
Received 10 June 2023, accepted 26 June 2023, date of publication 28 June 2023, date of current version 7 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3290620

LCRM: Layer-Wise Complexity Reduction Method
for CNN Model Optimization on End Devices
HANAN HUSSAIN 1, P. S. TAMIZHARASAN 1, (Member, IEEE),
AND PRAVEEN KUMAR YADAV 2, (Member, IEEE)
1Department of Computer Science and Engineering, BITS Pilani, Dubai Campus, DIAC, Dubai, United Arab Emirates
2Atlastream Pte Ltd., Singapore 208833

Corresponding author: P. S. Tamizharasan (tamizharasan@dubai.bits-pilani.ac.in)

The work of Hanan Hussain was supported by the Ph.D. Research Fellowship with BITS Pilani, Dubai Campus.

ABSTRACT The increasing significance of state-of-the-art convolutional neural network (CNN) models in
computer vision tasks has led to their widespread use in industry and academia. However, deploying these
models in resource-limited environments, such as IoT devices or embedded GPUs, presents challenges due to
increased complexities and resource consumption. This research paper proposes an optimization algorithm
called Layer-wise Complexity Reduction Method (LCRM) to address these challenges by converting
accuracy-focused CNNs into lightweight models. It evaluates the standard convolution layers and replaces
themwith themost efficient combination of substitutional convolutions based on the output channel size. The
primary goal is to reduce the computational complexity of the parent models and the hardware requirements.
We assess the effectiveness of our framework by evaluating its performance on various standard CNN
models, including AlexNet, VGG-9, U-Net, and Retinex-Net, for different applications such as image
classification, optical character recognition, image segmentation, and image enhancement. Our experimental
results show up to a 95% reduction in inference latency and up to 93% reduction in energy consumption
when deployed on GPU. Furthermore, we compare the LCRM-optimized CNN models with state-of-the-art
CNNoptimizationmethods, including pruning, quantization, clustering, and their four cascaded optimization
methods, by deploying them on Raspberry Pi-4. The profiling experiments performed on each model
demonstrate that the LCRM-optimized CNN models achieve comparable or better accuracy than the parent
models while providing added benefits such as a 62.84% reduction in inference latency on end devices with
significant memory compression and complexity reductions.

INDEX TERMS Convolution neural network, efficient models, optimization techniques, IoT applications,
performance metrics, Raspberry pi.

I. INTRODUCTION
Convolution neural networks (CNN)s are mainly designed
to process data in multidimensional arrays like images and
videos. The basic structure of a CNN consists of two main
parts called (a) feature extraction, where the convolution
techniques are used to extract the intrinsic representations of
the input images and (b) classification, in which the studied
features are used to predict the class of the given image.
Different layers like convolutional, pooling and fully con-
nected layers are usually stacked to form a CNN. Additional

The associate editor coordinating the review of this manuscript and

approving it for publication was Xianzhi Wang .

layers like dropout or batch normalization layers are added to
regularize or reduce overfitting.

CNNs’ can be further divided into two types: i) accuracy-
oriented models and ii) lightweight models, based on their
number of parameters and the complexity of the com-
putations [1]. Accuracy-oriented models focus mainly on
accuracy measurement without considering the complexity
of the underlying operations. One of the earliest examples
in this category is AlexNet [2], which is a base model for
many other CNN architectures like VGG16 and VGG19 with
sixteen to nineteen more extended layers [3]. Some recent
models include the Inception series [4], DenseNet [5], and
ResNet [6]. These models are computationally expensive

66838
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4669-4402
https://orcid.org/0000-0002-4932-5127
https://orcid.org/0000-0001-8634-1110
https://orcid.org/0000-0001-9582-3445


H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

and typically run on resource-rich environments like cloud
GPUs or servers. The second category comprises lightweight
CNN models that operate in resource-constrained environ-
ments like embedded devices, IoT, or edge devices [7]. The
depth size of these models is less than accuracy-oriented
models, which reduces the computations and the number
of underlying parameters. Some of the examples of such
CNN models are SqueezeNet [8], MobileNet v1 and v2 [9],
ShuffleNets [10], and EfficientNets [11].

CNNs have proven to be highly effective in various appli-
cations. They have achieved state-of-the-art performance
in image classification, object detection and recognition
tasks [12]. In one-dimension data, CNNs have demonstrated
success in tasks such as speech processing [13], time series
classification tasks [14], and intrusion detection system [15].
The versatility and superior performance of CNNs have
significantly impacted industries and advanced the field of
artificial intelligence.

The main challenge in the portability of different types
of CNN models between resource-rich and resource-limited
environments is maintaining the balance between the required
performance and the available resources likememory, energy,
and computation power [16]. Hence, the optimization study
must consider the resources mentioned above, complexity
factors affecting the resources such as the number of parame-
ters, floating-point operations, and other performancemetrics
like throughput and inference latency. Additionally, the most
recent models are mainly optimized for inference rather
than for the training phase. Even though the inference effi-
ciency will help the model to accelerate its performance,
understanding the training efficiency of a model is also essen-
tial as it unlocks the possibility of on-device learning on
resource-limited devices. Thus, to overcome such limitations,
we propose the Layer-wise Complexity Reduction Method
(LCRM), which redesign the existing CNN with the follow-
ing objective: (i) to reduce the computational complexity of
the model, (ii) to improve the hardware resource utilization
without affecting the performance.

The key contributions of this paper are as follows:

1) We introduce a novel optimization framework known
as the layer-wise complexity reduction method
(LCRM), which effectively reduces the computa-
tional complexity of accuracy-oriented CNNmodels in
section III-A. Our proposed framework addresses the
challenge of optimizing CNN models by specifically
targeting resource-constrained end devices.

2) We analyze the training efficiency and testing effi-
ciency of the LCRM-optimized CNN models in
terms of (i) Complexity by calculating the reduc-
tion in parameters and floating point operations IV-B.
(ii) Performance metrics according to the application
like accuracy, inference latency, precision, PSNR etc.
(iii) resource utilization including CPU and GPU uti-
lization, energy consumption, memory consumption
and memory compression in section IV-C.

