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ABSTRACT Speech enhancement (SE) is a critical aspect of various speech-processing applications. Recent
research in this field focuses on identifying effective ways to capture the long-term contextual dependencies
of speech signals to enhance performance. Deep convolutional networks (DCN) using self-attention and
the Transformer model have demonstrated competitive results in SE. Transformer models with convolution
layers can capture short and long-term temporal sequences by leveraging multi-head self-attention, which
allows the model to attend the entire sequence. This study proposes a neural speech enhancement (NSE)
using the convolutional encoder-decoder (CED) and convolutional attention Transformer (CAT), named the
NSE-CATNet. To effectively process the time-frequency (T-F) distribution of spectral components in speech
signals, a T-F attention module is incorporated into the convolutional Transformer model. This module
enables the model to explicitly leverage position information and generate a two-dimensional attention
map for the time-frequency speech distribution. The performance of the proposed SE is evaluated using
objective speech quality and intelligibility metrics on two different datasets, the VoiceBank-DEMAND
Corpus and the LibriSpeech dataset. The experimental results indicate that the proposed SE outperformed the
competitive baselines in terms of speech enhancement performance at -5dB, 0dB, and 5dB. This suggests
that the model is effective at improving the overall quality by 0.704 with VoiceBank-DEMAND and by
0.692 with LibriSpeech. Further, the intelligibility with VoiceBank-DEMAND and LibriSpeech is improved
by 11.325% and 11.75% over the noisy speech signals.

INDEX TERMS Neural speech enhancement, T-F attention, convolutional encoder-decoder, convolutional
attention transformer, T-F masking.

I. INTRODUCTION
Speech enhancement refers to the process of improving
the quality of speech signals by reducing noise and other
unwanted distortions. Speech signals can be corrupted by
various sources of interference, including background noise,
reverberation, and signal distortions caused by recording or
transmission processes. SE techniques aim to enhance the

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

quality and intelligibility of speech signals by removing
or suppressing these unwanted components while preserv-
ing the underlying speech information. SE has applications
in many areas, including telecommunications, hearing aids,
audio forensics, and speech recognition systems. Conven-
tional SE such as spectral subtraction (SS) [1], [2], Wiener
filtering (WF) [3], and statistical methods [4] have been
proposed; however, these conventional SE are computation-
ally efficient but fails in dealing nonstationary background
noises.
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Deep learning (DL) has become a popular paradigm for
SE [5], [6], [7], addressing the limitations of conventional
SE methods [1], [2], [3], [4]. DL-based SE uses models for
speech and noise, where the model parameters are estimated
through training on speech and/or noise signals. With a hid-
den layers framework between the input and output layers,
DL models can construct complex nonlinear relations and
generate feature representations from lower-level input data.
Given a dataset of clean-noisy speech pairs, a neural model
can learn to transform noisy magnitude spectra into their
clean counterparts throughmapping-based SE [8], [9], or esti-
mate time-frequency (T-F) masks [10], [11] such as the ideal
binary mask (IBM) [12], ideal ratio mask (IRM) [13], Com-
plex ratio mask (cRM) [14], and spectral magnitude mask
(SMM) [15] throughmasking-based SE. In spectral mapping,
the model learns a direct mapping rule between the noisy and
clean spectral features. However, this can sometimes result in
overly smoothed output spectra. On the other hand, spectral
masking has been shown to be a more successful learning
method, where the gain parameters of the target speech are
multiplied by the input noisy magnitude spectrum. This helps
to preserve the fine spectral details in the output speech.

A number of DL models, such as feed-forward DNNs
(FDNNs) [8], [9], [13], [16], [17], convolutional neural net-
work (CNN) [18], [19], recurrent neural network (RNN)
[20], gated recurrent unit (GRU) [21], generative adversar-
ial network (GAN)-based SE [22], [23], a very first deep
learning-based SE [7], and conformer-based SE [24], [25],
[26] are successfully used for SE. The proposed model dif-
fers from the studies [24], [25], [26] since these studies are
based purely on the transformer neural networks in the time
and frequency domain; however, the proposed SE uses a
convolutional transformer as a bottleneck between convolu-
tional encoder-decoder structure. The CAT module differs
from the conformer networks [24], [25], [26] since it uses
multi-head attention, a TFA attention module, and all the
layers are replaced with convolutional layers. One of the main
challenges in training RNNs is the vanishing or exploding
gradient problem, which can occur during backpropagation
through time (BPTT). This problem arises due to the repeated
multiplication of gradients over many time steps, which can
cause the gradients to either vanish or explode exponentially.
When the gradients vanish, the model cannot effectively learn
long-term dependencies, and when the gradients explode,
the model can become unstable and fail to converge. To
address this problem, several variants of RNNs have been
developed, such as Long Short-Term Memory (LSTM) net-
works and Gated Recurrent Units (GRUs). These models use
gatingmechanisms to selectively update and pass information
through the network, which helps to mitigate the vanish-
ing and exploding gradient problem and allows the models
to learn long-term dependencies more effectively. Another
approach to modeling temporal dependencies in speech sig-
nals is to use convolutional neural networks (CNNs), which
can capture local patterns in the input data and are more

FIGURE 1. A typical Convolution Encoder-Decoder (CED) framework with
a bottleneck layer.

computationally efficient than RNNs. Transformer neural
network has also been shown to be effective for modeling
long-term temporal dependencies in speech signals. The key
innovation of the Transformer is the self-attention mecha-
nism, which allows the model to attend to different parts of
the input sequence during each layer of computation. This
attention mechanism enables the model to capture long-term
dependencies in the input sequence without the need for
recurrent connections. One advantage of the Transformer
over RNN-basedmodels is that it can process input sequences
in parallel, making it more computationally efficient for long
input sequences.

