
Received 22 May 2023, accepted 26 June 2023, date of publication 28 June 2023, date of current version 12 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3290901

Comparison of Analyze-Then-Compress Methods
in Edge-Assisted Visual SLAM
JOHANNES HOFER 1, (Graduate Student Member, IEEE),
PETER SOSSALLA 1,2, (Graduate Student Member, IEEE),
CHRISTIAN L. VIELHAUS 1, JUSTUS RISCHKE 1, MARTIN REISSLEIN 3, (Fellow, IEEE),
AND FRANK H. P. FITZEK 1,4, (Senior Member, IEEE)
1Deutsche Telekom Chair, 5G Laboratory Germany, Technische Universität Dresden, 01062 Dresden, Germany
2Audi AG, 85057 Ingolstadt, Germany
3School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
4Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062 Dresden, Germany

Corresponding author: Martin Reisslein (reisslein@asu.edu)

This work was supported in part by the Federal Ministry of Education and Research of Germany in the Program of ‘‘Souverän. Digital.
Vernetzt.’’ Joint Project 6G-life, project identification number: 16KISK001K, in part by the Federal Ministry of Education and Research
of Germany in the Program Software Campus R-SLAM under Grant 01IS17044, and in part by the German Research Foundation (DFG)
as part of Germany’s Excellence Strategy EXC 2050/1 – Project ID390696704 – Cluster of Excellence ‘‘Centre for Tactile Internet with
Human-in-the-Loop’’ (CeTI) of Technical University of Dresden.

ABSTRACT In edge-assisted visual Simultaneous Localization and Mapping (SLAM), mobile devices
offload computationally intensive tasks to an edge cloud. The mobile device should transfer its input data
to the edge cloud in a resource-efficient way, especially in visual SLAM systems with their very large
image frame input data. Most state-of-the-art systems use a conventional Analyze-Then-Compress (ATC)
approach that pre-analyzes the captured frames on the mobile device (incurring substantial processing
latencies), and transmits only the (several times smaller) pre-analysis results, namely only the feature
representation of so-called key frames (and the corresponding tracking results), to the edge. We examine
two novel transmission methods (ATC workflows) for ‘‘functional-split’’ edge-assisted visual SLAM:
Feature-Representation-Every-Frame (FREF) transmits the feature representation for every captured frame
to the edge, and the edge performs the key frame creation processing (including the tracking); Feature-
Representation-Only-Key Frames (FROKF) transmits only the feature representation of key frames without
the tracking results to the edge, and the edge performs the tracking. We evaluate these ATCmethods in terms
of the required network throughput (bandwidth), as well as the latencies for transmission and processing,
as well as the resulting end-to-end latency (from frame capture at the mobile device to key frame and tracking
results becoming available at the edge cloud) via testbed measurements for various computing hardware
platforms. Compared to the existing conventional approach, our newly introduced FREF method can reduce
the end-to-end latency down to one quarter; while our FROKF method can reduce the required throughput
down to one-fifth. Additionally, feature compression can reduce the required throughput; within the FROKF
method, down to one twentieth compared to the conventional method without feature compression, albeit at
the expense of significantly increased processing latency for the compression.

INDEX TERMS Edge computing, feature representation, key frame, low latency communication, network
throughput, visual simultaneous localization and mapping (vSLAM).

I. INTRODUCTION
Simultaneous Location and Mapping (SLAM) uses sensor
data, such as Light Detection and Ranging (LiDAR) [1], radio

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

signals [2], or images [3], [4], [5], [6], to generate a map
of the environment and determine the current position of a
device. SLAM is often used in mobile devices that require
spatial sensing capabilities. For Automated Guided Vehicles
(AGV), SLAM is attractive for local navigation due to low
installation complexity and installation cost, while achieving

68728
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5573-9625
https://orcid.org/0000-0003-1605-7581
https://orcid.org/0000-0001-9247-8156
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0001-8138-5878


J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

high levels of flexibility, accuracy, and reliability [7]. SLAM
systems are emerging in Industry 4.0 to make production
processes cheaper and safer with the help of Mobile Indus-
trial Robots (MIR) [8]. Visual SLAM systems, which utilize
optical camera data, are attractive due to their sensor config-
uration simplicity, miniaturized size, and low cost [9], [10],
[11], [12], [13], [14], [15], [16]. The disadvantage is that they
typically require extensive computing resources.

A. MOTIVATION FOR EDGE-ASSISTED VISUAL SLAM
To save weight, reduce energy consumption, and keep the
form factor of mobile devices small, recent research has
explored the offloading of the computationally intensive
visual SLAM processing tasks to an edge cloud [17], [18],
[19]. However, due to bandwidth limitations and realtime
requirements, it is not preferable to offload the entire visual
SLAM process. Instead, only certain modules are offloaded
in a ‘‘functional-split’’ manner, while the basic functionality
remains on the mobile device. The offloaded tasks typically
include optimizing the map in local and global bundle adjust-
ments and finding and removing unnecessary information
from the map.

In order for certain tasks to be offloaded, the mobile device
has to send its sensor data to the edge cloud. The type of
sensor data plays a decisive role. LiDAR data is usually
significantly smaller than conventional optical camera data.
For this reason, the LiDAR data can be transmitted raw as in
RecSLAM [20]. The transmission of raw optical camera data
requires a lot of bandwidth. Thus, edge-assisted visual SLAM
systems usually compress or analyze the data on the mobile
device. Two approaches can be distinguished. In Compress-
Then-Analyze (CTA) architectures [21], [22], the image or
video data is reduced in size using well-known compression
methods, such as Joint Photographic Experts Group (JPEG)
or H.264. The compressed data can be efficiently transmit-
ted to the edge cloud in order to subsequently perform the
analysis. In Analyze-Then-Compress (ATC) architectures,
the image data is pre-analyzed on the mobile device by
extracting features and compressing the features into feature
descriptors.

B. ORIGINAL CONTRIBUTION AND STRUCTURE
This study quantitatively examines possible ATC workflows
for edge-assisted visual SLAM architectures. The main focus
is on the respective throughputs and end-to-end latencies
for the transmission of the pre-analyzed input data. After
proving general background on visual SLAM in Section II
and reviewing related work on edge-assisted visual SLAM in
Section III, the core of this article makes the following main
contributions:

• Section IV specifies the conventional ATC work-
flow of transmission of the pre-analyzed input data
(key frames with tracking results) from the mobile
device to the edge as a comparison benchmark.
Also, Section IV introduces two novel functional-split
ATC workflows: Feature-Representation-Every-Frame

(FREF) which transmits the feature representation for
every captured frame from the mobile device to the edge
cloud; and Feature-Representation-Only-Key Frames
(FROKF) which transmits the feature representation
only for key frames from mobile device to the edge
cloud. Neither FREF nor FROKF transmits the tracking
results from the mobile device to the edge; instead, the
edge computes the tracking.

• Section V quantitatively compares the newly intro-
duced FREF and FROKF methods with the conven-
tional transmission method in terms of throughput,
processing latency, and resulting end-to-end latency
from the capture time instant of a frame on the
mobile device to the time instant when the key frame
(with tracking results) becomes available in the edge.
Section V includes experimental testbed evaluations
for four different hardware platforms and three dif-
ferent visual SLAM test sequences. Also, the influ-
ence of additional feature compression methods is
examined.

II. BACKGROUND
A. EDGE/CLOUD-ASSISTED VISUAL SLAM SYSTEMS
Offloading visual SLAM tasks reduces the computations that
the mobile device has to perform [23], [24], [25], reducing
energy consumption and eliminating the need for powerful
computing hardware on the mobile device. Also, offloading
visual SLAM allows for the centralized storage and man-
agement of map information on a centralized server. This
can be useful in scenarios where multiple mobile devices are
operating in the same environment and need to share map
information. However, it is important to keep in mind that
realtime localization of the mobile device is a mandatory
requirement formany use cases; otherwise, security risksmay
arise.

Offloading the entire visual SLAM system to a server
results in a reduction in realtime localization performance,
as the round-trip communication time between the mobile
device and the cloud or edge cloud can introduce significant
latency. For this reason, most state-of-the-art edge-assisted
visual SLAM systems perform localization locally on the
mobile device. The map generation, maintenance, and opti-
mization have no strict realtime requirements (rather, these
tasks enhance accuracy and reliability) and can therefore be
offloaded.

Depending on the employed offloading strategy, there are
different requirements for the network.When all SLAM tasks
are offloaded, it is extremely important that the network laten-
cies are as low as possible. This can be ensured by using the
edge cloud, where cloud computing resources are placed at
the edge of the network [26], [27], [28], [29], [30]. However,
even for partially offloaded SLAM systems, high latencies
reduce the reliability [31]. Hence, a nearby edge cloud (with
short round-trip communication latency) is generally prefer-
able to conventional cloud computing for offloading visual
SLAM.

VOLUME 11, 2023 68729



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

B. FEATURE DETECTORS AND DESCRIPTORS
Direct visual SLAM systems utilize the information con-
tained in each pixel of the input image [32]. Indirect
feature-based visual SLAM systems extract features from
the collected input image data. These features are usually
points or regions in the image that are unique and easy to
identify, such as corners. The mobile device can then use
these features to determine its position and orientation rel-
ative to the map. Many different feature detection algorithms
exist, e.g., Oriented FAST and rotated BRIEF (ORB) [33],
FAST [34], SIFT [35], and SURF [36], which differ in their
computational complexity and robustness.