3) We evaluate the effectiveness of the LCRM frame-
work by optimizing standard CNN models, including
AlexNet, VGG-9, U-Net, and Retinex-Net, for four
different applications: image classification, optical
character recognition, image segmentation, and image
enhancement in section IV-D. Through these evalua-
tions, we demonstrate the versatility and applicability
of our framework in enhancing the performance of
CNN models across diverse tasks.

4) We assess the performance of the LCRM technique
against existing state-of-the-art optimization tech-
niques such as quantization (Q), pruning (P), clustering
(C) and cascaded optimization techniques, including
sparsity preserving clustering (PC), sparsity preserv-
ing quantization (PQ), cluster preserving quantization
(CQ), and sparsity and cluster preserving quantiza-
tion (PCQ) in section IV-E. By comparing the results,
we demonstrate how LCRM outperforms these tech-
niques regarding model optimization and efficiency.

We assess the feasibility of performing inference by
deploying models to the Raspberry Pi and GPU platforms,
highlighting the practicality and efficiency of the LCRM
technique.

The remainder of the paper is arranged as follows:
In section II, we reviewed related works in the litera-
ture, followed by the methodology section of the proposed
algorithm, complexity derivations, and profiling methodol-
ogy of different performance metrics. Section IV explains
the experimental setup and hardware parameters’ profiling
results. Section V answers all four research questions defined
in the paper and discusses some of the shortcomings of
the methodology. Finally, we will conclude the work in
section VI while discussing possible future directions.

Our experiments and the framework are available at the fol-
lowing code repository: https://github.com/hana-an/LCRM.

II. RELATED WORKS
This section discusses related works about the techniques that
improve the efficiency of CNN models and the profiling of
different CNN models.

(i) The efficiency of a deep learning model can be achieved
in many ways, but most of the techniques in the literature
consider the following four criteria [17]:

(a) Common optimization techniques involving quanti-
zation, clustering, or pruning are used to compress the
network layers with a minor trade-off in accuracy [18].
The TensorFlow framework provides an API that can use
the above techniques. The total parameters of any CNN
model involve both trainable and non-trainable parameters.
Trainable parameters are values modified according to their
gradient (the error/loss/cost derivative relative to the param-
eter). In contrast, non-trainable parameters are those values
that are not optimized according to their gradient. Applying
the classic optimization techniques increases the amount of
non-trainable parameters considerably.

VOLUME 11, 2023 66839



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

Other ensemble optimization techniques include cascaded
PCQ, which involves quantization, clustering, and prun-
ing [19]. Additionally, deep compression techniques involve
pruning, quantization, and Huffman coding to compress and
optimize model parameters [20]. Another approach involves
compressing deep CNNs in the frequency domain using tech-
niques like Discrete Cosine Transform (DCT), clustering, and
quantization [21]. These methods employ hybrid optimiza-
tion techniques that involve a combination of optimization
techniques to compress the final CNN model.

However, our proposed framework focuses on the
channel-wise reduction in total computation by separating the
standard convolution into two distinct steps. The first step
involves depthwise convolution, which performs a separate
convolution for each input channel. The second step involves
pointwise convolution, which applies a 1 × 1 convolution to
combine the output channels. This architectural design choice
based on the input and output channels of the parent model
layers allows efficient computation while maintaining the
representational power of the CNN.

(b) Knowledge distillation techniques like transfer learning
use fewer data so that models can converge faster with less
prediction error [22]. The previously learned knowledge from
the data is used for training the new model, thereby reducing
the training time [23].

(c) Hyperparameter search using automated algorithms to
search the hyperparameters such as epochs, number of lay-
ers, or optimizers until the model returns the sequence with
the highest accuracy [24]. Examples include grid search or
parameter sweep and random search [25]. Similar algorithms
like neural architecture search (NAS) return the model archi-
tecture itself [26]. An example of the NAS returned model is
the EfficientNet-B0.
(d) Efficient architectures developed from scratch to

change the parent model significantly. A simple example is
the introduction of convolution layers in computer vision
applications instead of fully connected layers. The convo-
lution layer made parameter sharing easier and reduced the
requirement to learn separate weights for each pixel.

(ii) Profiling and performance evaluation of the deep learn-
ing models:

In [27], the authors studied the training performance,
resource utilization, and power efficiency of sixteen deep
learning models implemented on embedded GPU [28].
However, optimization techniques required for the efficient
processing of the model are not explored. In contrast, our
work focuses on an optimization technique along with deep
learning models, training profiling, and the profiling of CNN
inference. Many works in the literature analyze the perfor-
mance and hardware utilization of matrix multiplication and
2D convolution operations in a high-end environment with
multiple GPUs and TPUs [29], [30], [31].

Recent work in [32] analyzed the forward and backward
pass of the CNN training algorithm and measured peak
memory consumption. In contrast, the authors Ren et al. [33]

considered both CNNs and BERTs [34] to analyze through-
put by changing different optimization techniques and
workloads. Li et al. [35] profiled the performance of two
CNN-based models for image classifications on NVIDIA
TITAN RTX. They found a significant latency throughput
trade-offs exist when parameters like activation functions,
loss functions, optimizers, epochs, or batch size are changed.
Unfortunately, the above works only study the quality of
CNNs. On the contrary, we profile and analyze the quality
parameters like accuracy and the resource utilization of the
models.

III. METHODOLOGY
In this section, we discuss the proposed LCRM algorithm
that converts the parent model to an optimized version in dif-
ferent scenarios. We also describe the types of substitutional
convolutions applied in the algorithm and calculate their com-
putational complexity for comparison. The rationale behind
substituting the standard convolution layers with other types
of convolution layers (or a combination of different convolu-
tion layers) is to reduce the number of model parameters and
resource requirements such that they are easily deployable on
end devices [9]. Finally, we introduce a profiling workflow
methodology of different performance metrics to evaluate the
resource reductions during the training and inference process.

A. LCRM METHODOLOGY
The proposed LCRM algorithm optimizes each convolution
layer of the parent CNN model to generate the optimized
set of new layers. The algorithm requires the standard con-
volution layer L, input channel size M , and output channel
size N as input. Based on the input and output channel sizes
M & N , the algorithm analyzes and replaces the L with a
set of substitutional layers except for the initial and final
classification layers. The replacement is done with the most
optimized available choices of convolution layers L so that its
output shape remains the same while reducing the number of
parameters and operations. The algorithm’s output gives the
optimized layer L ′ and changes the number of parameters δP
after the layer-wise optimization.