In the field of speech enhancement, deep neural net-
works are used as a supervised learning problem to enhance
noisy speech. Two types of approaches exist in this context:
time-frequency (T-F) domain and time-domain approaches.
Direct regression, a time-domain approach, involves learn-
ing a regression function directly from the waveform of a
speech-noise mixture to the target speech, without using an
explicit signal front-end. This approach typically involves
the use of 1-D convolutional neural networks (Conv1d).
A convolution encoder-decoder (CED) or a U-Net framework
resembles the short-time Fourier transform (STFT) and it
is inverse (iSTFT), which are common signal processing
techniques used in SE. The enhancement network is then
inserted between the encoder and decoder, and this can be
accomplished using networks with temporal modeling capac-
ity, such as temporal convolutional networks (TCNs), LSTM,
or GRU networks. The Time-Frequency domain works on the
spectrogram with an assumption that fine-detailed structures
of speech and noise can be effectively discriminated using
T-F representations following STFT. Convolution recurrent
network (CRN) is a recent approach that employs a CED
structure similar to the time-domain approaches however
extracts high-level features enabling improved separation of
noise from speech spectrograms using 2-D CNN (Conv2d).

Several convolution encoder-decoder (CED) frameworks
have been proposed that use a bottleneck layer, typically
the LSTM or GRU networks, to model the temporal depen-
dencies in the speech signal. A typical CED framework
with a bottleneck is demonstrated in Fig 1. Originally, the
CED architecture with two LSTM layers is proposed by
Tan and Wang [27]. Two LSTM layers are used to cap-
ture long-term dependencies. By incorporating convolutional
and recurrent layers, a study [28] proposed the recurrent
convolutional encoder-decoder (R-CED) network to model

66980 VOLUME 11, 2023



N. Saleem et al.: NSE-CATNet: Deep NSE Using CATNet

time and frequency domains of the speech signal while cap-
turing long-term dependencies for enhancing noisy speech.
In a CED architecture [29], the fully-connected LSTM is
replaced with convolutional LSTM (ConvLSTM). A multi-
scale CED framework with two BiLSTM layers is proposed
by Yang [30]. In a CED frame, the study [31] proposed a con-
volutional fusion network (CFN) and incorporated a group
convolutional fusion unit (GCFU) into CED. An augmented
Kalman filtering (AKF) is added to the CED framework for
SE [32] where the network estimates the instantaneous noise
spectrum for determining the linear prediction coefficients
(LPCs) of noise. An LSTM-Convolutional-BLSTMEncoder-
Decoder network for SE is proposed in the CED framework
[33] to balance the complexity of the model and to improve
the model capacity to capture T-F features. The study [34]
proposed a gated convolutional recurrent network (GCRN) in
the CED framework for complex spectral mapping. A tem-
poral convolutional module (TCM) is added between the
encoder-decoder for time-domain SE [35]. An end-to-end
(E2E) CED model is proposed for SE where RNNs are
integrated between the encoder-decoder structure [36]. A pro-
gressive Learning-based CED framework is proposed for SE
[37] where two LSTM layers are added to capture tempo-
ral dependencies. A study [38] proposed a CED framework
for noise-independent and speaker-independent SE in com-
plex spectral mapping-domain. A technique is incorporated
to reduce the trainable parameters and the computational
load. An E2E WaveCRN model [39] proposed CED where
a CNN captured the local features and simple recurrent units
(SRU)modeled the sequential properties of the local features.
An extension of WaveCRN [40] is proposed in [41] where
LSTM/GRU/SRU are added between the CED framework.
A Convolutional Recurrent U-net for Speech Enhancement
(CRUSE) model for SE is proposed where parallel GRUs are
added to the CED firework. A DCCRN [42] is proposed for
SE which added complex LSTM into the CED. Li et al. [65],
[66] showed the importance of using compressed complex
spectrum as the input feature and using it as the training
target where temporal convolutional modules (TCM) are used
as a bottleneck in [66]. Table 1 summarises different CED
approaches for SE.

Unlike the CEDs in Table 1 where bottleneck layers are
mostly the RNNs [27], [34], [37], this study incorporates
temporal modeling in the convolutional layers by using a
multi-head attention (MHA) module. The bottleneck layers
in this study are motivated by the success of the transformer
models for speech processing. The bottleneck block is com-
posed of convolution layers with 1-D kernels and MHA
modules. Furthermore, a T-F attention with time-frame atten-
tion and frequency-channel attention is applied to generate
a 2-D attention map to quantify the important T-F speech
distributions. The T-F attention module is incorporated into
the bottleneck block for effective speech enhancement. The
performance of the proposed SE is evaluated using objective
speech quality and intelligibility metrics on two different

TABLE 1. Summary of the different CED approaches for SE.

datasets, the VoiceBank-DEMAND Corpus [43] and the Lib-
riSpeech dataset [44]. The contributions of this study are
summarized as:

• A neural SE (NSE) is proposed by using a convolutional
encoder-decoder (CED) framework and convolutional
attention transformer (CAT), named the NSE-CATNet.

• Unlike conventional bottlenecks for temporal model-
ing in CEDs, this study uses a bottleneck composed
of convolutional layers-based temporal modeling and a
multi-head attention module.

• A T-F attention with time-frame and frequency-channel
attention is applied to generate an attention map for
quantifying the important T-F speech distributions in the
estimated T-F Mask.

The remainder of the paper is organized as follows.
Section II presents the proposed SE based on the CED with
the CAT module. Section III presents experiments and set-
tings. Results and discussions are presented in Section IV.
Finally, Section 6 concludes this study.