To be able to determine the current pose from the features
found, one must compare the features with each other. For
this purpose, each feature receives a descriptor. A feature
descriptor, e.g., BRIEF [37], is a mathematical representation
of the appearance of a local image region around a key point
(e.g., a corner or edge). The feature descriptor is used to com-
pare and match features between different images or image
regions based on the similarity of their descriptor vectors.
The key point itself consists of spatial information describing
the position in the image, the orientation, and a scale factor,
whereby the OpenCV2 key point class has a total size of
224 bits.

Depending on the SLAM system, certain properties can
be omitted or quantized to reduce the amount of data. The
size of the feature descriptor depends on the particular feature
descriptor implementation. Additionally, different quality
levels can be used. In the case of BRIEF, the descriptor
consists of a binary vector with a size ranging from 128 bits to
512 bits. The more bits are used per descriptor, the better they
can be distinguished from each other. In ORB SLAM2 [38],
256 bits were chosen to keep the memory footprint small
while achieving good comparability. Using all unquantized
properties of a key point and the 256 bit BRIEF descriptor,
a total of 480 bits is required per feature. For instance, for
1000 features per frame and 30 frames per second (FPS)
input camera data, the transfer of features would result in
a data rate of 14.4Mbps. The transmission of the feature
representation requires roughly only one-fifth of the data
rate of the uncompressed transmission of 640 × 480 pixel
grayscale images.

C. FEATURE COMPRESSION
As explained in Section II-B, the data size of an ORB fea-
ture results from its binary feature descriptor vector and
the corresponding key point. This data size can be reduced
by additional compression [39], which generally employs
either intra-descriptor coding or inter-frame coding. Intra-
descriptor coding exploits the statistical dependencies of the
descriptor elements of a single feature. On the other hand,
in inter-frame coding, feature descriptors are encoded using
a reference feature set, which is usually obtained from the
features of the previous frame. In [40], a binary feature intra-
descriptor coding scheme was presented, which exploits the

dependency between the feature descriptor and the corre-
sponding visual word. In visual SLAM systems, the concept
of visual words is used to simplify computationally intensive
comparison processes. The concept of visual words is often
used in relocalization and loop-closing tasks, where incoming
images have to be compared with the complete map. Usu-
ally, a bag of words (BoW) is assigned to each image. The
BoW contains all visual words found in an image, which are
derived by comparing the individual feature descriptors with
the visual vocabulary.

The intra-descriptor coding scheme [40] (which is used
in [41], [42], whereby we use the [41] implementation for
our feature-compression measurements in Section V-E) only
sends the index of the found visual word, plus an entropy
encoded residual vector per feature. In [41], an edge-assisted
visual SLAM system is presented, in which intra-descriptor
or inter-frame coding can be applied individually per feature.
For inter-frame coding, the number of reference frames can
be set. For features that do not change much between frames,
the inter-frame skipping mode can be used. In this case, only
the ID of the feature that has already been transferred is
transmitted. The key point coding scheme was replaced with
a lossless scale pyramid-based coding scheme.

In general, the advantage of reducing the amount of data to
be transmitted by encoding comes at the cost of an increased
computational load and a loss of information. Especially
the increased computational load on the mobile device in
edge-assisted visual SLAM systems can lead to significant
processing latencies.

III. RELATED WORK
A. OVERVIEW
This section reviews the related work on edge-assisted visual
SLAM, as summarized in Table 1. We note that to the
best of our knowledge, all existing studies on edge-assisted
visual SLAM are orthogonal to our study. More specifically,
we are the first to examine the fundamental workflow struc-
ture (sequencing) of the creation of the key frames and the
tracking on the mobile device vs. on the edge in function-
split edge-assisted visual SLAM systems that split the visual
SLAM functions between the mobile device and the edge
cloud (but do not offload the entire visual SLAM processing
to the edge cloud).

Generally, there are several ways to resolve the conflict
between the low computing power of the mobile device and
the high computing complexity of visual SLAM systems.
One possibility is to reduce the computational complexity
of the SLAM system without losing accuracy and reliability.
Visual SLAM systems are very demanding, mainly due to the
large number of map points that are continuously inserted
into the map during the exploration phase. The longer the
runtime and the larger the environment to be explored, the
more map points are included in the generated map, and
the more demanding tasks (e.g., local and global bundle
adjustments) become. One approach to address this challenge

68730 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

TABLE 1. Overview of data transmission types in existing edge-assisted visual SLAM studies: While early studies considered Compress-Then-Analyze
(CTA) methods, most recent studies have employed Analyze-Then-Compress (ATC) methods, which are the focus of this study. Our examined ATC methods
accommodate both uncompressed features and compressed features.

is to use artificial markers, i.e., unique identifiers that have
to be placed in the environment, as done in the sSLAM
approach [52].

B. EDGE/CLOUD-ASSISTED VISUAL SLAM
1) COMPRESS-THEN-ANALYZE (CTA)
An alternative approach to reduce the computing power that
is required on the mobile device are edge- or cloud-assisted
visual SLAM systems (see Section II-A), which offload
computationally intensive tasks to the edge or cloud. Early
versions of edge-assisted visual SLAM systems used CTA
methods to transfer data from the mobile device to the edge
cloud. A cloud-based collaborative 3D mapping architec-
ture, where mobile devices perform a dense visual odometry
algorithm for pose calculation, has been implemented in [44].
Key frames are sent as Portable Network Graphic (PNG)
compressed red, green, blue, and depth (RGB-D) pictures to
the cloud, which performs a key frame pose optimization and
merging process. The optimized key frame poses are then sent
back to the mobile device.

C2TAM [43] implemented a mapping in the cloud ser-
vice architecture where tracking still takes place at the
mobile device itself. Only individual key frames are sent
from the mobile device to the cloud. Those key frames are
sent as uncompressed 640 × 480 pixel red, green, and blue
(RGB) images, resulting in an average required throughput
of 1MBytes/s, whereby the rate of sent key frames was not
explicitly examined. Sending uncompressed image data con-
sumes (requires) very high throughputs. In [53] it was shown
that lossy image compression at low bitrates has strong neg-
ative effects on subsequent feature detectors and their feature
quality. In addition, feature-preserving image compression
methods are presented in [53].

The study [51] investigated the influence of the type of
data transmission and the place of execution of the track-
ing module in edge-assisted SLAM systems. H.264 video
compression was used as CTA method. The experimental
investigations showed that the video compression method
is advantageous for mobile devices with low computational
power, since the computationally intensive extraction of

features in ATC methods leads to large processing latencies.
However, by using lossy video compression, the highest accu-
racy cannot be achieved.

The CTAmethod has also the disadvantage that the mobile
device has no analyzed input camera data as a result of the
transmission of the input data in order to run its own tracking
module. In other words, pure CTA transmission of input data
to the edge does not produce natively analyzed input data as
a ‘‘byproduct’’ which could be directly used on the mobile
device in a function-split edge-assisted visual SLAM system.
In most state-of-the-art edge-assisted visual SLAM systems,
the tracking module is executed on the mobile device so that
realtime localization results can be obtained for short time
periods independent of the existing infrastructure. Follow-
ing this function-split approach, which executes the tracking
module on the mobile device, in combination with CTA
transmission methods, the mobile device has to perform the
feature extraction in addition to the image compression in
order to be able to perform its own tracking. For this reason,
most modern systems use ATC transmission methods. Since
the mobile device has to extract features itself anyway, one
can use this analyzed data directly for forwarding to the edge
cloud.

2) ANALYZE-THEN-COMPRESS (ATC)
In Edge-SLAM [45], [46], the three main modules of
ORB SLAM2 (tracking, local mapping, and loop closure)
are split between the mobile device and the edge cloud.
ORB SLAM2 is a widely used basis for visual SLAM
systems and offers very accurate and reliable trajectory esti-
mations [54]. In Edge-SLAM [45], [46], the mobile device
runs the tracking module and sends the analyzed feature rep-
resentations and general tracking results of important frames,
i.e., so-called key frames, to the edge cloud and is thus
a representative approach of the ATC method. The edge
cloud performs the local mapping and loop closure modules.
The edge cloud sends the local map updates to the mobile
device. Since the mobile device can drive autonomously for
short periods of time without any problems, the local map
updates do not have to be performed at a high frequency. The

VOLUME 11, 2023 68731



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

local map updates received on the mobile device replace the
previous local map. Due to its simplicity, this method is very
robust against various errors, such as losing or incorrectly
mapping individual map points. However, experiments have
demonstrated that due to increased latencies and process-
ing latencies, the system can have low reliability, especially
at fast movement speeds and bandwidth constraints. As a
result, the realtime execution of test sequences from the
KITTI [55] (vehicle on road) and EuRoC MAV [56] (drone
in machine hall) benchmarking datasets is not successful on
mobile devices with low computational power. By inserting
a circular frame buffer on the mobile device, the reliability
for increased movement speeds and network latencies was
increased in [57].