There are three cases of the LCRMalgorithm (Algorithm1),
namely up-scaling, down-scaling, and no scaling:

1) UPSCALING (CASE 1)
Upscaling occurs when the input channel size M of the con-
volution layer L is less than the output channel size N . There
are two cases in this section, they are:

• Case 1.1: When M mod N is zero, the algorithm cal-
culates the multiplier m1 (such that m1 ∗ M = N ) and
replaces the existing standard convolution with depth-
wise separable convolution. The replacedws() function
takes the CNN layer L,m1 and returns the depthwise
convolution layer L ′ by keeping all other hyperparam-
eters of the L unchanged.

66840 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 1. (a) standard convolution from parent model. (b) case 1.1, upscaling: replacing (1.a) with depthwise separable convolution. (c) case 1.2,
replacing (1.a) with a combination of depthwise separable and pointwise convolution. (d) case 2, downscaling: replacing (1.a) by point-wise convolution.

• Case 1.2: When M mod N is not equal to zero: Here,
the algorithm replaces input layer L with (a) pointwise
convolution layer and (b) depthwise separable con-
volution layers, followed by depthwise concatenation.
The substitution requires two functions, replacedws()
and replacepws(), to be applied on layer L to return
depthwise-separable convolution and pointwise con-
volution, respectively. The algorithm also evaluates
function parametersm2,m4 required to pass to the func-
tion using simple calculations given in the algorithm.
The values arem2=(N%M ),m3=N−m2) andm4, where
M ∗m4 = m3. Both functions return a set of layers, and
the final function concatenate() performs a depthwise-
concatenation operation.

2) DOWNSCALING (CASE 2)
Downscaling occurs when the input channel size M of the
convolution layer L is greater than the output channel size N .
Here, the algorithm uses replacepws() function to replace the

current convolution with a pointwise convolution layer and
keeps all the hyperparameters of layer L as such, except the
kernel parameters. The size of the kernel is [1∗1∗M ], and the
number of kernels m5 is N in number. The newly added L ′ is
returned from the function and saved for later computations.

3) NO SCALING (CASE 3)
No scaling requires when the input channel size M of the
convolution layer L is equal to the output channel sizeN .This
case can be considered similar to upscaling (case 1.1) when
multiplier m1 equals 1, where the input standard convolution
layer L is replaced with depthwise separable layer L ′ having
the same number of channels.

All the cases are diagrammatically represented in Figure 1
and given in Algorithm 1. The variables used in the Algorithm
are summarized in Table 1 For all the cases, the proposed
method calculates the total parameter of the input standard
convolution layer L and the output convolution layer L ′ and
finds their difference to return as the output from the LCRM.

VOLUME 11, 2023 66841



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

Algorithm 1 LCRM
1: LCRM (L,M ,N ) ▷ inputs to the algorithm
2: ifM <= N then ▷ upscaling channels or no scaling
3: if (N%M ) = 0 then ▷ case 1.1, case 3
4: m1= N /M
5: L ′← replacedws(L,m1)
6: else ▷ case 1.2
7: m2← (N%M )
8: l1← replacepw(L,m2)
9: m3← (N − m2)

10: m4← m3/M
11: l2← replacedws(L,m4)
12: L ′← concatenate(L, l2)
13: end if
14: else ▷ downscaling channels case 2
15: L ′← replacepw(L,m5)
16: end if
17: P1← calcparam(L)
18: P2← calcparam(L ′)
19: δP← P1− P2
20: return L ′, δP ▷ output from the algorithm

TABLE 1. Variables and their corresponding descriptions.

Rationale Behind the Selection of Substitutional Layers:
The grid search and linear search algorithm resolve the
challenge of selecting the architecture type of substitutional
layer(s) from various convolutions and hyperparameters
available in the literature. The search algorithm execution
returns seven sets of optimized models with different substi-
tutional convolutions. The most optimized model is selected
based on two factors: (i) reduced computational complexity
and (ii) less reduction of test accuracy. We have described the
grid search, hyperparameter search, different substitutional
layers of returned optimized models, their computational
complexity, and the finalization of LCRM substitutional lay-
ers in the Appendix A.

B. CONVOLUTION TECHNIQUES
In this section, we discuss the parameters calculation and
complexity of the computations in substitutional convolutions

FIGURE 2. Standard convolution.

FIGURE 3. Depthwise separable convolution.

layers used in the LCRM algorithm. The layers are
(a) standard convolution, (b) depthwise separable convolution
containing: depthwise convolution, and pointwise convolu-
tion or point-by-point convolution in different combinations.

1) STANDARD CONVOLUTION
In a standard convolution, if the input data is of size [Hi ∗
Wi ∗ M ], it implies that the input image is of dimension Wi
and Hi withM channels. Any convolution operation requires
N filters or kernels to generate an output feature map of size
[Hj ∗ Wj ∗ N ]. The kernels are convolved with input data
to form the output feature map [2]. Consider Figure 2. Here
the number of multiplications in 1 convolution operation is
the size of filter = k ∗ k ∗ M . Since the process involves
N such filters that stride over the input data vertically and
horizontally in Hj andWj times, the total multiplications now
become N ∗ Hj ∗Wj∗(multiplication per convolution).
Therefore, the total no of multiplications in standard con-

volution = N ∗ Hj ∗Wj ∗ (k ∗ k ∗M ).

2) DEPTHWISE SEPARABLE CONVOLUTION
Depthwise separable convolution is a combination of depth-
wise convolution and pointwise convolution [36].

(a) Depthwise convolution: In depth-wise convolution, the
convolution operation takes each channel separately for pro-
cessing. GivenM channels in the input data, we needM filters
for convolution, as the output will be of size [Hj ∗Wj ∗M ] as
shown in Figure 3 (a). Thus filters should have size [k ∗ k ∗
1] with M numbers. Here the single convolution operation
requires k ∗ k ∗ 1 multiplications, and the filter strides over
by Hj ∗Wj times across all theM channels.