II. PROPOSED NEURAL SPEECH ENHANCEMENT
A. PROBLEM FORMULATION: SPEECH ENHANCEMENT IN
STFT DOMAIN
A noisy speech signal y(n) can be modeled as a combination
of the underlying clean speech signal s(n) and the background
noise signal v(n). This mixture can be represented mathemat-
ically as follows:

y(n) = s(n) + v(n) (1)

The goal of SE is to estimate the clean speech signal
s(n) from the observed mixture y(n) while minimizing the
distortion caused by the noise signals v(n). Taking the short-
time Fourier transform (STFT) of both sides of equation
y(n) = s(n) + v(n), we obtain:

Ym,k = Sm,k + Vm,k (2)
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where Yk,m, Sk,m, and Vk,m are the STFT coefficients of
y(n), s(n), and v(n), respectively, at frequency bin k and time
frame m. This can be accomplished by estimating a spectral-
masking M IRM

m,k or MSSM
m,k where estimated mask M̂ IRM

m,k or
M̂SSM
m,k is multiplied with magnitude of the observed noisy

mixture. The resulting enhanced speech signal can then be
transformed back to the time domain, using inverse STFT
(ISTFT) and noisy phase.

B. PROPOSED SE
The proposed SE is depicted in Fig. 2 where the encoder in
the CED framework is designed to extract high-level features
from the input speech signal by applying convolutional and
pooling operations. The decoder, on the other hand, performs
the inverse operations of the encoder in a symmetric man-
ner. It maps the low-level features produced by the encoder
back to the original input size by applying deconvolutional
(or transposed convolutional) and upsampling operations.
These operations help to reconstruct the input signal by
gradually increasing its resolution and complexity. The sym-
metric structure of the CED framework ensures that the
shape of the inputs and outputs are preserved, which is
important for tasks such as speech enhancement where the
original input signal needs to be reconstructed as accurately
as possible. Additionally, by using a symmetric structure,
the network can be trained end-to-end, which allows the
model to learn to extract and reconstruct features in an
optimized way.

C. CED FRAMEWORK
The CEDmodel consists of five convolutional (Conv2D) and
deconvolutional (Deconv2D) layers that form the encoder-
decoder network. The use of exponential linear rectified
unit (ELU) activation and batch normalization (BN) helps
in achieving better convergence and generalization, respec-
tively, while also reducing model complexity. The final layer
uses a softplus activation function, which ensures that the
output of the network is always positive. To improve the
context that the model considers, a stride of 2 is applied
along the frequency direction for all convolutional and decon-
volutional layers. At the same time, the time dimension of
the features remains the same. This allows the network to
leverage larger context information, which can be particu-
larly useful for speech enhancement. Skip connections are
added to improve the flow of gradients and information
through the network. These connections connect the output
of the encoder to the input of the decoder, allowing the
network to bypass certain layers and more directly connect
the low-level features learned by the encoder to the high-level
features produced by the decoder. A detailed structure of
CED for encoder-decoder is depicted in Fig. 3, where Fin
and Fout represent input and output feature maps of the
encoder.

D. BOTTLENECK: CONVOLUTIONAL ATTENTION
TRANSFORMER (CAT)
The success of the transformer and its variants [45] for speech
processing has inspired the design of bottleneck layers, which
are a type of neural network layer that can be used to reduce
the dimensionality of the input signal while preserving its
important features. The transformer architecture has proven
to be very effective for processing sequential data, such
as speech signals. However, the transformer architecture is
computationally intensive and requires a large number of
parameters, which can make it challenging to deploy in
real-time or low-resource scenarios.

In this paper, the bottleneck layers are designed to address
these challenges by reducing the dimensionality of the input
signal before feeding it to the transformer layers. These layers
typically use a convolutional neural network (CNN) to extract
high-level features. This allows the model to operate on a
lower-dimensional representation of the input signal, reduc-
ing the computational cost and the number of parameters
required. Convolution layers with 1-D kernels andmulti-head
attention (MHA) modules are used as an alternative approach
to RNN-based bottlenecks. Convolutional layers with 1-D
kernels capture local patterns in sequential data (speech
signals). The MHA module can capture long-range depen-
dencies in speech signals. They work by attending to different
parts of the input sequence and computing a weighted sum
of the input vectors. By using multiple attention heads, the
model can attend to different aspects of the input and capture
complex patterns in the data. By combining convolutional
layers and MHA modules in a block, we can capture both
local and global patterns in speech signals.While RNN-based
bottlenecks have been popular in the past, convolutional
layers and attention modules offer a viable alternative that
can achieve comparable or better performance while being
computationally efficient.

Figure 4 shows the structure of the convolutional Trans-
former bottleneck. The input to the block is first processed
by a convolutional layer, which applies a set of 1-D kernels
to the input sequence to extract local features. The output of
the convolutional layer is then passed through a PReLU acti-
vation function, which introduces non-linearity to the model
and helps to address the vanishing gradient problem. Layer
normalization is then applied to the output of the PReLU acti-
vation function. Layer normalization normalizes the values of
each feature independently, allowing the model to learn more
efficiently and generalize better. The intermediate results are
then fed to a multi-head attention module, which captures
long-range dependencies in the input sequence by attending
to different parts of the sequence. The output of the atten-
tion module is then normalized using layer normalization.
In a Transformer, the context vectors of the input features
map are encoded as a set of key-value pairs (K , V ) with a
dimension similar to the input sequence length. The output
at the previous timestep is computed into a query Q, and
the next term in the output sequence of the decoder is a
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FIGURE 2. Proposed NSE-CATNet speech enhancement framework.

FIGURE 3. A detailed structure of the Encoder (upper panel)-Decoder
(bottom panel).

mapping from the K ,V pairs withQ as (Q,K ,V ). The outputs
of the decoder are the weighted sum of all values from the
(K ,V ) encoded representation of the inputs. The MHA in
a transformer assigns the alignment weights to each hidden
state as a sequence-length-scaled dot-product of the query
with all the keys, given as:

Attentionh(Qh,Kh,Vh) = softmax(
QhKT

h
√
dk

)Vh (3)

The scaled dot product is scaled by the dimension h of
hidden states for sequence output at timestep t . The layer
operates on the encoded latent space regardless of the num-
ber of attention heads, and a softmax is computed from a
weighted sum of all layers in the bottleneck architecture
(demonstrated in Fig. 4), given as:

MH (Q,K ,V ) = Concat(A1,A2, . . . ,AH ]W 0 (4)

Headm = Attention(QWQ
h ,QKK

h ,QV V
h ) (5)

where QWQ
h ,QKK

h ,QV V
h are the learnable parameters. Four

identical bottleneck layers are applied in this study.