In AdaptSLAM [47], which is based on ORB SLAM3 [58]
and Edge-SLAM [45], [46], the selection of key frames is
adapted to the limited data processing and communication
resources. More specifically, to reduce the computational
load on the mobile device, only a subset of key frames is
selected from all possible key frames to create the local map.
To reduce the throughput required for sending key frames
from the mobile device to the edge cloud, a subset of key
frames is also selected. The subset selection is based on
local and global map optimization procedures that strive to
minimize the map uncertainty while using as few key frames
as possible.

Similarly to Edge-SLAM [45], [46], in edgeSLAM [48],
[49] and SwarmMap [50], the mainmodules are split between
mobile device and edge, and the analyzed input data is
sent from the mobile device to the edge cloud. Additional
functionalities, such as semantic segmentation algorithm or
collaborative support are added. However, there is a signifi-
cant difference in the method of information exchange from
the edge cloud to the mobile device. Only targeted changes
of individual map points are transferred to the mobile device
instead of exchanging the local map completely. This has
the advantage that the map update process is less prone to
failure. On the other hand, the size of the map on the mobile
device increases steadily, which makes tracking more and
more complex. Furthermore, the structure of the local and
global map must be closely synchronized. This results in a
strong dependency on infrastructure, as there must be no loss
of information. Furthermore, as will be explained in detail
in Section IV, it is essential that the mobile device runs the
tracking module first so that the global map on the edge cloud
can mirror the local map. This leaves less room for flexibility
in the amount and type of data to be transferred, as well as the
reordering of tasks.

In [41], an edge-assisted visual SLAM system is pre-
sented, in which only the analysis of input data is performed
on the mobile device. The remaining SLAM tasks are per-
formed on the edge cloud. As a result, localization results
or resulting instructions must be sent back to the mobile
device. Therefore, the mobile device cannot continue to work
autonomously (not even for a short period of time) in the
event of a communication interruption. However, the core

of the work in [41] deals with the efficient compression of
binary feature vectors to minimize the required transmis-
sion throughput. In [42], the concept of feature compression
is improved by adding support for additional stereo and
depth information coding modes. Additionally, a collabora-
tive edge-assisted visual SLAM system is presented, which
can better allocate the existing bandwidth among multiple
mobile devices due to the reduced throughputs.

IV. ANALYZE-THEN-COMPRESS (ATC) METHODS
A. MOTIVATION
In most state-of-the-art edge-assisted visual SLAM systems,
the mobile device itself runs the tracking module to conduct
localization in realtime. Therefore, the incoming camera data
has to be converted into feature representations for further
processing. In terms of transferring the input data from the
mobile device to the edge cloud, the feature representation
has the advantage of being only a fraction of the size of the
original images.

To further reduce throughput, often only key frames are
transmitted. Key frames are used in SLAM systems to
insert only images with significant levels of new informa-
tion into the map. This has the advantage of keeping the
graph-based map small, which means that the map is kept
free of unnecessary information, resulting in reduced com-
putational complexity for all SLAM modules. In order to
decide whether an incoming image should be considered a
key frame, it must pass through the tracking module, where
its features are compared with the map points of the local map
and the features of the previous key frame. Subsequently, the
key frame creation criteria determine whether the image is
accepted as a key frame.

In Edge-SLAM [45], [46] as well as SwarmMap [50],
after the decision and the creation of a key frame, the fea-
ture representation is sent together with the tracking results
to the edge cloud, which subsequently generates a very
accurate global map. The tracking results are very large com-
pared to the pure feature representation, which increases the
throughput required when sending to the edge cloud. The
largest part of the tracking results per key frame consists
of the generated map points and their connectivity graph
information. At the expense of increased throughput, includ-
ing tracking results can offer great benefits in some cases.
In SwarmMap [50], sending the tracking results has the
advantage that the map created on the edge cloud, mirrors the
layout of the mobile device map. This allows optimizations
of the map on the edge cloud side to be sent as targeted
changes to individual map points within the mobile device
map. In Edge-SLAM [45], [46], this mirroring of the local
map is not necessary, as updates are sent as whole sections
that replace the existing map on the mobile device as a whole.

B. SPECIFICATION OF PROPOSED ATC METHODS
Since sending the tracking results as part of the transmitted
key frames from the mobile device to the edge cloud is

68732 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

FIGURE 1. Flowchart comparison of the performed tasks between the instant of capturing an image on the mobile device and presence of the
corresponding key frame (and tracking results) on the edge cloud for the conventional ATC workflow and the proposed Feature-Representation-
Every-Frame(FREF) and Feature-Representation-Only-Key Frame (FROKF) ATC workflows.

not strictly necessary in most edge-assisted SLAM systems,
we propose two alternative approaches to transfer input infor-
mation from the mobile device to the edge cloud, with the
goal of minimizing the required throughput as well as end-
to-end latency. The basic idea is to send the pure feature
representation of a frame, which in turn requires function-
ality changes of the edge cloud system. It should be noted
that these approaches are not applicable to all edge-assisted
visual SLAM systems, as concepts based on mirroring the
map structure between mobile device and edge cloud, as in
SwarmMap, depend on the transmission of tracking results.

As the basis of our edge-assisted visual SLAM sys-
tem transmission methods investigation, we use Edge-
SLAM [45], [46]. As described in Section IV-A, in the map
synchronization process between the edge cloud and the
mobile device, entire independent map sections are trans-
ferred, which means that there are no dependencies between
the global map and the local map. This allows the edge
cloud to use its own tracking results to create the global
map, rather than relying on the results of the mobile device.
This flexibility allows us to use Edge-SLAM [45], [46] to
investigate different transmission methods.

1) CONVENTIONAL
Fig. 1(a) shows the conventional workflow from the time an
image is captured by the mobile device until the key frame
is available on the edge cloud for further processing. The
conventional procedure extracts ORB features after capturing
the input image. The features are then used to determine
the pose of the mobile device within the tracking module.
Subsequently, the key frame creation criteria are used to
check whether the frame has enough new information to be
considered as a key frame. If this is the case, the key frame is
generated and sent to the edge. The optional feature compres-
sion, explained in Section V-E, should be performed only on

key frames in order to reduce unnecessary computation. The
key frame contains the compressed or uncompressed feature
representation as well as the tracking results. Theworkflow of
the conventional method is used in [45], [46], [47], and [50];
however, the implementation or functionality of individual
modules, such as the tracking module, may vary from system
to system.

Denoting TORB for the computation time for extracting the
ORB features from the input image, TMobile for the compu-
tation time for the remaining tasks of the tracking module,
TFC for the computation time for the optionally applicable
feature compression, and TKF for the transmission latency of
the key frame (plus tracking results), the end-to-end latency
TE2E between the capture of an image on the mobile device
and the presence of the corresponding key frame on the edge
cloud can be evaluated as:

TE2E = TORB + TMobile (+TFC ) + TKF . (1)

2) FEATURE-REPRESENTATION-EVERY-FRAME (FREF)
Wepropose the Feature-Representation-Every-Frame (FREF)
method, which sends the feature representation to the edge
cloud immediately after the ORB extractor function has
finished, or, respectively, after the feature compression has
finished. Fig. 1(b) shows the workflow of the proposed
FREF transmission method. Since the mobile device does
not yet have any information about whether the frame is to
be evaluated as a key frame, the feature representation must
be sent for each frame. This has the disadvantage of increased
throughput.

However, the loss of information between the mobile
device and the edge cloud is reduced. Since the edge cloud
has increased computing resources at its disposal, the quality
of the map can be improved by gaining additional input data.
To optimize the quality of the map generated on the edge

VOLUME 11, 2023 68733



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

cloud as well as the accuracy, the key frame creation criteria
could be modified, so that more key frames are generated on
the edge cloud than on the mobile device. The edge cloud has
to execute the tracking module on its own after receiving the
feature representation.

The basic concept of the FREF method is the only possible
input data transmission method in ‘‘full-offload’’ ATC edge-
assisted SLAM systems, in which all SLAM modules are
offloaded to the edge cloud, as themobile device cannot make
key frame decisions in these systems. FREF is used, for exam-
ple, in [42] and [51]. To the best of our knowledge, we are the
first to examine FREF for ‘‘functional-split’’ edge-assisted
SLAM systems, where a functional split occurs between the
mobile device and the edge cloud.

Denoting TF_FR for the transmission latency of sending the
feature representation of a frame and TEdge for the computa-
tion time for the remaining tasks of the tracking module on
the edge cloud, TE2E can be evaluated as:

TE2E = TORB (+TFC ) + TF_FR + TEdge. (2)

It can be assumed that due to the increased processing power
of the edge cloud, the processing latency of the remaining
tracking tasks TEdge is lower than TMobile [59]. In addition,
TF_FR is smaller than TKF , as the tracking results are not
transmitted to the edge cloud in FREF. It is important to note
that the mobile device still needs to run the tracking module
itself to ensure realtime localization.

3) FEATURE-REPRESENTATION-ONLY-KEY FRAME (FROKF)
The second proposed transmission method, shown in
Fig. 1(c), is to send the feature representation of a key frame
after creating a key frame on the mobile device. This reduces
the throughput compared to the conventional method, since
the tracking results belonging to the key frame are not sent.
In addition, the throughput is reduced compared to the FREF
method, since only key frames are sent to the edge cloud
instead of all frames. Denoting TKF_FR for the transmission
latency of sending the feature representation of a key frame
(without tracking results) and TEdge∗ for the computation time
for the remaining tasks of the tracking module (without key
frame creation criteria check), TE2E can be evaluated as:

TE2E = TORB + TMobile (+TFC ) + TKF_FR + TEdge∗. (3)

By not sending the tracking results of the key frames gen-
erated on the mobile device, the edge cloud must run the
tracking module itself, whereby the edge cloud is already
aware that the received feature representation belongs to a
key frame.