66842 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

Therefore, the total number of multiplications in depthwise
convolution = M ∗ Hj ∗Wj ∗ k ∗ k

(b) Pointwise convolution. A pointwise convolution exe-
cutes a 1×1 convolution operation on the M input channels,
shown in Figure 3 (b). So the filter should be of size [1∗1∗M ]
and N . Such filters are required to generate an output of size
[Hj ∗Wj ∗N ]. A single convolution operation requires 1 ∗M
multiplications, and the filter strides over by Hj ∗ Wj times.
Thus the total number of multiplications becomes 1∗M ∗Hj∗
Wj∗ number of filters.

Therefore, the total no of multiplications in pointwise con-
volution = M ∗ Hj ∗Wj ∗ N .

However, the complete depthwise separable requires the
sum of depth-wise convolution multiplications + Pointwise
convolution multiplications.

Therefore, the total multiplications,
= (M ∗ Hj ∗Wj ∗ k ∗ k) + (M ∗ Hj ∗Wj ∗ N )
= M ∗ Hj ∗Wj ∗ (k2 + N )

C. PARAMETER AND COMPLEXITY CALCULATION OF
LCRM CONVOLUTIONS
This section evaluates the parameter and complexity reduc-
tion for each case of LCRMby comparing it with the standard
convolution from the equations derived from the previous
sections (B.1 and B.2) to show the efficacy of the proposed
algorithm.

Let the total number of trainable parameters in the standard
convolution be P0 (without considering bias values), and the
number of floating-point calculations is F0 in a standard
convolution process.

P0 = k ∗ k ∗M ∗ N (1)

F0 = k ∗ k ∗M ∗ N ∗ Hj ∗Wj (2)

The following subsection describes the different cases of
the LCRM algorithm and their parameter and floating-point
operation calculation reduction with regard to standard
convolution.

1) CASE 1: UPSCALING
Upscaling is of two types: cases 1.1 and 1.2.

(a) Case 1.1 in upscaling occurs whenM < N andM mod
N is zero (or, m1 ∗ M = N ). Here the algorithm replaces
standard convolution with a depthwise separable convolution.
As already discussed, depthwise separable convolution con-
sists of both depthwise and pointwise convolution. Thus, the
following simplified equation of the number of parameters
P1.1 and floating-point operation F1.1 will have the terms
from both the convolutions mentioned above.

P1.1 = (k2 ∗M )+ (M ∗ N ) (3)

F1.1 = (k2 ∗ Hj ∗Wj ∗M )+ (M ∗ N ∗ Hj ∗Wj) (4)

We derive the reduction in the number of parameters and
floating-point operation with respect to the standard convo-
lution by calculating the ratio between equations (3) and (1)

and the ratio between (4) and (2), respectively.

P1.1
P0
=

1
N
+

1
k2

(5)

F1.1
F0
=

1
N
+

1
k2

(6)

The simplified results from (5) and (6) show that the num-
ber of parameters and floating-point calculations of the
depth-wise separable convolution is only 1

N +
1
k2

times the
standard convolution. Thus there is a lessening in the param-
eter and computing cost of the proposed model in case 1.1.

(b) case 1.2 in upscaling happens when M < N and M
mod N is not equal to zero. Here the algorithm replaces
standard convolution with a pointwise convolution with m2
filters and a depthwise separable convolution with m4 times
M filters), followed by a depth-wise concatenation to form a
new feature map. Here P1.2 and F1.2 represent the parameters
and operations of both pointwise convolutions (RHS term1)
and depthwise separable (term 2 and term 3), respectively.

P1.2 = (M ∗ m2)+ (k2 ∗M )+ (M ∗ (M ∗ m4)) (7)

F1.2 = Hj ∗Wj[(M ∗ m2)+ (k2 ∗M )+ (M ∗ (M ∗ m4))]
(8)

Reduction in the number of parameters and floating-point
operations compared to the standard convolution:

P1.2
P0
=

1
k2N

(m2+M ∗ m4)+
1
N

(9)

As seen in Figure 1, (c), The algorithm derives a new
feature map of the shape [Hj ∗Wj ∗N ] by using the depthwise
concatenation of two feature maps of size [Hj ∗Wj ∗m2] and
[Hj ∗ Wj ∗ (M ∗ m4)]. The term (m2 + M ∗ m4) is equal to
N as the algorithm ensures that the input and output shape
of feature maps and channels remains the same as that of
the parent model. Therefore, by replacing the above term in
equation 9, we get:

P1.2
P0
=

1
N
+

1
k2

(10)

Similarly, the ratio between the operations is:

F1.2
F0
=

1
N
+

1
k2

(11)

The inference from the above results shows a considerable
reduction in parameters and operations identical to case 1.1.

2) CASE 2: DOWNSCALING
Downscaling occurs whenM > N . In this case, the algorithm
replaces the standard convolution with a pointwise convo-
lution with N filters of size [1 ∗ 1 ∗ M ]. The number of
parameters and operations in pointwise convolutions is:

P2 = 1 ∗ 1 ∗M ∗ N (12)

F2 = M ∗ N ∗ Hj ∗Wj (13)

We calculate the ratio of equations (12) and (1) to find
the reduction in the number of parameters and the ratio

VOLUME 11, 2023 66843



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 4. Profiling workflow.

TABLE 2. Comparison between the complexities of standard convolution
and types of convolution operations in LCRM along with their ratios.

between (13) and (2) to find the reduction in the number
of floating-point operations of pointwise convolution with
respect to the standard convolution. The ratio between param-
eters is:

P2
P0
=

1
k2

(14)

Similarly, the ratio between the operations is:

F2
F0
=

1
k2

(15)

Here the P2 and F2 values are reduced up to 1
k2

times of
standard convolution parameters and operations.

3) CASE 3: NO SCALING
No scaling occurs when M = N is a particular case of 1.1.
when M=N, the multiplier m1 defined in the algorithm is
1 for the termM ∗m1 = N . Hence, the calculated parameters,
operations, and ratio remain the same as equations (5) and (6).

We summarise the complexity for standard convolution
and each case of the LCRM algorithm along with the ratio
of complexity for different cases of LCRM with the standard
convolution in Table 2. We can see an apparent reduction in
the complexity of all the cases.