FIGURE 4. The bottleneck structure.

E. TIME-FREQUENCY ATTENTION INTO CAT MODULE
The attention process has been extensively studied in the field
of speech processing. The studies [46], [47] have investi-
gated attention mechanisms for modeling speech distribution
along the frequency and time dimensions to demonstrate
its effectiveness. Time-frequency attention (TFA) [47] func-
tional neural module is incorporated into the convolutional
transformer bottleneck, named as CATNet. The TFA mod-
ule is composed of time-dimension attention (TDA) and
frequency-dimension attention (FDA) to create 1-D attention
maps such that the model focuses on the time-frames and
frequency-wise channels. The TDA creates a 1-D attention
map TDA ∈ R(1×L) whereas FDA creates a 1-D attention map
FDA ∈ R(dmodel×1). After creating the 1-D attention maps,
the TDA and FDA are infused to create a final 2-D attention
map TFA ∈ R(L×dmodel ), thereby assigning labeled attention
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weights to all Time-frequency spectral components. This
allows the neural network to grasp the distributions of speech
signals in the time-frequency representation.

The time-frame index and frequency-channel index of
the speech signals determine their distributions across the
time-frequency plane. The TDA provides time-frame-wise
statistics BT ∈ R(1×L) by performing global average pooling
along the frequency dimension on the given input Y :

BT (m) =
1

dmodel
(
dmodel∑
k=1

Ym,k ) (6)

whereBT (m) shows themth element ofBT . On the other hand,
FDA provides frequency-wise statistics BF ∈ R(dmodel×1)

by performing global average pooling along the time-frame
dimension on the given input Y :

BF (k) =
1
L
(
L∑
l=1

Ym,k ) (7)

The final 2-D time-frequency attention map is given as:

TFAm,k = TDAm × FDAk (8)

The output of the TFA module Ỹ is given as:

Ỹ = Y ⊙ TFA (9)

where ⊙ is the element-wise multiplication operator.
The TFA module is integrated into the convolutional trans-

former bottleneck, as depicted in Fig. 5. For the intermediate
latent time-frequency tensor Z ∈ RL×dmodel as input, the
bottleneck projects tensor Z to the query Q ∈ RL×dmodel , key
K ∈ RL×dmodel , and value V ∈ RL×dmodel such that:

Q = UWQ (10)

K = UWK (11)

V = UWV (12)

where
{
WQ,WK ,WV

}
∈ Rdmodel×dmodel show different

learnable projections, respectively. These projections are seg-
mented into H attention heads h = {1, 2, 3, . . . ,H} as
dk , dq, dv dimensions. This allows the model to focus on
various elements of information. To create the outputs, the
scaled dot-product attention is applied to each head in par-
allel, as in Eq. (3). The outputs of all attention heads are
aggregated and projected linearly to produce the output of the
bottleneck module, as in Eq. (4), where W 0

∈ Rdmodel×dmodel .
The time-frequency attention module receives outputs from
the prior bottleneck and performs a time-frequency attention
operation to update the model to pay attention to the spectral
components. For additional detailed descriptions of the TFA
module, we refer the reader to the study [46], [47].

III. EXPERIMENTS AND SETUP
A. DATASETS
This section first describes the clean speech and noise data.
This study uses train-clean-100 training set from the Lib-
riSPeech dataset [44] containing 28539 speech sentences

FIGURE 5. The bottleneck structure with time-frequency attention.

uttered by 251 speakers. LibriSpeech is a large-scale corpus
of read English speech that was created by a collabora-
tion between the University of Maryland, the University of
Edinburgh, and the Karlsruhe Institute of Technology. The
corpus consists of approximately 1,000 hours of speech data
sampled at 16kHz, which was extracted from audiobooks
from the LibriVox project (https://www.openslr.org/12). In
addition, the VoiceBank-DEMAND corpus [43] is used to
train the proposed model. The VoiceBank-DEMAND corpus
is a dataset of clean speech and noise that was created for
research in speech processing and enhancement. It consists of
10 speakers, each providing approximately 4 hours of speech,
for a total of 40 hours of speech data. In addition to the clean
speech and noise data, the VoiceBank-DEMAND corpus also
includes a set of artificially mixed speech and noise signals,
which were created by adding the noise signals to the clean
speech signals at various signal-to-noise ratios (SNRs). How-
ever, this study uses only clean sentences from the dataset.
The noises in the training set are taken from the QUT-NOISE
dataset [48], the Nonspeech dataset [49], and the RSG-10
dataset [50]. The noise duration over 30 seconds is divided
into 30 seconds segments. To create noisy sentences in the
training, the clean speech sentences are mixed with noises
randomly at SNRs between −10dB and 10dB with a 5dB
incremental step. For model evaluation, this study adopts the
voice babble and factory noise from the NOISEX-92 dataset
[51] whereas street noise from the Urban Sound dataset [52].
A colored noise source that is F16 is selected from the RSG-
10 noise dataset [50]. For each noise source, the clean speech
sentences are selected randomly from the test-clean-100
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of LibriSpeech and are mixed with the noises at SNR
levels −10dB, −5dB, 0dB, 5dB, and 10dB, respectively.
In addition, two noise sources (cafeteria and factory2) are
selected as unseen noises from the DEMAND dataset [43].