Since FROKF does not send any tracking results of the
key frame that is created on the mobile device to the edge
cloud (i.e., the ‘‘KF’’ received by the edge cloud contains
only the feature representation), the edge cloud has to perform
its own tracking and in order to build the global map the
edge cloud has to create its own key frame. This results in a
higher end-to-end latency than in FREF. The optional feature
compression should be performed only on key frames in the

FIGURE 2. Key frame creation rate for fr3/long_office_household (fr3)
test sequence (ORBextr.nFeat = 1000).

Feature-Representation-Only-Key Frame (FROKF) method
in order to prevent unnecessary computation. To the best of
our knowledge, FROKF is entirely novel and has not been
examined for any existing edge-assisted SLAM system.

V. EVALUATION
A. TESTBED
To evaluate the required throughput and end-to-end latency
of the proposed FREF and FROKF transmission methods,
we employ the following testbed. As edge-assisted visual
SLAM system, the Edge-SLAM [45], [46] implementation
is used. The conventional method of transmitting the feature
representation plus tracking results is implemented as the
default benchmark. The study of the feature compression
method is based on the implementation of [41].

Since processing latencies depend on the used platform,
several platform combinations are tested. We considered the
following platforms: a Raspberry Pi 4, a Fitlet2-CE3950,
a Fujitsu Esprimo K102-A100 with an Intel Core i7-
6700T CPU (2.8GHz, 8 cores) and 16GB RAM, and a
powerful workstation with an Intel Xeon W-2155 CPU
(3.3GHz, 20 cores) and 128GBRAM;whereby any platform
is considered as the mobile device, while the Fujitsu Esprimo
and powerful workstation are considered as the edge cloud.
The mobile device and the edge device are connected via
Ethernet.

We consider three test sequences: The fr2/desk (fr2)
[98 seconds] and fr3 [87 seconds] sequences from the
TUM RGB-D benchmarking dataset [60] are handheld
indoor recordings with varying translational and rotational
speeds. The original sequences contain 30 FPS. For our
tests, the sequences were modified to 10 FPS by only
playing every third frame, which means that the record-
ings are still played at unchanged speed. The reason for
this is that devices with low processing power were not
able to process 30 FPS input data in the visual SLAM
system in realtime in our tests. As third sequence, the
kitti_data_odometry_gray_sequence_04 (KI04) [28 seconds]
sequence from the KITTI odometry benchmarking dataset
[55] is used. This KITTI sequence is recorded on a standard
station wagon driving on a straight public road with high

68734 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

translational and very low rotational speed. The sequence
contains 10 FPS.

B. SERIALIZATION INFLUENCE
Serialization is the process of converting a non-serial data
structure to a format that can be stored or transmitted, while
deserialization is the reverse process of recreating the object
from the stored or transmitted serialized format. Serializa-
tion is necessary when transmitting data over a network.
Serialization incurs a data overhead, which can vary greatly
depending on the used serialization method and type. In the
open-source implementation of Edge-SLAM [45], [46], the
text serialization method from the Boost C++ library is used.
The text serialization overhead can be very large, depending
on the data structure. A binary serialization method is much
more efficient, as we have evaluated as follows.

We have measured the sizes of the serialized feature rep-
resentation frame objects with both serialization methods
for the fr3 sequence, with 1000 features per frame. Subse-
quently, we divided the frame size by the number of contained
features to obtain the average data size of a feature in a
serialized frame. Text serialization gave an average data size
of 1610.9 bit; whereas, binary serialization gave 480.7 bit,
which is close to the theoretical 480 bit noted in Section II-B.
We use binary serialization for all subsequent evaluations in
this study.

C. REQUIRED THROUGHPUT
1) PRELIMINARIES
Since the throughput of the analyzed input data transmission
in edge-assisted visual SLAM systems depends on more than
just the transmission method, we first examine the influence
of auxiliary factors. In general, the throughput is jointly
governed by the number of features per frame, the data size
per feature, and the transmitted frame rate, or, respectively,
key frame rate. In the FREF method, the rate of transmitted
frames can be freely chosen and in our case is equal to the FPS
value of the incoming camera data rate of 10 FPS. By using
a lower rate of transmitted frames, there is a possibility that
information from possibly important key frames will not
be available on the edge cloud, thus decreasing reliability.
For the conventional and FROKF methods, the number of
transmitted frames depends on the rate at which key frames
are generated.

In turn, the key frame creation rate depends on the respec-
tive application and can differ greatly depending on the speed
and type of movement. The key frame creation criteria can
also be customized according to the appropriate environ-
ment, hardware, and channel conditions. Fig. 2 shows the
key frame (KF) creation rate (KF/s) for the conventional
Edge-SLAM system on the Fujitsu mobile device for the fr3
test sequence. The periodic drops of the KF creating rate are
due to the local map update mechanism. Every five seconds,
the mobile device receives a map update, which blocks the
tracking module. The incoming frames are lost during this

TABLE 2. Average measured throughputs and key frame (KF) creation
rates for fr3 sequence as a function of the ORBextr.nFeat parameter
(which approx. equals the actual number of features per frame) for the
conventional method.

TABLE 3. Required average throughput per frame and KF for the fr3
sequence: calculated from Eqn. (5) for FREF and FROKF (and validated
with testbed measurements which very closely align with the calculated
values).

time, which means that fewer key frames can be generated.
Also, we observe from Fig. 2 that the key frame creation
rate is higher around the middle of the test sequence than the
beginning or the ending, which is caused by the increased
movement speed in the middle of the fr3 test sequence.

The maximum number of features accepted per frame
can be set in Edge-SLAM using the ORBextractor.
nFeatures parameter, which we abbreviate to ORBextr.
nFeat. The more features are used per frame, the more
complex the calculations become, but the higher the accu-
racy can be. Due to different environments and hardware,
it is not possible to give a universal ideal value for
ORBextr.nFeat, and we therefore conduct evaluations for
a range of ORBextr.nFeat values.

2) EVALUATION SETUP
Table 2 shows the measured average throughput between the
mobile device and the edge cloud while running the fr3 test
sequence using the conventional Edge-SLAM architecture,
where the feature representation plus tracking results are sent
from the mobile device to the edge for each key frame. The
throughput from the edge cloud to the mobile device (local
map update mechanism) is not included, since this study
focuses on the transmission of the input data from the mobile
device to the edge cloud. The measurements were performed
for ORBextr.nFeat values from 500–2000. In addition,
we evaluate the number of total transmitted key frames and
the resulting average key frame creation rates.

In order to provide generally applicable results that are not
unique to specific test sequences, we evaluate the throughput
to the next smaller entities; specifically, to the through-
put per key frame and the throughput per feature. In order
to determine the total required throughput for other test
sequences, only the respective key frame creation rate has to
be measured and extrapolated with the help of the required

VOLUME 11, 2023 68735



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

throughput per key frame given in Table 2. For this reason,
we only use the fr3 test sequence for the throughput evalua-
tions in this study.

3) RESULTS
We observe from Table 2 that the throughput increases
consistently with the increase in ORBextr.nFeat value
and thus the number of features per frame. We note
that ORBextr.nFeat is the maximum number of trans-
mitted (accepted) features per frame. However, in most
images, much more than 2000 features are found (e.g.,
in fr2, about 6000 features per frame). Thus, for our
‘‘low’’ ORBextr.nFeat values of 500–2000, the actual
number N of features per frame approximately equals
the ORBextr.nFeat value. Accordingly, we can con-
clude from the roughly linear relationship between the
ORBextr.nFeat value and the throughput that sending
twice the number of features roughly doubles the throughput.
However, the ORBextr.nFeat value also affects the func-
tionality of the SLAM system, which further increases the
throughput. The key frame creation rate increases because the
key frame creation criteria are unchanged, and thus are more
likely to be met if more features are present, which, in turn,
increases the throughput. The individual average feature size
decreases with increasing features per frame, since the track-
ing results are distributed over more features; however, this
throughput reducing effect of the reduced average feature size
is negligible compared to the increased number of features per
frame.

Next, we examine the throughputs of the FREF and
FROKF methods. Let S denote the serialization overhead,
N the number of features per frame or KF, F the feature
descriptor size, K the key point size, and D the depth value
size. Then, the size M of the data per frame or key frame is
clearly determined and can be formulated as:

M = S + N · (F + K + D). (4)

The corresponding values for Edge-SLAM [45], [46] are:

MEdgeSLAM = 99 + N · (32 + 28 + 4) in Bytes. (5)

It should be noted that the serialization overhead S is inde-
pendent of the number of features N .
The throughput per frame and key frame values are shown

in Table 3. The total throughput of the FREF method is
calculated by multiplying the FPS (in our case, 10 FPS)
by the frame data size. For FROKF, we use the key frame
creation rates from Table 2 to calculate the total average
throughput to allow a fair comparison with the conventional
method. As expected, the throughput required for FROKF
is far below the throughput required for the conventional
method in Table 2. By omitting the tracking results, the
FROKF throughput can be reduced to less than one-fifth of
the throughput of the conventional method.