D. PROFILING METHODOLOGY
In this section, we present profiling workflow, different per-
formance metrics, tools for evaluating training and inference

of the base model and LCRM generated model as shown
in Figure 4. The profiling method involves the execution
of an optimized LCRM model and its log file generation
during the training and inference process. During the process,
we ignore warmup files (log files generated during the first
three epochs) from the profiler and use the remaining log files
for further study on training efficiency and testing efficiency.
The following subsections discuss the performance metrics
with examples and their respective profilers.

1) THROUGHPUT AND LATENCY
The throughput metric evaluates the efficiency of the training
process and is defined as the number of images processed
during the training per second. However, latency is more
suitable for assessing inference and is defined as the time
required to classify a single image and is represented as
seconds per inference [37]. For example, when we train the
base model using a batch size of 16 and an average step time
of 200 milliseconds (0.2 seconds), the training throughput is
16/0.2= 80 images per second. If the same model takes 100s
to classify the test dataset of 10000 images, then the inference
latency is 100/100000 = 0.01 seconds per image inference.

2) MODEL ACCURACY
The accuracy is defined as the number of images correctly
classified with respect to the total number of images in the
dataset [38]. The equation for accuracy calculation is:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(16)

3) ENERGY CONSUMPTION
A Python library called PyJoules profiles the GPU’s energy
consumption during training and inference at different batch
sizes. It measures the energy footprint of a host machine and
the execution of a piece of python code to return the execu-
tion duration and the energy consumed in microjoules. The

66844 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

profiling workflow calculates the energy consumptions at dif-
ferent workloads during model training and inference, [39].

4) HARDWARE UTILIZATION
Hardware utilization contains CPU utilization and GPU uti-
lization [40]. CPU utilization is defined as the system’s usage
of processing resources or the amount of work handled by a
CPU. The metric is estimated using the psutil library.
The GPU utilization is defined as how frequently GPU is

active (TGPUactive ) during the model training (Ttotal). In con-
trast, the GPU idle ratio is the percentage of the training time
that the core is idle. GPU utilization should be maximum,
and the idle ratio should be low to increase throughput. The
equation for calculation:

GPUutilization =
TGPUactive
Ttotal

∗ 100 (17)

GPUIdleRatio = 1− GPUutilization (18)

5) PEAK MEMORY CONSUMPTION
A model’s peak memory consumption (PMC) is the maxi-
mum memory used for training. For example, At batch size
256, MobileNet V2 (3.5M parameters) consumes 4.18 GiB of
memory when trained from scratch. The TensorBoard mem-
ory profiler quantifies the peak memory consumption of the
training process, whereas the Memprofiler library quantifies
the memory utilization during the inference on Raspberry pi.

6) MODEL MEMORY FOOTPRINT
Memory requirement refers to the amount of secondarymem-
ory that a model requires to store or deploy them efficiently.
The profiling workflow needs the optimized model and gen-
erated weights to convert into a compressed version for
compression comparison. Moreover, we need TFLite models
for deployment to targeted machines like IoT devices or end
devices. The TensorFlow Lite framework helps in such tiny
hardware device deployment. Hence, converting the Tensor-
Flow model to a TFLite model is another option to calculate
the memory footprint.

IV. EXPERIMENT EVALUATION
A. EXPERIMENTAL SETUP
• Hardware specifications: Intel Core i7-9750H, 16 GB
RAM, NVIDIA Tesla K80 GPU (training), NVIDIA
Geforce GTX 1650 (4 GB) (training and inference),
Raspberry pi 4 Model B (inference only);

• Software requirements: Python 3.8, Tensorflow-GPU,
Keras, Cuda Toolkit, CuDNN, PyJoules, Memprofiler;

• Datasets: CIFAR-10 for image classification, EMNIST
[41] for optical character recognition (OCR), LOL
(LOw-Light) Dataset [42] for image enhancement and
Kaggle data science bowl 2018 dataset [43] for image
segmentation.

• Parent models: AlexNet is selected to show how the
LCRM algorithm works in all the defined conditions
(case 1 to case 3) in the image classification application.

TABLE 3. Reduction in floating-point operations for each case given in
the above example.

Other parent models considered include VGG-9 [3] for
optical character recognition, Retinex-Net’s decomposi-
tion net [42] for image enhancement and U-Net [44] for
image segmentation.

B. LCRM RESULTS
To evaluate the LCRM algorithm on Alexnet, we divide all
the layers into blocks D1 to D6, as shown in Table 4. We keep
the middle convolution layers of AlexNet from D2 to D5 as
such and modify only the initial convolution in D1 (such that
LCRM case 1 applies to convolution in D2 for demonstra-
tion). We also modify the final classification layers D6 to fit
into the CIFAR-10 dataset.

However, the modification of convolution layers in D1 and
D6 will not come under any defined cases in the LCRM
algorithm and has zero impact on optimizing calculation.
Table 4 shows the parent models in different blocks and their
corresponding substitution of LCRM layers, the total number
of parameters, and percentage reduction. In summary, there
is a reduction of 31.25% parameters, which is from 11.2 M
(parent model) to 7.7 M (LCRM-generated model).

Table 3 further shows the number of floating-point oper-
ations of both the models and their percentage reduction,
excluding bias terms. The results are calculated using the
corresponding equations given for each case of the LCRM
model. For example, to obtain the number of operations in
cases 1.1, 1.2, 2, and 3, we are using equations 4, 8, 13, and 4,
respectively. As observed in Layers D6, from the Table, our
analysis excludes the final fully connected or dense layers of
the CNN. Our specific focus is on reducing the layer-wise
complexity of standard convolutional layers, which is rele-
vant to accuracy-oriented network architectures and various
computer vision applications.

C. PROFILING RESULTS
The profiling methodology ignores the first three training
steps and their log files since the TensorFlow runtime system
often uses initial steps to study underlying hardware architec-
ture features like cache capacities or memory access latency
to achieve optimization.