B. TRAINING METHODOLOGY
This section describes the detailed training methodol-
ogy. A mini-batch of 32 samples is used for training
iterations. Each selected clean speech sentence for the
mini-batch is mixed with selected noise at SNRs. For the
two masking-based training objectives including IRM and
SMM, this study adopts the mask approximation, where
the mean-square error (MSE) is the loss function. The
two training objectives and mask approximation-based MSE
loss are given as;

M IRM
m,k =

√
|Sm,k |

2

|Sm,k |
2 + |Vm,k |

2 (13)

MSSM
m,k =

|Sm,k |
2

|Ym,k |
2 (14)

LossMAMSE =
1
2N

N−1∑
m=1

(Mm,k − M̂m,k )2 (15)

where Mm,k is the ground-truth mask and M̂m,k is the esti-
mated mask. Each sentence in the mini-batch is zero-padded,
such that it gives a similar quantity of time frames as the
longest noisy sentence. The Adam optimizer with default
hyper-parameters (β1 = 0.9, β2 = 0.98, and ϵ = 10−9)
[54] and 0.001 learning rate is used for gradient descent
optimization. The gradient clipping is also adopted in the
model, where the gradient is clipped between [1, 1].

C. MODEL ARCHITECTURE
Table 2 provides the architecture of the proposed model.
The input-output size of each layer in the CED is
described as (Feature-Map × Time-Step × Frequency-
Channel) whereas The hyperparameters are described as)
Kernel-Size × Stride × Output-Channel). The CED model
consists of five convolutional (Conv2D) and deconvolutional
(Deconv2D) layers that form the encoder-decoder network.
The use of exponential linear rectified unit (ELU) acti-
vation and batch normalization (BN) helps in achieving
better convergence and generalization, respectively, while
also reducing model complexity. The final layer uses a soft-
plus activation function, which ensures that the output of the
network is always positive. This study assumes 16kHz sam-
pled speech signals. To create 50% overlapping time-frames,
a 20 milliseconds Hamming window is adopted. The input to
the model is 161-dimensional spectra, corresponding to the
320-point STFT (16kHz×20 milliseconds=320 points).

D. EVALUATION METRICS
In experiments, this study adopts five widely used metrics for
evaluating speech enhancement, including short-time objec-
tive intelligibility (STOI) [53], extended short-time objective

TABLE 2. CED model architecture.

intelligibility (ESTOI) [54], perceptual evaluation of speech
quality (PESQ) [55], and three composite measures [56].
PESQ is a standard objective measurement algorithm used
to assess the quality of speech. The output of PESQ is
a single score that represents the overall quality of the
speech signal. This score ranges from −0.5 (worst quality)
to 4.5 (best quality) and is often reported in Mean Opin-
ion Score (MOS) units. STOI and ESTOI are measures of
the intelligibility of speech signals. The STOI score ranges
from 0 to 1, with higher scores indicating better intelligibility.
An STOI/ESTOI score of 1 indicates perfect intelligibility,
while an STOI/ESTOI score of 0 indicates no intelligibility.
The composite measures are MOS (mean opinion score)
predictors. CSIG (predicted MOS for signal distortion), CBAK
(predicted MOS for background noise intrusiveness), and
COVL (overall speech quality), respectively. The composite
measures range from 0 to 5. A higher score of all these
mentioned metrics shows better SE performance. In addi-
tion, two other measures, segmental SNR (SNRSeg) and
Source-to-Distortion Ratio (SDR), are used to examine the
performance of the proposed NSE-CATNet.

IV. RESULTS AND DISCUSSIONS
This section presents the experimental results obtained with
the proposed NSE-CATNet in seen and unseen noises. An
interpretation is adopted to represent the SE systems. NSE-
CATNet+IRM means the ideal ratio mask is estimated with
the proposed NSE-CATNet whereas NSE-CATNet+SSM
indicates that the spectral magnitude mask is estimated with
the proposed NSE-CATNet.

A. SPEECH ENHANCEMENT PERFORMANCE IN SEEN
NOISY CONDITIONS
Table 3 provides the PESQ scores obtained with two mod-
els (NSE-CATNet+IRM and NSE-CATNet+SSM) in four
example background noises (voice babble, factory, street, and
F-16) for two training objectives (IRM and SSM). Compared
to unprocessed noisy speech (UnP), the proposed model
provides considerable improvements in terms of the PESQ
for both training objectives. By taking the voice babble
noise with −10dB SNR as a first case, the proposed NSE-
CATNet with IRM achieves 0.38 gain on PESQ whereas
the proposed NSE-CATNet with SSM achieves 0.42 gain on
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TABLE 3. Speech enhancement performance using PESQ for two training objectives.

TABLE 4. Speech enhancement performance using STOI for two training objectives.

TABLE 5. Speech enhancement performance using ESTOI for two training objectives.

TABLE 6. Speech enhancement performance using CSIG, CBAK, and COVL for two training objectives.

TABLE 7. Speech enhancement performance using SNRSeg and SDR for two training objectives.

PESQ, respectively. Further, by taking the factory noise with
-5dB SNR as a second case, the proposed NSE-CATNet with
IRM improves the PESQ by 0.77 over the unprocessed noisy
speech while the NSE-CATNet with SSM obtains 0.83 gain
over the unprocessed noisy speech on PESQ, respectively. In
addition, by considering the street noise with 0dB SNR, the
NSE-CATNet with IRM obtains 0.89 gain over unprocessed
noisy speech whereas the NSE-CATNet with SSM improves
the PESQ score by 0.97. On average (all SNRs and noises),
the NSE-CATNet+IRM improves the PESQ by 0.74 and the
NSE-CATNet+SSM improves the PESQ by 0.78 over unpro-
cessed noisy speech.