Since every frame is transmitted in the FREF method, the
average throughput required for FREF exceeds the through-
put requirement of the conventional method (for the key

frame creation rates in Table 2). However, with slightly
increased key frame creation rates, the FREF method would
achieve lower required throughput than the conventional
method, since sending additional key frames increases the
average throughput. Depending on the ORBextr.nFeat
value, the average key frame creation rate, from which the
average throughput of FREF would be below the conven-
tional method, is between 1.5–1.75KF/s. Since the key frame
creation rate can vary greatly depending on the type of move-
ment of the mobile device and the environment (see Fig. 2),
the throughput in the conventional and FROKF methods can
be highly dynamic. In contrast, the FREF method has a
constant throughput by sending every frame.

D. LATENCY
The end-to-end latency between the mobile device and the
edge cloud should be as low as possible. In [31] it was
demonstrated that the latency between the mobile device
and the edge cloud has a major impact on the reliability
of the system. This is mainly due to the local map update
mechanism used in Edge-SLAM, where the mobile device
deletes its own map when receiving an update. Transmission
latencies and processing latencies create a time window that
is missing as part of the new local map, but may be highly
relevant for the success of further tracking. In [57] it was
then demonstrated that by using a key frame buffer on the
mobile device, the missing time window in the local map can
be shortened so as to improve reliability. Nevertheless, long
latencies generally reduce reliability and accuracy. In order
to examine the end-to-end latencies [see Eqns. (1)–(3)] of the
investigated transmission methods, we proceed to examine
the individual latency components in detail.

1) TRANSMISSION LATENCY
The number M of bits to be transmitted per frame or key
frame and the bandwidth (bitrate) R [in bits/s] govern the
transmission latency LT = M/R. Thus, the average frame and
key frame sizes in Tables 2 and 3 and the respective available
bandwidths give the transmission latencies in Table 4. In gen-
eral, the maximum acceptable transmission latency depends
on the circumstances. For instance, relatively long latencies
can be tolerated if the mobile device moves slowly. On the
other hand, fast rotations require short latencies.

We observe from Table 4 that the reduced data size of
the frame and key frames in FREF and FROKF substantially
reduces the transmission latencies, and this latency reduction
is especially relevant at low bandwidths. More specifically,
we observe from Table 4 that the FREF and FROKF trans-
mission latencies are consistently roughly one-sixth of the
corresponding conventional transmission latency, i.e., the
proportional transmission latency reduction is constant. How-
ever, from a practical perspective, the absolute transmission
latency reductions are particularly pronounced for low band-
widths. For instance, for ORBextr.nFeat = 1000, the
transmission latency is reduced by over 500ms for a band-
width of 5Mbps, compared to a reduction by less than 30ms

68736 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

TABLE 4. Transmission latency [ms] for transmitting the feature representation or the feature representation with tracking results of one frame or key
frame as a function of the ORBextr.nFeat value and the available bandwidth.

FIGURE 3. Processing latency of the tracking module on the Fitlet mobile
device for the test sequence fr3 for different ORBextr.nFeat values.

for a bandwidth of 100Mbps. A 500ms latency reductionwill
typically have amuchmore profound impact on the reliability
than a 30ms latency reduction. Therefore, the FREF and
FROKF methods are advantageous over the conventional
method, especially at low bandwidths.

2) PROCESSING LATENCY
Next, we measure the processing latencies for the differ-
ent transmission methods. Recall that Fig. 1 conceptually
illustrates the respective processing latencies of the different
transmission methods. The measurements are performed on
multiple platforms, since the mobile device and edge cloud
can have more or less available computation resources. The
Raspberry Pi 4, Fitlet, Fujitsu, and the workstation are con-
sidered as the mobile device. In addition, the effect of the
ORBextr.nFeat value must be taken into account, since
it strongly influences the computational complexity. We do
not include the processing latency of the ExtractORBmodule
in the measurement, since it is the same for all transmis-
sion methods. The processing latencies TMobile, TEdge, and
TEdge∗ in Fig. 1 are all incurred for the same execution
of the tracking module as well as the key frame criteria
check (requires less than 0.01ms and is thus negligible)
and key frame creation after feature extraction. Therefore,
we only measure TMobile for the conventional method since

TABLE 5. Mean processing latency [ms] of the tracking module [which
approx. equals TMobile in Fig. 1(a), TEdge in Fig. 1(b), and TEdge∗ in
Fig. 1(c)] for fr2, fr3, and KI04 test sequences; each evaluated on various
mobile device hardware, for different ORBextr.nFeat values. The
symbol ‘‘/’’ indicates that the run was unsuccessful.

the differences between TMobile, TEdge, and TEdge∗ are negli-
gible. That is, the transmission method does not influence the
actual processing latency of the tracking module; rather, the
transmission method determines where the tracking module
is executed [and thus indirectly influences the processing
latency (which is hardware dependent and included in the
end-to-end latency TE2E )].

Fig. 3 shows the processing latency TMobile on the
Fitlet over the course of the fr3 test sequence for
ORBextr.nFeat values between 500–2000. The increas-
ing computational complexity due to more features to be
processed can be clearly observed.

Table 5 presents the average measured processing laten-
cies TMobile for the different combinations of test sequence,
platform, and ORBextr.nFeat value. We observe from
Table 5 that the hardware strongly influences the process-
ing latency. For example, the measured processing latencies
on the Raspberry Pi 4 are very long (over three time
longer than for the Fitlet). Due to these long Raspberry
Pi 4 processing latencies, the test sequences cannot be run
successfully for high ORBextr.nFeat values. Also, for

VOLUME 11, 2023 68737



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

TABLE 6. End-to-end latency for Fitlet mobile device and Fujitsu edge cloud for conventional, FREF, and FROKF transmission as a function of bandwidth
and ORBextr.nFeat value, for fr3 sequence.

the demanding KI04 test sequence, a successful run was not
possible with the Raspberry Pi 4 mobile device even with
lower ORBextr.nFeat values.
Also, for the fr2 and KI04 test sequences, no successful

test runs could be achieved with an ORBextr.nFeat value
of 500, regardless of the mobile device platform. The reason
for this is probably the nature of the observed environments,
which are very feature-rich. By limiting the maximum num-
ber of features per frame, important features may be rejected.
If previously rejected features are accepted in subsequent
frames, then no feature matches can be found, resulting in
a lost track.

Overall, we conclude that the Raspberry Pi 4 can only be
used for applications with very slow movement speeds and
static environments. The Fitlet is a good alternative, since
its form factor corresponds to that of a Raspberry Pi 4, but
still achieves shorter processing latencies. Nevertheless, the
Fitlet processing latencies are in a critical range for high
ORBextr.nFeat values. For applications with high move-
ment speeds and dynamic environments, hardware similar to
the Fujitsu should probably be used as a mobile device to
ensure sufficient reliability.

In addition, we observe from Table 5 that the processing
latencies of the tracking module are generally substantially
shorter for the KI04 sequence than for the fr2 and fr3
sequences. This is due to the fast movement speed in theKI04
sequence and thus the low number of existing map points
in the current environment. This means that fewer features
need to be compared with each other, which takes up less
computation time.

3) END-TO-END LATENCY
Based on the measured transmission latencies (Table 4) and
processing latencies (Table 5), Eqns. (1), (2), and (3) can be
used to calculate the end-to-end latencies for the respective
transmission methods. Table 6 gives the end-to-end laten-
cies for the Fitlet mobile device and Fujitsu edge cloud.
We observe from Table 6 that FREF achieves the lowest
end-to-end latencies. The end-to-end latency reductions with
FREF become more pronounced for lower bandwidth; for the
10Mbps bandwidth, the FREF end-to-end latency is less than
one-quarter of the conventional end-to-end latency. On the
other hand, the higher the available bandwidth, the lower the
transmission latencies and thus the smaller the end-to-end

FIGURE 4. Percentage of processing latency included in end-to-end
latency for ORBextr.nFeat value of 1000.

latency reduction due to reduced frame data sizes. For the
100Mbps bandwidth, the FREF end-to-end latency is a little
less than half the conventional end-to-end latency.

Fig. 4 shows the percentage of the processing latency in the
total end-to-end latency as a function of the available band-
width. The higher the percentage, the lower the advantage of
reduced transmission latency due to reduced frame data sizes
for FREF and FROKF.

FROKF also achieves lower end-to-end latencies than the
conventional method at low bandwidths. However, there is
a tradeoff, as illustrated in Fig. 5: Since the FROKF pro-
cessing latencies are higher than the processing latencies of
the conventional method, there exists a threshold bandwidth
value. Above that threshold bandwidth value, the FROKF
end-to-end latency is longer than the end-to-end latency of
the conventional method. We observe in Table 6 that for
an ORBextr.nFeat value of 2000, the FROKF end-to-
end delay exceeds the conventional end-to-end delay for a
bandwidth of 100Mbps, i.e., 100Mbps exceeds the threshold
bandwidth value. More specifically, from Fig. 5, or by equat-
ing Eqns. (1) and (2), i.e., by equating TKF = TKF_FR+TEdge∗
and solving for the transmission bitrate, we find that this
threshold bandwidth is 121Mbps for an ORBextr.nFeat
value of 1000.