1) TRAINING THROUGHPUT
The training throughput of CNN models increases as the
batch size increases, as seen in Table 5. As we change batch
size from 16 to 256, the throughput changes from 131-124

VOLUME 11, 2023 66845



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

TABLE 4. Comparison between the accuracy-oriented parent model and LCRM-generated optimized model.

and 555 - 792 images/ second in the parent and LCRM- -
generated models, respectively. It is due to the increase in
parallel computations and the batch size increase. The result
implies that the LCRM algorithm speed up the throughput to
5x-6x times.

2) TESTING ACCURACY
The TensorFlow parent and LCRM-generated model obtain
comparable testing accuracies, such as 0.8274 and 0.8279,
respectively. The parent model converges at a 0.0001 learn-
ing rate for the Adam optimization algorithm. In contrast,

66846 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

TABLE 5. Training throughput of CNN models at different batch size.

TABLE 6. Inference latency at various batchsize on NVIDIA-GPU 1650.

our proposed model requires more training epochs to con-
verge the model with the same hyperparameters. At epoch
25, the parent model converges to 0.8274, whereas the
LCRM-generated model reaches only 0.8011; however,
at epoch 45, the model outperforms slightly to reach 0.8279.
The point of convergence is found by setting the patience
parameter as two. This setting makes the training process
efficient by stopping the algorithm and updating the model’s
parameters to return the converged model when further itera-
tions do not significantly improve the model’s loss/accuracy
values.

3) INFERENCE LATENCY
Inference latency per image decreases as we increase the
batch size and remains the same at higher batch sizes for both
CNN models. Additionally, the LCRM-generated model’s
inference latency was reduced to 94% -95%, as seen in
Table 6. It is due to the reduction of floating operations in
the new model compared to the parent model.

4) GPU ENERGY CONSUMPTION DURING TRAINING
For the GPU-accelerated CNN models, as the batch size
increases, there is a slight decrease in the GPU energy con-
sumption. Figure 5 (a) shows the average energy consumed
per epoch in microjoules at different batch sizes. Among the
two models, the LCRM model reduced the energy consump-
tion by 82% - 85% compared to the parent model. It is due
to the reduction in the total time required to train the model
concerning the increase in batch size.

5) ENERGY CONSUMPTION DURING INFERENCE
Similar to the training energy consumption of GPU, the
energy consumption per inference also reduces as we increase
the workload. Fig: 5 (b) shows the average energy consumed
per epoch in picojoules at different workloads. Among the
two models, the LCRM model has energy consumption per
inference by 91% to 93% compared to the parent model.

FIGURE 5. (a) GPU energy consumption per epoch during the training
process at different batch sizes and (b) Energy consumption per inference
at the different batch sizes.

6) GPU UTILIZATION
GPU utilization increases as the batch size increases for all
CNN models. The LCRM-generated model’s GPU utiliza-
tion seems inefficient compared to its parent model when
the batch sizes are small. However, at batch size 256, both
reach a comparable value and seem to be at the highest GPU
utilization of 96.5%, and 97.8% for the parent and LCRM
generated models, respectively, as shown in Table 7. The
Table considers the GPU idle ratio (or 1 − GPUutilization) as
equations 17 and 18. Another inference from the experiment
shows a trade-off between batch size, PMC, and GPU utiliza-
tion. Hence a suitable batch size must be considered while
training to better PMC and GPU utilization.

According to Lu and Zhang [45], the depthwise separable
convolutions (substitutional layers of the proposed model)
cannot make effective use of the GPU parallelism when the
batch size is small (< 256). We also observed similar results
showing an ineffective use of GPU resources (memory and
work distribution) leading to low GPU utilization in Table 7.

7) PEAK MEMORY CONSUMPTION
As already discussed, peak memory consumption (PMC) is
one of the critical limitations while training a CNN model.
Consider the Table 7, which quantifies the peak memory used
by the model during the training period at the different work-
loads. As the workload increases, PMC also increases due to

VOLUME 11, 2023 66847



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

TABLE 7. GPU utilization and PMC.

the demand for storing more data while training. However,
our proposed algorithm shows a reduction in the elevated
memory consumption from 25% to 34% when compared to
the parent model.

8) INFERENCE ON RASPBERRY PI
The TensorFlow models have formats like the saved model
format, Keras, or KerasH5 format. However, resource-
constrained devices like raspberry pi require TensorFlow
Lite (TFLite) format for deployment. To convert the orig-
inal TensorFlow model to a TFLite model (an optimized
FlatBuffer format identified by the.tflite file extension),
we use a TensorFlow Lite converter. A model evaluation
is essential before attempting the conversion. The evalua-
tion determines if the model’s contents are compatible with
the TFLite format. Also, it checks if the model is a good
fit for mobile and edge devices in terms of the model’s
data, hardware processing requirements, and total size and
complexity.

The experiment workflow ignores the classic optimization
techniques like quantization and pruning before the con-
version to avoid further test accuracy degradation. (i.e., the
testing accuracy reported in the previous section for both
models remains the same even after the TFLite conver-
sion due to the absence of lossy compression-optimization
techniques). The inference latency results show that the
TFLite version of the parent model took 3310.49 s, and
the TFLite - LCRM generated model took only 1230.91 s
to infer 10000 test images on the selected IoT device. This
outcome implies that the proposed optimization technique
could reduce the end device inference latency up to 62.82%.

9) MEMORY FOOTPRINT
We summarize the memory requirement for storing different
model formats like KerasH5 format, its compressed format,
and TFLite versions in the Table 8. A helper-zip function in
python compresses the parent and LCRM-generated models
in saved kerasH5 format to generate the compressed (zipped)
version. TFLite versions are essential when the original Ten-
sorFlow models are incompatible with resource-constrained
devices, as many end devices do not support TensorFlow
but support TFLite. The result from Table [46] depicts a
reduction of 30% in the LCRM-generated TFLite version
while comparing it with the TFLite version of the parent
model.

TABLE 8. Memory footprint comparison.

TABLE 9. Comparison between Decom-Net and LCRM generated
Decom-Net for image enhancement application.