Table 4 provides the STOI scores obtained with two mod-
els (NSE-CATNet+IRM and NSE-CATNet+SSM) in voice
babble, factory, street, and F-16 for IRM and SSM training
objectives. In contrast to unprocessed noisy speech, the pro-
posed models provide considerable improvements in terms
of the STOI for both training objectives. By taking the F-16
noise with −10dB SNR as a first case, the proposed NSE-
CATNet with IRM achieves 0.14 gain on STOI whereas
the proposed NSE-CATNet with SSM achieves 0.15 gain
on STOI, respectively. Further, by taking the voice bab-
ble noise with -5dB SNR as a second case, the proposed

NSE-CATNet with IRM improves the STOI by 0.15 over
the unprocessed noisy speech while the NSE-CATNet with
SSM obtains 0.16 gain over the unprocessed noisy speech on
STOI, respectively. In addition, by considering the factory
noise with 0dB SNR, the NSE-CATNet with IRM obtains
0.133 gain over unprocessed noisy speech whereas the NSE-
CATNet with SSM improves the STOI score by 0.14. On
average (all SNRs and noises), the NSE-CATNet+IRM
improves the STOI by 0.11 and the NSE-CATNet+SSM
improves the STOI by 0.107 over unprocessed noisy speech.

Table 5 provides the ESTOI scores obtained with twomod-
els (NSE-CATNet+IRM and NSE-CATNet+SSM) in voice
babble, factory, street, and F-16 for IRM and SSM training
objectives. The proposed NSE-CATNet+IRM improves the
overall ESTOI by 9.81% whereas the NSE-CATNet+SSM
improves the overall ESTOI by 0.992 over unprocessed
noisy speech. Table 6 reports the average CSIG, CBAK , and
COVL scores for each SNR which covers voice babble, fac-
tory, street, and F-16, respectively. It is notable that the
proposed NSE-CATNet with IRM and SSM significantly
improves the performance in terms of the three composite
metrics. At -10dB SNR, for example, the NSE-CATNet with
IRM improves CSIG by 1.05, CBAK by 0.73, and COVL by
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FIGURE 6. Improvements of the NSE-CATNet over unprocessed noisy
speech.

TABLE 8. Seen noisy speech enhancement performance in terms of all
evaluation metrics.

0.68 whereas the NSE-CATNet with SSM improves CSIG
by 1.16, CBAK by 0.82, and COVL by 0.80, respectively.
Table 7 reports the average SNRSeg and SDR scores for
each SNR which covers the voice babble, factory, street, and
F-16 noise, respectively. To increase the readability of the
obtained results, Table 8 presents the overall average scores
obtained with all performance metrics. The experimental
results validate that the proposed NSE-CATNet model con-
sistently obtains notable improvements to the unprocessed
seen noisy speech in terms of PESQ, STOI, ESTOI, CSIG,
CBAK , and COVL . To show the success of the proposed SE, two
strong baselines including GRN [38] and DCCRN [42] are
selected, and the improvement in PESQ and STOI at various
input SNRs is compared. Figure 6 shows the improvements
of the NSE-CATNet (with both training objectives) over GRN
and DCCRN.

B. SPEECH ENHANCEMENT IN UNSEEN NOISY
CONDITIONS
To further examine the performance of the proposed NSE-
CATNet model, Table 9 shows the speech enhancement
performance in two unseen noisy conditions (factory2 and
cafeteria) in terms of PESQ, STOI, ESTOI, PESQ, CSIG,
CBAK , and COVL . The effective model architecture indicates
that the speech performance is not drastically altered in
unseen noisy conditions. For example, the STOI and ESTOI
improvements over unprocessed noisy speech are 0.11 and
0.99 (by NSE-CATNet with IRM) whereas 0.12 and 0.11
(by NSE-CATNet with SSM). Further, the PESQ gain over
unprocessed noisy speech is 0.74 (by NSE-CATNet with
IRM) and 0.79 (by NSE-CATNet with SSM). Finally, the
NSE-CATNet with IRM improves CSIG by 1.06, CBAK by
0.72, and COVL by 0.66 whereas the NSE-CATNet with SSM
improves CSIG by 1.14, CBAK by 0.80, and COVL by 0.63,
respectively. The results in unseen noisy conditions confirm
the success of the proposed SE.

TABLE 9. Unseen noisy speech enhancement performance in terms of all
evaluation metrics.

TABLE 10. ANOVA analysis at 95% confidence interval.

C. SPECTRO-TEMPORAL ANALYSIS
To visually examine the processed speech along with its
spectral regions and residual noise, Fig. 7 shows the spectro-
temporal representations. A clean speech (Fig 7(a)) from
the VoiceBank-DEMAND dataset is mixed with voice bab-
ble noise at 0dB SNR level to create a noisy speech
(Fig. 7(b)). Voice babble is a challenging noise type created
by multiple people speaking at the same time, resulting in
indistinct noise. Figure 7(c) illustrates the spectro-temporal
representation of the noisy speech enhanced by the NSE-
CATNet+IRM where negligible residual noise is evident.
Further, no significant speech distortion is observed in the
spectro-temporal representation. Also, the speech processed
by NSE-CATNet+SSM (Fig. 7(d)) shows a fine spectral
structure. Less residual noise and speech distortion indicate
better speech quality and intelligibility.

D. ANOVA ANALYSIS
The experimental scores indicate that the proposed NSE-
CATNet performs better at each SNR level. Therefore,
to confirm the significance of the results at a favorable SNR
(5dB), this study conducts a one-way ANalysis-of-VAriance
(ANOVA) statistical test. The statistical test is performed at
95% confidence interval. The difference between scores is
deemed statistically significant when the probability is less
than 0.05 (p < 0.05) and the value is larger than the critical
value, which is fvalue > fcritical . Table 10 shows the statistical
analysis at a critical value of 3.09. The Pvalue of the proposed
NSE-CATNet is larger than 0.05, and the critical value is
greater than 3.09. The statistical test suggests that the results
are statistically significant at all SNR levels.