E. FEATURE COMPRESSION
Since the feature representation is transmitted in all examined
transmission methods, feature compression has in absolute

68738 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

FIGURE 5. End-to-End latency for Conventional, FREF, and FROKF for
Fitlet mobile device and Fujitsu edge for ORBextr.nFeat value of
1000 as a function of bandwidth.

TABLE 7. Percentages of performed coding (feature compression) modes
depending on ORBextr.nFeat value measured on Fujitsu.

terms the same impact in all transmission methods. Only
the percentages of the resulting throughput reduction and
processing latency increase are different. We examine the
intra, inter, and inter-skipping coding schemes [41] as pos-
sible feature compression methods. First, we evaluate the
probabilities for these compression methods by processing
the test sequences on the Fujitsu and saving the used cod-
ing mode for each feature. Table 7 gives the percentages
for every coding mode for different ORBextr.nFeat val-
ues. In fr2 and fr3, mainly inter-frame coding is applied,
since the mobile device moves slowly, and thus many
features remain similar in successive frames. In KI04, intra-
descriptor coding is applied more often due to the fast
movement speed. For all test sequences, increasing the
ORBextr.nFeat value, increases the proportion of inter-
frame coding. Inter-skipping coding is almost never applied,
because inter-skipping requires that the feature descriptors of
two frames are almost identical (which should presumably
occur more often during standstill).

1) THROUGHPUT
We evaluate the influence of feature compression on the
required throughputs of the transmission methods. To do
this, we measure the data sizes of the compressed feature

TABLE 8. Average measured frame and feature sizes depending on
ORBextr.nFeat parameter for test sequence fr3.

TABLE 9. Calculated average throughput [Mbps] with feature
compression as a function of the ORBextr.nFeat value for fr3 test
sequence.

representation of all frames of the fr3 test sequence. Table 8
gives the average frame sizes and the average feature sizes
as a function of the ORBextr.nFeat. The higher the
ORBextr.nFeat value, the smaller the average feature
size is likely to be, since more features are compressed
by inter-frame coding (see Table 7), which achieves higher
compression. As described in Section II-B, an uncompressed
feature has the size of 480 bits. Compression reduces the
average size of a feature down to less than 150 bits, i.e., down
to less than one third of the uncompressed feature size. This
significant size reduction is achieved at the cost of quality loss
and additional processing latency, which will be considered
in Section V-E2.
Table 9 lists the average required throughputs for the

studied transmission methods when using the feature com-
pression. For the conventional method, the savings per
feature were subtracted from the throughput measurements
in Table 2. For FREF and FROKF, the average frame sizes
were calculated as in Table 3. In absolute terms, all trans-
mission methods reduce the required throughput by the same
amount due to the feature compression. Relatively speaking,
the throughput of the conventional method is reduced by only
8% on average (compared to Table 2); whereas, in FREF and
FROKF, the throughput is reduced by approximately 70% on
average (compared to Table 3). Overall, the required through-
put of FROKF with feature compression (see Table 9) is only
about one-twentieth compared to the throughput of the con-
ventional method without feature compression (see Table 2).

2) PROCESSING LATENCY
The reduced required throughput comes at the cost of
increased computation on the mobile device and the edge
cloud. For each feature, it must be decided which coding
scheme should be used. The respective coding scheme prob-
abilities have already been reported in Table 7. The coding
schemes have different complexities, with correspondingly
varying processing latencies. Also, the used platform strongly
influences the processing latencies.

VOLUME 11, 2023 68739



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

TABLE 10. Average encoding delay [µs] per feature on various mobile
device hardware. The symbol ‘‘/’’ indicates that the run was unsuccessful.

To investigate this, we measure the processing latencies of
each feature encoding and decoding occurrence over the com-
plete course of the respective test sequences. The workstation
and the Fujitsu are used as the edge cloud and thus decoder.
The Fitlet and the Fujitsu are used as the mobile device
and thus the encoder. The Raspberry Pi 4 could not be used
with the existing feature compression C++ implementation
due to errors caused by its processor architecture. Since the
measured processing latencies and end-to-end latencies in
Section V-D are already quite high with the Raspberry Pi 4,
the additional coding processing latencies would make the
behavior even worse.

Tables 10 and 11 give the measured mean encoding and
decoding times, respectively.We report these coding latencies
separately for intra coding and for inter coding for a range of
ORBextr.nFeat values. Inter-skipping is not considered,
since the processing latency for decoding and encoding of
one feature is less than one microsecond and in combination
with the very low probabilities, the impact of inter-skipping
is negligible.

The following conclusions can be drawn from
Tables 10 and 11: The used platform has a strong impact on
the processing latency of the intra-frame encoding, as well as
on the intra- and inter-frame decoding. The test sequence has
only a minor influence. The ORBextr.nFeat value also
has no clear influence on the coding processing latencies of
the individual features.

The mean encoding and decoding processing latencies per
feature, the used ORBextracor.nFeatures value, and the cod-
ing scheme probabilities enable the calculation of the average
overall (end-to-end) encoding and decoding latencies given
in Table 12. In relation to the end-to-end latencies without
feature compression given for the Fitlet-Fujitsu combination
in Table 6, the overall encoding and decoding processing
latencies in Table 12 are relatively large. Specifically, for
ORBextr.nFeat values 1000–2000, the average feature

TABLE 11. Average decoding delay [µs] per feature on various edge
computing hardware.

TABLE 12. Average aggregate (sum) of the encoding latency and the
decoding latency [ms] per frame for different mobile device-edge
computing combinations, averaged over all test sequences.

encoding and decoding latencies in Table 12 exceed the FREF
end-to-end latencies (without feature compression) for band-
widths of 50 and 100Mbps in Table 6.

3) END-TO-END LATENCY
The measurements in Section V-E2 indicate that feature
compression adds relatively long coding processing latencies
to the end-to-end latency. On the other hand, the reduc-
tion of the frame or key frame data sizes reduces the
transmission latency. Fig. 6 shows the processing, transmis-
sion, and feature compression processing latency components
for the investigated transmission methods. For compari-
son, the latency components are also shown without feature
compression.

Fig. 6 indicates that the feature compression (coding) pro-
cessing latencies are substantially longer than the reductions
of the transmission latency, i.e., that the feature compression
does not pay off for the examined scenario. There is a thresh-
old bandwidth below which the reduction in transmission
latency due to the reduction in frame data sizes outweighs
the added processing latencies. With an ORBextr.nFeat
value of 1000 and the average data sizes measured for the
fr3 test sequence, this bandwidth is 6.29 megabits per second
(Mbps) for the conventional method and 8.84Mbps for FREF

68740 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

FIGURE 6. End-to-end latencies for conventional, FREF, and FROKF
transmission methods with and without feature compression (FC) which
incurs the coding latency; Fitlet mobile device, Fujitsu edge cloud,
100 Mbps bandwidth, and 1000 ORBextr.nFeat for fr3 test sequence.

and FROKF. Below these bandwidths, feature compression
reduces the end-to-end latency.

VI. CONCLUSION
In edge-assisted visual SLAM systems, there are several
options for the data transfer from the mobile device to the
edge cloud. These options differ in the amount of data to
be transmitted and the resulting end-to-end latency from
image capture until the corresponding data is available for
further processing on the edge cloud. This study investigated
the Analyze-Then-Compress (ATC) transmission methods.
Two novel methods, namely FREF and FROKF, were intro-
duced with the goal of reducing end-to-end latency and
required throughput. For repeatable and meaningful results,
the investigated transmissionmethodswere tested on four dif-
ferent platforms and with three benchmarking test sequences.
In addition, consideration was given to various parameters,
such as key frame creation rate and ORBextr.nFeat,
in order to obtain results that are as broadly applicable as
possible.

Compared to the conventional transmission method of
transmitting the feature representation plus tracking results of
every key frame, the FREF method (which transmits the fea-
ture representation without tracking results for every frame)
reduced the end-to-end latency down to less than one quarter
at a bandwidth of 10Mbps. However, with the FREF method,
the mobile device is forced to transmit each input frame
to the edge cloud, which increases the required through-
put above that of the conventional method. The increased
throughput comes with the advantage that the edge cloud
receives more information, which can be used to increase
accuracy. For use cases with sufficient available bandwidth,
the FREF method should provide the most reliable results.
The FROKF method (which transmits the feature represen-
tation without tracking results only for key frames) reduces
the required throughput down to less than one-fifth of the

throughput required by the conventional method. Whether
the resulting FROKF end-to-end latency is higher or lower
than that of the conventional method depends on the available
bandwidth.

To further reduce the required throughput in ATC meth-
ods, feature compression can be applied. This was also
tested experimentally in our testbed to investigate the
impact on end-to-end latency and throughput. The mea-
surements indicate that feature compression reduces the
required throughput for the FREF and FROKF methods by
approximately 70%. The measurements also indicate that
the additional encoding and decoding tasks for feature com-
pression incur significant processing latencies that exceed
the reduction in transmission latency at moderate to high
bandwidths.

Overall, our findings indicate that the choice of an appro-
priate transmission method for a specific application depends
on several factors, including the available bandwidth and the
available computation capacity on the mobile device. The
choice has an impact on the resulting end-to-end latency as
well as the required throughput. By reducing the end-to-end
latency between the mobile device and the edge cloud, the
reliability of edge-assisted visual SLAM system can gener-
ally be substantially improved. This can offer great potential
for realtime sensitive application areas, such as autonomous
driving, by enabling higher mobile device speeds. Reduced
throughput is beneficial in application areas with severely
limited bandwidths, allowing, for example, more mobile
devices to operate simultaneously in collaborative SLAM
systems.

