
Heidelberg: Springer, 2005, pp. 197–212.

[43] Y. Leung, ‘‘Maximal consistent block technique for rule acquisition in
incomplete information systems,’’ Inf. Sci., vol. 153, pp. 85–106, Jul. 2003.

[44] J. W. Grzymala-Busse, P. G. Clark, and M. Kuehnhausen, ‘‘Generalized
probabilistic approximations of incomplete data,’’ Int. J. Approx. Reason-
ing, vol. 55, no. 1, pp. 180–196, Jan. 2014.

[45] R. Susmaga, ‘‘Generation of reducts and rules in multi-attribute and multi-
criteria classification,’’ Control Cybern., vol. 29, no. 4, pp. 969–988, 2000.

[46] F. F. Xu, D. Q. Miao, and L. Wei, ‘‘Fuzzy-rough attribute reduction via
mutual information with an application to cancer classification,’’ Comput.
Math. Appl., vol. 57, no. 6, pp. 1010–1017, Mar. 2009.

[47] Y. Yao and Y. Zhao, ‘‘Discernibility matrix simplification for constructing
attribute reducts,’’ Inf. Sci., vol. 179, no. 7, pp. 867–882, Mar. 2009.

[48] Y. Yin, G. Gong, and L. Han, ‘‘Control approach to rough set reduction,’’
Comput. Math. Appl., vol. 57, no. 1, pp. 117–126, Jan. 2009.

[49] Y. Chen, D. Miao, R. Wang, and K. Wu, ‘‘A rough set approach to feature
selection based on power set tree,’’ Knowl.-Based Syst., vol. 24, no. 2,
pp. 275–281, Mar. 2011.

[50] Y. Cheng and D. Miao, ‘‘Rule extraction based on granulation order in
interval-valued fuzzy information system,’’ Expert Syst. Appl., vol. 38,
no. 10, pp. 12249–12261, Sep. 2011.

[51] T.-F. Fan, C.-J. Liau, and D.-R. Liu, ‘‘A relational perspective of attribute
reduction in rough set-based data analysis,’’ Eur. J. Oper. Res., vol. 213,
no. 1, pp. 270–278, Aug. 2011.

[52] C. Cornelis, R. Jensen, G. Hurtado, and D. Śle, ‘‘Attribute selection with
fuzzy decision reducts,’’ Inf. Sci., vol. 180, no. 2, pp. 209–224, Jan. 2010.

[53] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20, no. 1,
pp. 87–96, Aug. 1986.

[54] K. T. Atanassov, Intuitionistic Fuzzy Sets. Heidelberg, Germany:
Physica-Verlag HD, 1999.

[55] Z. Xu, ‘‘Intuitionistic preference relations and their application in group
decision making,’’ Inf. Sci., vol. 177, no. 11, pp. 2363–2379, Jun. 2007.

[56] M.-W. Shao and W.-X. Zhang, ‘‘Dominance relation and rules in an
incomplete ordered information system,’’ Int. J. Intell. Syst., vol. 20, no. 1,
pp. 13–27, Jan. 2005.

[57] W. Lipski, ‘‘On semantic issues connected with incomplete informa-
tion databases,’’ ACM Trans. Database Syst., vol. 4, no. 3, pp. 262–296,
Sep. 1979.

[58] J. Ashayeri, G. Tuzkaya, and U. R. Tuzkaya, ‘‘Supply chain partners and
configuration selection: An intuitionistic fuzzy Choquet integral operator
based approach,’’ Expert Syst. Appl. vol. 39, no. 3, pp. 3642–3649, 2012.

[59] S. F. Zhang and S. Y. Liu, ‘‘A GRA-based intuitionistic fuzzy multi-criteria
group decisionmakingmethod for personnel selection,’’Expert Syst. Appl.,
vol. 38, pp. 1–12, Jan. 2011.

IFTIKHAR UL HAQ received the M.Sc. degree
from Punjab University, Pakistan, and the M.Phil.
degree in mathematics from Riphah Interna-
tional University, Islamabad, Pakistan. He is
currently pursuing the Ph.D. degree in mathe-
matics with the Department of Mathematics, Air
University, Islamabad, under the supervision of
Dr. Tanzeela Shaheen. He is also a Senior Lec-
turer with the OPF Boys College, Islamabad. His
research interests include fuzzy aggregation oper-

ators, multi-attribute decision making, fuzzy graph theory, and fuzzy rough
set theory. He has more than three international publications to his credit.

TANZEELA SHAHEEN received the M.Phil. and
Ph.D. degrees in mathematics from Quaid-i-Azam
University, Islamabad, in 2012 and 2017, respec-
tively. She is currently an Assistant Professor with
Air University, Islamabad. As a Guest Scholar, she
also visited the School of Computing, University
of Leeds, in 2015. Her research interests include
fuzzy sets, rough sets, and decision-making.

HAMZA TOOR received the M.S. degree
from Riphah International University, Islamabad,
in 2017, where he is currently pursuing the
Ph.D. degree. He is also a Bio-Medical Engineer
with Riphah International University. His research
interests include the applications of artificial intel-
ligence in bio-medical engineering, bio-medical
signal processing, and bio-mechanics. He has
worked on detection of Alzheimer disease using
EEG signals.

TAPAN SENAPATI received the B.Sc., M.Sc., and
Ph.D. degrees in mathematics from Vidyasagar
University, India, in 2006, 2008, and 2013, respec-
tively. Currently, he is an Assistant Teacher in
mathematics with the Government ofWest Bengal,
India, and a Postdoctoral Fellowwith the School of
Mathematics and Statistics, Southwest University,
Chongqing, China. He has published three books
and more than 90 articles in reputed international
journals. His research results have been published

in Fuzzy Sets and Systems, Information Science, IEEE TRANSACTIONS ON

FUZZY SYSTEMS, Expert Systems with Applications, Applied Soft Computing,
Engineering Applications of Artificial Intelligence, International Journal of
Intelligent Systems, International Journal of General Systems, and among
others. His research interests include fuzzy sets, fuzzy optimization, soft
computing, multi-attribute decisionmaking, and aggregation operators. He is
also an Editor of the book titled Real Life Applications of Multiple Criteria
Decision Making Techniques in Fuzzy Domain (Springer). Recently, his
name has been listed in the ‘‘World’s Top 2% Scientists’ list’’ with Stanford
University, from 2020 to 2021. He is a reviewer of several international
journals and an Academic Editor of Computational Intelligence and Neu-
roscience (SCIE, Q1),Discrete Dynamics in Nature and Society (SCIE), and
Mathematical Problems in Engineering (SCIE).

SARBAST MOSLEM received the Ph.D. degree
in transportation engineering with a focus on deci-
sion making policy from the Budapest University
of Technology and Economics, in 2020. He is
currently a Postdoctoral Research Fellow with
the School of Architecture Planning and Environ-
mental Policy, University College Dublin (UCD),
Ireland. His research interests include decision
policy, fuzzy set theory, transport planning; traffic
engineering, logistics, supply chain management,

soft computing, sustainability, and citizens science. He has been involved in
several research projects on national and international level, the author and
the coauthor of several conference papers and journals. He worked in several
EU projects. He is also a Coordinator and the Principal Investigator for a
National Project (VOTE-TRA).

VOLUME 11, 2023 66625