E. COMPUTATIONAL LOAD AND SE PERFORMANCE
The computational load of the proposed NSE-CATNet model
is measured in terms of trainable parameters and MACs
(Multiply-Accumulate operations), useful metrics for esti-
mating computational complexity and optimizing the per-
formance on specific hardware platforms. Table 11 shows
the total trainable parameters and MACs for the proposed
and related convolutional recurrent networks in the CED
domain. The total number of trainable parameters of the
NSE-CATNet model is around 3.57M and is advantageous
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FIGURE 7. Spectro-Temporal analysis. Noisy speech degraded by voice babble at 0dB SNR. Clean speech ‘‘The problems are
a result of that shortfall’’. Noisy speech processed by NSE-CATNet+IRM. Noisy speech processed by NSE-CATNet+SSM.

in MACS (2.725 G/s). Since this study uses a convolutional
MHA bottleneck, the trainable parameters are significantly
reduced. With regular MHA architecture [22] (dmodel = 256,
H=8, and dff = 1024), the trainable parameters are around
4.18M which are reduced to 1.96M with the convolutional
bottleneck. The time-frequency attention module adds addi-
tional 0.41K trainable parameters. With such computational
complexity, the proposed model achieves better results in
terms of PESQ and STOI (average of -5dB, 0dB, and 5dB
SNR levels), as given in Table 10. The symbol ‘‘↑’’ indi-
cates the improvement in PESQ and STOI. Note that the
proposed method shows reduced trainable parameters and
MACs except CRN (2.57 G/s); however, the evaluation met-
rics (PESQ and STOI) are better than CRN.

F. COMPARISON WITH OTHER STUDIES
To showcase the superiority of the proposed NSE-CATNet,
this study compares the performance with multiple recent
studies from the speech enhancement literature using the
VoiceBank-DEMANDdataset. Three SNR levels (-5dB, 0dB,
5dB) are selected for the comparison. The comparative
results are reported in Table 12, where it can be observed
that the proposed NSE-CATNet model with IRM and SSM
training objectives shows highly competitive performance
to the multiple state-of-the-art models in terms of PESQ
and STOI evaluation metrics. Except for CRN-TCS which
performs marginally better at favorable SNR (5dB), the
remaining models underperform the proposed NSE-CATNet.
For instance, the average PESQ gain of the E2E-BLSTM-
CRN over unprocessed noisy speech is 0.84 which is 1.81%
less than the proposed NSE-CATNet. Further, the average
PESQ gain of the DeepXi over unprocessed noisy speech is
0.54 which is 10.85% less than the proposed NSE-CATNet.
Similarly, by taking the -5dB adverse SNR level as a case,

the proposed NSE-CATNet outperforms the related models
by reasonable margins, such as the PESQ is improved by a
factor of 0.27 higher with NSE-CATNet+SSM over state-
of-the-art CRN model. Further, by taking the 0dB SNR level
as another case, the proposed NSE-CATNet outperforms the
related studies by reasonable margins, such as the STOI
is improved by 0.446 with NSE-CATNet+IRM over the
CRN-BLSTM model. To show the overall performance over
related models, Table 13 summarizes the average PESQ and
STOI improvements of all competing models over unpro-
cessed noisy speech. Where the symbol ‘‘↑’’ indicates the
improvements.

G. CROSS CORPUS AND TRAINING OBJECTIVE ANALYSIS
To further examine the performance, this section performs
the cross-corpus and training objectives analysis. Speech
datasets typically consist of recordings of speech utter-
ances produced by different speakers, often in controlled
environments to ensure high-quality recordings. However,
even within controlled environments, there can be varia-
tions in recording quality due to factors such as the type
of microphones, the recording equipment, and the room
acoustics. In addition to the LibriSpeech and VoiceBank-
DEMAND databases, this study selects speech sentences
from IEEE-Male [64] and IEEE-Female [64] databases.
Clean speech sentences are selected from all databases and
the proposed NSE-CATNet model with IRM and SSM train-
ing objectives is trained individually. To analyze the effect
of a speech dataset on speech enhancement performance,
this section presents Table 14 which shows the PESQ and
STOI scores across five SNRs (−10dB to +10dB)for four
databases (LibriSpeech [44], VoiceBank-DEMAND [43],
IEEE-Male, and IEEE-Female). The proposed model shows
almost equal performance at four databases indicating the
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TABLE 11. Computational load in terms of para and MACs.

TABLE 12. Comparison with the state-of-the-art se models.

TABLE 13. PESQ and STOI improvements of all related studies over
unprocessed noisy speech.

generalization towards various speech databases. The pro-
posed NSE-CATNet with SSM training objective performs
slightly better than the IRM training objective. It is important
to mention that the results with the VoiceBank-DEMAND

dataset are different in Table 14 since this set of experiments
uses different SNR levels whereas Table 15 follows the exact
remedy available in many SOTA models.

Further examine the proposed NSE-CATNet with existing
baseline models for SE in time-domain and time-frequency-
domain, this study uses the publicly available VoiceBank-
DEMANDdataset with an exact remedy followed by baseline
studies during the model evaluations. The training set (com-
posed of 11572 speech utterances) consists of 28 speakers
with four SNRs (15dB, 10dB, 5dB, and 0dB). The test sets
(composed of 824 speech utterances) consist of 2 speakers
with four SNRs (17.5dB, 12.5dB, 7.5dB, and 2.5dB). The
results are presented in Table 15 to validate the performance
of the proposed NSE-CATNet with baseline models [22],
[23], [25], [42], [67], [68], [69], [70]. With the VoiceBank-
DEMANDdataset, the proposedNSE-CATNet with IRM and
SSM training objectives achieves the best results as compared
to the baseline models except Csig where SE-Conformer
shows the best results (4.45). The proposed NSE-CATNet
achieves competitive performance as compared to the base-
line models. For example, from RDL-Net to NSE-CATNet,
average 0.17, 2.3%, 0.03, 0.23, and 0.10 improvements are
achieved in terms of PESQ, STOI, Csig, Cbak and Covl ,
respectively. Similarly, from DCRNN to NSE-CATNet, aver-
age 0.51 PESQ, 2.4% STOI, 0.53 Csig, 0.48 Cbak , 0.55 Covl ,
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TABLE 14. Cross corpus and training objective analysis.

TABLE 15. Performance evaluation on VoiceBank+DEMAND database. denotes that the result is not provided in the original paper.