When considering our specific measured values, it is
important to understand that they do not universally represent
all visual SLAM systems. Using other test sequences or mod-
ifying the SLAM system may lead to different measurement
values. Therefore, our measured values should be interpreted
as a reference to better understand the influence of the differ-
ent transmission methods and to demonstrate their respective
advantages and disadvantages.

In future work, the proposed new transmission methods,
which have been examined in this study for a single mobile
device, could be investigated in the context of swarm scenar-
ios where multiple mobile devices, e.g., a swarm of mobile
robots, collaborate to map and to localize themselves in an
environment [61], [62]. It would be particularly interesting to
explore heterogeneous scenarios, where the mobile devices
have different computing capabilities and different available
bandwidth, e.g., due to varied wireless signal propagation
conditions. Another direction for future research could be to
revisit the CTA methods, e.g., by exploring adaptations of
the image compression to the requirements of edge-assisted
visual SLAM systems.

REFERENCES
[1] G. Lu, H. Yang, J. Li, Z. Kuang, and R. Yang, ‘‘A lightweight real-

time 3D LiDAR SLAM for autonomous vehicles in large-scale urban
environment,’’ IEEE Access, vol. 11, pp. 12594–12606, 2023.

VOLUME 11, 2023 68741



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

[2] B. Amjad, Q. Z. Ahmed, P. I. Lazaridis, M. Hafeez, F. A. Khan, and
Z. D. Zaharis, ‘‘Radio SLAM: A review on radio-based simultaneous
localization and mapping,’’ IEEE Access, vol. 11, pp. 9260–9278, 2023.

[3] M. R. Gkeka, A. Patras, N. Tavoularis, S. Piperakis, E. Hourdakis,
P. Trahanias, C. D. Antonopoulos, S. Lalis, and N. Bellas, ‘‘FPGA acceler-
ators for robust visual SLAM on humanoid robots,’’ in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2022, p. 51.

[4] A. M. Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, ‘‘A compre-
hensive survey of visual SLAM algorithms,’’ Robotics, vol. 11, no. 1, pp.
24:1–24:27, Feb. 2022.

[5] T. Taketomi, H. Uchiyama, and S. Ikeda, ‘‘Visual SLAM algorithms: A
survey from 2010 to 2016,’’ IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1,
pp. 1–11, Dec. 2017.

[6] M. Wasala, H. Szolc, and T. Kryjak, ‘‘An efficient real-time FPGA-based
ORB feature extraction for an UHD video stream for embedded visual
SLAM,’’ Electronics, vol. 11, no. 14, Jul. 2022, Art. no. 2259.

[7] M. Aizat, A. Azmin, andW. Rahiman, ‘‘A survey on navigation approaches
for automated guided vehicle robots in dynamic surrounding,’’ IEEE
Access, vol. 11, pp. 33934–33955, 2023.

[8] X. Karamanos, Y. Karamitsos, D. Bechtsis, and D. Vlachos, ‘‘Mobile
industrial robotic vehicles: Navigation with visual SLAMmethodologies,’’
in Autonomous Vehicles Perspectives and Applications. London, U.K.:
IntechOpen, 2023.

[9] D. Esparza andG. Flores, ‘‘The STDyn-SLAM:A stereo vision and seman-
tic segmentation approach forVSLAM in dynamic outdoor environments,’’
IEEE Access, vol. 10, pp. 18201–18209, 2022.

[10] K. Lv, Y. Zhang, Y. Yu, Z. Wang, and J. Min, ‘‘SIIS-SLAM: A vision
SLAM based on sequential image instance segmentation,’’ IEEE Access,
vol. 11, pp. 17430–17440, 2023.

[11] S. Mokssit, D. B. Licea, B. Guermah, and M. Ghogho, ‘‘Deep learn-
ing techniques for visual SLAM: A survey,’’ IEEE Access, vol. 11,
pp. 20026–20050, 2023.

[12] S. Song, H. Lim, S. Jung, and H.Myung, ‘‘G2P-SLAM:Generalized RGB-
D SLAM framework for mobile robots in low-dynamic environments,’’
IEEE Access, vol. 10, pp. 21370–21383, 2022.

[13] Y. Park and S. Bae, ‘‘Keeping less is more: Point sparsification for
visual SLAM,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2022, pp. 7936–7943.

[14] J. Peng, Y. Hou, H. Xu, and T. Li, ‘‘Dynamic visual SLAM and MEC
technologies for B5G: A comprehensive review,’’ EURASIP J. Wireless
Commun. Netw., vol. 2022, no. 1, pp. 1–23, Oct. 2022.

[15] S. Yang, C. Zhao, Z. Wu, Y. Wang, G. Wang, and D. Li, ‘‘Visual SLAM
based on semantic segmentation and geometric constraints for dynamic
indoor environments,’’ IEEE Access, vol. 10, pp. 69636–69649, 2022.

[16] S. Zhang, L. Zheng, and W. Tao, ‘‘Survey and evaluation of RGB-D
SLAM,’’ IEEE Access, vol. 9, pp. 21367–21387, 2021.

[17] X. Cui, C. Lu, and J. Wang, ‘‘3D semantic map construction using
improved ORB-SLAM2 for mobile robot in edge computing environ-
ment,’’ IEEE Access, vol. 8, pp. 67179–67191, 2020.

[18] T. Chase, A. J. Ben Ali, S. Y. Ko, and K. Dantu, ‘‘PRE-SLAM: Persistence
reasoning in edge-assisted visual SLAM,’’ in Proc. IEEE 19th Int. Conf.
Mobile Ad Hoc Smart Syst. (MASS), Oct. 2022, pp. 458–466.

[19] D. Dechouniotis, D. Spatharakis, and S. Papavassiliou, ‘‘Edge robotics
experimentation over next generation IIoT testbeds,’’ in Proc. NOMS
IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2022, pp. 1–3.

[20] P. Huang, L. Zeng, X. Chen, K. Luo, Z. Zhou, and S. Yu, ‘‘Edge robotics:
Edge-computing-accelerated multi-robot simultaneous localization and
mapping,’’ 2021, arXiv:2112.13222.

[21] D. Van Opdenbosch, ‘‘Data compression for collaborative visual SLAM,’’
Ph.D. dissertation, TUM School Comput., Inf. Technol., Tech. Univ.
Munich, Germany, 2019.

[22] A. Redondi, L. Baroffio, M. Cesana, and M. Tagliasacchi, ‘‘Compress-
then-analyze vs. analyze-then-compress: Two paradigms for image anal-
ysis in visual sensor networks,’’ in Proc. IEEE 15th Int. Workshop
Multimedia Signal Process. (MMSP), Sep. 2013, pp. 278–282.

[23] M. Fukui, Y. Ishiwata, T. Ohkawa, and M. Sugaya, ‘‘IoT edge server ROS
node allocation method for multi-SLAM on many-core,’’ in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. Workshops Other Affiliated Events
(PerCom Workshops), Mar. 2022, pp. 421–426.

[24] P. Huang, L. Zeng, K. Luo, J. Guo, Z. Zhou, and X. Chen, ‘‘ColaSLAM:
Real-time multi-robot collaborative laser SLAM via edge computing,’’
in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2021,
pp. 242–247.

[25] V. K. Sarker, J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund,
‘‘Offloading SLAM for indoor mobile robots with edge-fog-cloud com-
puting,’’ in Proc. 1st Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT),
May 2019, pp. 1–6.

[26] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘FAST:
Flexible and low-latency state transfer in mobile edge computing,’’ IEEE
Access, vol. 9, pp. 115315–115334, 2021.

[27] P. Huang, L. Zeng, X. Chen, K. Luo, Z. Zhou, and S. Yu, ‘‘Edge robotics:
Edge-computing-accelerated multirobot simultaneous localization and
mapping,’’ IEEE Internet Things J., vol. 9, no. 15, pp. 14087–14102,
Aug. 2022.

[28] H. Jin, M. A. Gregory, and S. Li, ‘‘A review of intelligent computa-
tion offloading in multiaccess edge computing,’’ IEEE Access, vol. 10,
pp. 71481–71495, 2022.

[29] D. Lan, A. Taherkordi, F. Eliassen, L. Liu, S. Delbruel, S. Dustdar, and
Y. Yang, ‘‘Task partitioning and orchestration on heterogeneous edge
platforms: The case of vision applications,’’ IEEE Internet Things J., vol. 9,
no. 10, pp. 7418–7432, May 2022.

[30] L. Militano, A. Arteaga, G. Toffetti, and N. Mitton, ‘‘The cloud-to-edge-
to-IoT continuum as an enabler for search and rescue operations,’’ Future
Internet, vol. 15, no. 2, Jan. 2023, Art. no. 55.

[31] P. Sossalla, J. Hofer, J. Rischke, C. Vielhaus, G. T. Nguyen, M. Reisslein,
and F. H. P. Fitzek, ‘‘DynNetSLAM: Dynamic visual SLAM network
offloading,’’ IEEE Access, vol. 10, pp. 116014–116030, 2022.