D. LCRM PERFORMANCE ANALYSIS ON DIFFERENT CNNs,
APPLICATIONS AND DATASETS
This section explores the effectiveness of the LCRM
algorithm on three different CNN models U-Net [44],
VGG-9 [3] and Decomposition-Net [42], performing dif-
ferent image processing tasks such as image segmentation,
image enhancement, and image classification, respectively,
on the following datasets: Data Science Bowl [43], LOL [42],
and EMNIST [41]. This analysis aims to assess the suitability
of the LCRM algorithm for various image-processing tasks
and determine its efficacy across different datasets and CNN
models. This study will provide insights into the strengths
and weaknesses of the LCRM algorithm and help identify
potential areas for improvement.

1) IMAGE ENHANCEMENT
Image enhancement is the process of improving the visual
quality of an image using various algorithms. It enhances
image features, reduces noise and artifacts, and improves
contrast and brightness. It is widely used in various med-
ical imaging, surveillance, and photography applications.
Here we consider poorly illuminated image enhancement
using a Decomposition network from Retinex-Net (parent
model) and its corresponding LCRM-optimized decompo-
sition net called LCRM-DecomNet. We then evaluate both
models on LOL (LOw-Light) dataset based on various per-
formance metrics, including reference metrics like structure
similarity index(SSIM) [47], learned perceptual image patch
similarity (LPIPS) [48] and no-reference metrics like natural
image quality evaluator (NIQE) [49], perception based image
quality evaluator (PIQE) [50] and blind/referenceless image
spatial quality evaluator (BRISQUE) [51].

Table 9 compares the original Decom-Net model and
LCRM-DecomNet for an image enhancement application.
It is evident that both models achieved similar results regard-
ing SSIM and LPIPS, which are the common metric to mea-
sure the similarity between the original and enhanced images.
LCRM-DecomNet achieved slightly better BRISQUE PIQE,
and NIQE scores, indicating that it produced slightly better
perceived and natural image quality, as seen in Figure 8.

66848 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 6. Training, validation loss and accuracy of U-Net and LCRM-UNet.

FIGURE 7. The segmentation output from U-Net and LCRM-UNet.

FIGURE 8. Image enhancement output from DecomNet and
LCRM-DecomNet.

Furthermore, LCRM-DecomNet had significantly fewer
parameters and a smaller model size than the parent model,
indicating its superior efficiency. Overall, LCRM-DecomNet
is a promisingmodification of the original Decom-Netmodel,
as it achieves similar SSIM andLPIPS, better NIQE and PIQE
scores, and is more efficient in terms of parameters andmodel
size.

2) IMAGE SEGMENTATION
Image segmentation is a method for partitioning an image
into multiple segments or regions, each representing a mean-
ingful part of the image. One of the approaches for tackling
image segmentation is U-Net [44]. It is a CNN with an
encoder-decoder structure and skips connections that pre-
serve spatial information. We use the Kaggle Data Science
Bowl dataset to evaluate the U-Net, which contains many
nuclei images for segmentation [43]. The parent model U-Net

TABLE 10. Comparison between U-Net and LCRM generated U-Net for
segmentation application.

is then Optimized using the LCRM algorithm to generate
LCRM-UNet. We have trained both models from scratch
with the same hyperparameter settings. Figure 6 shows the
training and testing accuracy and loss.

The results and comparison between the original U-Net
model and the LCRM-UNet for the segmentation application
are in the Table: 10. The comparison is based on perfor-
mance metrics, including accuracy, point of convergence,
intersection over union (IoU), inference latency, number of
parameters, and model size. Both models achieved the same
accuracy of 0.96, but LCRM-UNet achieved this with signif-
icantly fewer parameters and a smaller model size than the
parent model. LCRM-UNet had a lower inference latency of
22.4 ms/step, meaning it could perform the segmentation task
faster than the parent model. Sample segmentations obtained
from both models, along with ground truth and the input
image, are given in Figure 7

However, the point of convergence for LCRM-UNet was
later than the parent model, meaning it took longer to train the
modified model to reach the desired level of accuracy. Since
each epoch takes only 42 seconds for LCRM-UNet, the time
required to prepare different epochs are negligible. Overall,
LCRM-UNet is a promising modification of the original
U-Net model, as it achieves similar levels of accuracy with

VOLUME 11, 2023 66849



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

TABLE 11. Comparison between VGG-Net and LCRM generated VGG- Net
for OCR application.

fewer parameters and smaller model sizes while also being
faster at performing the segmentation task.

3) OPTICAL CHARACTER RECOGNITION
Optical character recognition (OCR) is a technique that con-
verts scanned documents, images, and other digital files into
searchable and editable text. Pattern recognition algorithms
and machine learning techniques can efficiently identify and
extract text from images or documents. Its applications are in
publishing, healthcare, finance, and government industries.
It is also used in automated systems such as self-driving cars
and passport control systems.

A system needs optimized versions of existing algo-
rithms to deploy such applications efficiently to a resource-
constrained environment. Hence, for evaluating the proposed
model, we consider VGG-9 and its optimized LCRM-VGG9
with the EMNIST dataset, which is then trained from scratch
keeping all the hyperparameters intact. The models are then
tested and evaluated based on different performance metrics,
summarized in Table 11.

The Table shows that both models achieved the same
accuracy of 0.87, which indicates that LCRM does not nega-
tively affect model accuracy. However, the LCRM-generated
VGG-Net model converged later than the parent VGG-Net
model, with the point of convergence occurring at the 10th
epoch compared to the 5th epoch of the parent model. The
loss value of the LCRM-VGG9 model (0.36) is slightly
higher than that of the parent VGG-Net model (0.35), and
the difference is relatively small. It also has a faster inference
latency of 66 ms than the parent VGG-Net model’s 82 ms.
This performance indicates that the LCRM-generated model
ismore efficient in processing data. The LCRM-VGG9model
has fewer parameters (3.65 M, 30.4 MB) than the parent
VGG-Net model (7.9 M, 78.4 MB) and is more compact, and
requires less memory and computation.

In summary, the LCRM-generated VGG-Net model per-
forms similarly or better than the parent VGG-Net model in
terms of accuracy, with the added benefits of lower inference
latency, fewer parameters, and smaller model size. However,
the LCRM-generated model takes a little longer epochs to
converge and reach optimal value.