FIGURE 8. Spectro-Temporal analysis. A Clean speech ‘‘I have never been able to walk passed anything I believed to be wrong without
saying something’’ is degraded with voice babble at -5dB SNR. Noisy speech processed by NSE-CATNet-1 (with CED only). Noisy speech
processed by NSE-CATNet-2 (with CED+Bottleneck).Noisy speech processed by NSE-CATNet-3 (with CED+CAT).

and 1.35dB SNRSeg improvements over achieved in terms of
PESQ, STOI, Csig, Cbak , Covl , and SNRSeg, respectively.

H. ABLATION STUDY
This section conducts the ablation study to show the perfor-
mance of different modules in the proposed NSE-CATNet
model. The models are examined as (a) the NSE-CATNet
model applying CED without bottleneck (denoted by NSE-
CATNet-1); (b) the NSE-CATNet model applying CED
with bottleneck (denoted by NSE-CATNet-2); and (c) NSE-
CATNet model applying CED with bottleneck and TFA
module (denoted by NSE-CATNet-3, the full model). To
examine the models in ablation studies, the experiments use
clean utterances from the LibriSpeech database mixed with
voice babble at two SNRs (0dB and 5dB). Table 16 gives the
overall results in terms of PESQ and STOI values. The full

TABLE 16. Ablation study.

model shows the best performance as expected. The inclu-
sion of CAT into CED significantly improves the PESQ and
STOI values. The integration of the time-frequency attention
module into the bottleneck greatly improves the values. The
TFA module adds additional trainable parameters, but the
overall computational load is less as compared to the related
studies (given in Table 11). Figure 8 shows the spectrograms
of the ablation studies. The spectrograms show the impacts
of different modules in the proposed speech enhancement.
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TABLE 17. ASR analysis in terms of CER (in %) after speech enhancement.

I. AUTOMATIC SPEECH RECOGNITION PERFORMANCE
Speech enhancement techniques can be used as a front-end to
automatic speech recognition (ASR) systems to improve their
accuracy and robustness in noisy environments. In a noisy
environment, the quality of the speech signal is degraded due
to various sources of interference such as background noise,
reverberation, and competing talkers. This degradation can
negatively affect the performance of ASR systems, making
it difficult for them to accurately recognize speech. By using
NSE-CATNet as a front-end to an ASR system, the accuracy
and robustness of the system are significantly improved. This
study applies the state-of-the-art end-to-end speech trans-
former with self-attention as a speech recognition component
[71]. The ASR performance is measured in terms of character
error rate (CER). Table 17 shows that in the presence of noise,
the performance of the ASR system is significantly impaired.
However, as for the NSE-CATNet, it significantly improves
the ASR robustness.We examine that both training objectives
obtained almost similar CER results.

V. SUMMARY AND CONCLUSION
The paper proposes a novel neural speech enhancement
(NSE) system based on the convolutional encoder-decoder
(CED) framework where conventional recurrent networks are
replaced with a convolutional attention transformer (CAT)
module to extract high-level features. This allows the model
to operate on a lower-dimensional representation of the input
signal, reducing the computational cost and the number
of parameters required. The bottleneck contains the con-
volution layers with 1-D kernels and multi-head attention
(MHA) modules. Furthermore, to quantify the important
time-frequency speech distributions in the speech signals,
a time-frequency attention (TFA) module with time-frame
attention and frequency-channel attention is added to the
convolutional transformer that generates a 2-D attention map.
The time-frequency attention module shows effectiveness
for neural speech enhancement. The performance of the
proposed speech enhancement is evaluated using objective
speech quality (PESQ) and intelligibility (STOI) metrics on
the VoiceBank-DEMAND and the LibriSpeech databases.
Compared to unprocessed noisy speech (UnP), the proposed
SE model provides considerable improvements in terms of
the PESQ and STOI for both training objectives (IRM and
SSM). With voice babble noise with -10dB SNR, the NSE-
CATNet with IRM achieves 16.23% gain on PESQ whereas
achieves 17.83% gain on PESQ with NSE-CATNet+SSM.
With factory noise with -5dB SNR, the NSE-CATNet with
IRM improves the PESQ by 27.22% while obtaining 29.79%
gain over the unprocessed noisy speech on PESQ the

NSE-CATNet with SSM. On average, the NSE-CATNet+
IRM improves STOI by 10.08% and the NSE-CATNet+SSM
improves the STOI by 10.74% over unprocessed noisy
speech. The results in seen and unseen noisy conditions
confirm the success of the proposed speech enhancement.
The speech processed by NSE-CATNet+IRM and NSE-
CATNet+SSM concludes a fine spectral structure where less
residual noise and speech distortion indicates better speech
quality and intelligibility. The Pvalue of the proposed NSE-
CATNet is larger than 0.05, and the critical value is greater
than 3.09 which concludes that values obtained with the
proposed model are statistically significant. The total num-
ber of trainable parameters of the NSE-CATNet model is
around 3.57M and is advantageous in MACS (2.725 G/s).
Since this study uses a convolutional MHA bottleneck, the
trainable parameters are significantly reduced concluding
the less computational load with better quality and intel-
ligibility. The comparative results (in Table 11) conclude
that the proposed NSE-CATNet model with IRM and SSM
training objectives shows highly competitive performance
to the multiple state-of-the-art models in terms of PESQ
and STOI evaluation metrics. During cross-corpus analy-
sis, the proposed model concludes better performance at
four databases indicating the generalization towards various
speech databases. The ablation study concludes the success of
the CATmodule in the CED framework. Finally, the proposed
NSE-CATNet is examined against baseline models for SE in
time-domain and time-frequency-domain using the publicly
available VoiceBank-DEMAND dataset with an exact rem-
edy followed by the original study and the proposed model
showed a significant performance on the dataset.

Our future studies focus on converting the proposed NSE-
CATNet into a complex spectral mapping-based personalized
speech enhancement by adding speaker embeddings to the
bottleneck layers. The audio samples1 can be found for
reference.
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