[32] G. Younes, D. C. Asmar, and E. A. Shammas, ‘‘A survey on non-filter-
based monocular visual slam systems,’’ 2016, arXiv:1607.00470.

[33] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[34] E. Rosten and T. Drummond, ‘‘Machine learning for high-speed corner
detection,’’ in Proc. Europ. Conf. Comput. Vis., 2006, pp. 430–443.

[35] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[36] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, Jun. 2008.

[37] M. Calonder, V. Lepetit, C. Strecha, and P. V. Fua, ‘‘BRIEF: Binary
robust independent elementary features,’’ in Proc. Eur. Conf. Comput. Vis.,
Sep. 2010, pp. 778–792.

[38] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[39] L. Baroffio, A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, and
S. Tubaro, ‘‘Coding local and global binary visual features extracted
from video sequences,’’ IEEE Trans. Image Process., vol. 24, no. 11,
pp. 3546–3560, Nov. 2015.

[40] D. Van Opdenbosch, M. Oelsch, A. Garcea, and E. Steinbach, ‘‘A joint
compression scheme for local binary feature descriptors and their cor-
responding bag-of-words representation,’’ in Proc. IEEE Vis. Commun.
Image Process. (VCIP), Dec. 2017, pp. 1–4.

[41] D. Van Opdenbosch, M. Oelsch, A. Garcea, T. Aykut, and E. Steinbach,
‘‘Selection and compression of local binary features for remote visual
SLAM,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7270–7277.

[42] D. Van Opdenbosch and E. Steinbach, ‘‘Collaborative visual SLAM using
compressed feature exchange,’’ IEEE Robot. Autom. Lett., vol. 4, no. 1,
pp. 57–64, Jan. 2019.

[43] L. Riazuelo, J. Civera, and J.M.M.Montiel, ‘‘C2TAM:A cloud framework
for cooperative tracking and mapping,’’ Robot. Auto. Syst., vol. 62, no. 4,
pp. 401–413, Apr. 2014.

[44] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,
‘‘Cloud-based collaborative 3D mapping in real-time with low-cost
robots,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 423–431,
Apr. 2015.

[45] A. J. B. Ali, M. Kouroshli, S. Semenova, Z. S. Hashemifar, S. Y. Ko, and
K. Dantu, ‘‘Edge-SLAM: Edge-assisted visual simultaneous localization
and mapping,’’ ACM Trans. Embedded Comput. Syst., vol. 22, no. 1,
pp. 1–31, Jan. 2023.

[46] A. J. B. Ali, Z. S. Hashemifar, and K. Dantu, ‘‘Edge-SLAM: edge-assisted
visual simultaneous localization and mapping,’’ in Proc. 18th Int. Conf.
Mobile Syst., Appl., Services, Jun. 2020, pp. 325–337.

68742 VOLUME 11, 2023



J. Hofer et al.: Comparison of Analyze-Then-Compress Methods in Edge-Assisted Visual SLAM

[47] Y. Chen, H. Inaltekin, and M. Gorlatova, ‘‘AdaptSLAM: Edge-assisted
adaptive SLAM with resource constraints via uncertainty minimization,’’
in Proc. IEEE INFOCOM, Sep. 2023, pp. 1–12.

[48] H. Cao, J. Xu, D. Li, L. Shangguan, Y. Liu, and Z. Yang, ‘‘Edge assisted
mobile semantic visual SLAM,’’ IEEE Trans. Mobile Comput., early
access, Aug. 24, 2022, doi: 10.1109/TMC.2022.3201000.

[49] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang, ‘‘Edge
assisted mobile semantic visual SLAM,’’ in Proc. IEEE INFOCOM Conf.
Comput. Commun., Jul. 2020, pp. 1828–1837.

[50] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu, ‘‘Swar-
mMap: Scaling up real-time collaborative visual SLAM at the edge,’’ in
Proc. USENIX NSDI, Apr. 2022, pp. 977–993.

[51] S. Eger, R. Pries, and E. Steinbach, ‘‘Evaluation of different task dis-
tributions for edge cloud-based collaborative visual SLAM,’’ in Proc.
IEEE 22nd Int. WorkshopMultimedia Signal Process. (MMSP), Sep. 2020,
pp. 1–6.

[52] F. J. Romero-Ramirez, R. Muñoz-Salinas, M. J. Marín-Jiménez,
M. Cazorla, and R. Medina-Carnicer, ‘‘SSLAM: speeded-up visual
SLAM mixing artificial markers and temporary keypoints,’’ Sensors,
vol. 23, no. 4, Feb. 2023, Art. no. 2210.

[53] J. Chao, ‘‘Feature-preserving image and video compression,’’ Ph.D. dis-
sertation, TUM School Comput., Inf. Technol., Tech. Univ. Munich,
Munich, Germany, 2016. [Online]. Available: https://nbn-resolving.org/
urn:nbn:de:bvb:91-diss-20160301-1277867-1-5

[54] D. Sharafutdinov, M. Griguletskii, P. Kopanev, M. Kurenkov, G. Ferrer,
A. Burkov, A. Gonnochenko, and D. Tsetserukou, ‘‘Comparison of mod-
ern open-source visual SLAM approaches,’’ J. Intell. Robotic Syst.,
vol. 107, no. 3, Mar. 2023, Art. no. 43.

[55] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[56] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, ‘‘The EuRoC micro aerial vehicle
datasets,’’ Int. J. Robot. Res., vol. 35, no. 10, pp. 1157–1163, Sep. 2016.

[57] J. Hofer, P. Sossalla, J. Rischke, C. L. Vielhaus, M. Reisslein, and H. P. and
F. Fitzek, ‘‘Circular frame buffer to enhance map synchronization in edge
assisted SLAM,’’ in Proc. IEEE ICC, Rome, Italy, Jun. 2023, pp. 1–6.

[58] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, ‘‘ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,’’ 2020, arXiv:2007.11898.

[59] P. Sossalla, J. Rischke, J. Hofer, and F. H. P. Fitzek, ‘‘Evaluating the
advantages of remote SLAM on an edge cloud,’’ in Proc. 26th IEEE Int.
Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2021, pp. 1–4.

[60] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, ‘‘A bench-
mark for the evaluation of RGB-D SLAM systems,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robot Syst. (IROS), Vilamoura, Portugal, Oct. 2012,
pp. 573–580.

[61] S. Lee, ‘‘An efficient coverage area re-assignment strategy for multi-robot
long-term surveillance,’’ IEEE Access, vol. 11, pp. 33757–33767, 2023.

[62] E. A. A. Memon, S. R. U. N. Jafri, and S. M. U. Ali, ‘‘A rover team based
3D map building using low cost 2D laser scanners,’’ IEEE Access, vol. 10,
pp. 1790–1801, 2022.

JOHANNES HOFER (Graduate Student Member,
IEEE) received the Dipl.-Ing. degree in electrical
engineering from Technische Universität Dresden,
Germany, in 2022. His current research inter-
ests include cloud robotics and in particular the
offloading of computation in SLAM systems.

PETER SOSSALLA (Graduate Student Member,
IEEE) received the Dipl.-Ing. degree in electrical
engineering from Technische Universität Dresden
(TU Dresden), in 2019, where he is currently
pursuing the Ph.D. degree. He is a Development
Engineer with Audi. His current research interests
include robotics, V2X communication, and edge
computing.

CHRISTIAN L. VIELHAUS received theDipl.-Ing.
degree in electrical engineering from Technis-
che Universität Dresden (TU Dresden), Germany,
in 2019, where he is currently pursuing the Ph.D.
degree in electrical engineering with the Deutsche
Telecom Chair of Communication Networks.
His current research interests include machine
learning, network simulation, and congestion
control.

JUSTUS RISCHKE received the Dipl.Ing. degree
in electrical engineering from Technische Univer-
sität Dresden (TU Dresden), Dresden, Germany,
in 2017. He is currently pursuing the Ph.D. degree
with the Deutsche Telekom Chair of Commu-
nication Networks. His current research inter-
ests include network coding and reinforcement
learning in software-defined networks (SDN) for
low-latency communication.

MARTIN REISSLEIN (Fellow, IEEE) received the
Ph.D. degree in systems engineering from the Uni-
versity of Pennsylvania, Philadelphia, PA, USA,
in 1998. He is currently a Professor with the
School of Electrical, Computer, and Energy Engi-
neering, Arizona State University (ASU), Tempe,
AZ, USA. He is an Associate Editor of IEEE
ACCESS and IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT. He currently serves as the
Area Editor for Optical Communications of IEEE

COMMUNICATIONS SURVEYS AND TUTORIALS and a Co-Editor-in-Chief for Opti-
cal Switching and Networking.

FRANK H. P. FITZEK (Senior Member, IEEE)
received the Dipl.-Ing. degree in electrical engi-
neering from Rheinisch-Westfälische Technis-
che Hochschule (RWTH) Aachen University,
Germany, in 1997, and the Ph.D. (Dr.-Ing.) degree
in electrical engineering from Technische Univer-
sität Dresden, Germany, in 2002. He is currently a
Professor and the Head of the Deutsche Telekom
Chair of Communication Networks, Technische
Universität Dresden, where he is coordinating the

5G Laboratory Germany. He is the Spokesman of the DFG Cluster of
Excellence CeTI.

VOLUME 11, 2023 68743

http://dx.doi.org/10.1109/TMC.2022.3201000