E. COMPARISON WITH THE STATE-OF-THE-ART
OPTIMIZATION TECHNIQUES
To study the impact of the State-of-the-art (SOTA) optimiza-
tion techniques like individual and cascaded optimization
methods, we apply them to the parent model for evaluation

FIGURE 9. Comparison of the total parameters w.r.t the SOTA techniques.

TABLE 12. SOTA techniques and their corresponding evaluation metrics
on Raspberry Pi B.

and comparison [52]. The individual techniques include
(i) quantization (Q), which reduces the precision of weights,
(ii) Pruning (P), which sets weights to zero after a certain
threshold, and (iii) weight clustering (C), which clusters sim-
ilar weights together for better compression, similar to the
deep compression method [20].

The cascaded optimization techniques combine the classic
techniques designedwithout nullifying each other’s purposes.
Examples include (iv) sparsity preserving clustering (PC),
(v) sparsity preserving quantization (PQ), (vii) cluster pre-
serving quantization (CQ), and (viii) sparsity and cluster pre-
serving quantization (PCQ) [53]. The following subsection
contains a detailed study of the optimization techniques and
their comparison with the parent and LCRM-generated mod-
els. Two evaluation metrics for comparing the results are
(I) performance metrics like inference latency and accuracy
and computational complexity of the model and (II) resource
utilization metrics like energy consumption during the infer-
ence, memory utilization, and CPU utilization.

1) PERFORMANCE METRICS
Trainable and non-trainable parameters: The total parame-
ters of a CNN model consist of trainable and non-trainable
parameters for different optimization techniques, as shown in
Fig: 9.
The extra parameters present in C, P, PC, CQ, and PCQ

are the non-trainable parameters of the clustering and pruning
algorithms for calculating centroid values, indices values,
or sparsity calculations. Quantization does not introduce any

66850 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 10. Memory utilization of Raspberry pi with (a) parent model, (b) Clustering-C, (c) Pruning-P, (d) Quantization-Q, (e) P preserving Q (PQ),
(f) C preserving Q (CQ), (g) P preserving C (PC), (h) P, C preserving Q (PCQ) and (i) LCRM.

non-trainable parameters. In contrast, pruning and clustering,
along with cascading the optimization techniques, increase
trainable and non-trainable parameters, as seen in PCQ,
resulting in the increased complexity of the model. However,
the LCRM model has few non-trainable parameters, and the
complexity and multiplication reductions are evident due to
the involvement of substitutional layers.
Accuracy and Inference Latency : the TFlite accuracy of

the models, the point at which they converge (epoch satura-
tion) and their corresponding inference latency are given in
Table 12. It shows that the cascaded optimization techniques
(PQ, CQ, PC, PCQ) have better accuracy than the individ-
ual optimizing method (P, Cmodels’However, the LCRM
method has comparable accuracy and excellent inference
latency metrics compared to the existing classical optimiza-
tion models. The latency is reduced up to 62.84% when
compared to the parent model. In other words, The parent
model requires 0.331 seconds to classify a single image,
whereas the LCRM-optimized parent model requires only
0.123 seconds to do the same task.

2) RESOURCE UTILIZATION METRICS
The experiment involving CPU and memory utilization con-
sists of 9 cases: the parent model, 7 SOTA techniques, and the
LCRM-generated model. Fig: 10 represents the estimation
during the inference of 1500 test images of the CIFAR-10
dataset during the first 600 seconds. The parent model and
other compared models require CPU utilization between
68% and 72%, and the LCRM-optimized parent model only
requires 45%.

Similarly, Fig: 11 represents the memory utilization of
SOTA models and the proposed model with respect to the
time of the execution of the first 600 seconds. The maximum
memory requirement depends on the dataset used for the
inference; hence, the values are almost similar, ranging from
1915.2 MB (LCRM) to 1942.7 (Parent model).

The inference energy consumption is much less due to the
reduction in complexity and multiplications existing in the
optimized version compared to the SOTA models. Fig: 12
shows the graphical representation of energy consumption
per epoch against each SOTA technique.

VOLUME 11, 2023 66851



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 11. CPU utilization of Raspberry pi with (a) parent model, (b) Clustering-C, (c) Pruning-P, (d) Quantization-Q, (e) P preserving Q (PQ),
(f) C preserving Q (CQ), (g) P preserving C (PC), (h) P, C preserving Q (PCQ) and (i) LCRM, with respect to time (x-axis, 600 seconds and y-axis, CPU
utilization %).

FIGURE 12. Comparison of energy consumption per inference w.r.t the
SOTA techniques.

F. ABLATION STUDY
Ablation study evaluates the importance of different com-
ponents in a model, such as layers, hyperparameters,

or optimization techniques. By removing or disabling spe-
cific components, researchers can assess how they affect the
model’s performance, such as accuracy, loss, or inference
time. This information can be used to optimize the model and
improve its efficiency and effectiveness.

In this section, we conducted the ablation study on four
scenarios of the LCRM algorithm on ALexNet and the
LCRM-AlexNet optimizedmodel. All fivemodels are trained
to 30 epochs, keeping the same hyperparameters such as
loss function: SCE (sparse categorical entropy), optimization
algorithm (Adam) and learning rate(0.0001). The test accu-
racy and loss results are in fig, 13. We also evaluate inference
latency on the deployed GPU, the complexity of each model
(as the number of parameters), and the memory required to
store the model given in Table 13.
Scenario 1 (Upscaling When N>M, M%N=0): When

the Scenario 1 module was disabled, the accuracy dropped
from 0.802 to 0.71, and the loss function increased from

66852 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 13. Test accuracy (a) and test loss (b) of ablation experiment for case:1.1 & 1.2 (Upscaling), Case 2: (no-scaling) and case 3: (Downscaling).

TABLE 13. Ablation study of different cases of LCRM deployed on Tesla
K80 at batch-size 128.

0.66 to 1.27. The size and number of parameters were
reduced slightly. This reduction suggests that Scenario 1
plays a vital role in improving the accuracy and reducing the
loss of the LCRM algorithm and a minor role in contributing
to the complexity.
Scenario 2 (Upscaling When N>M, M%N̸= 0): When

the Scenario 2 module was removed, the accuracy dropped
from 0.802 to 0.77, and the loss function increased from
0.66 to 1.06. This drop in accuracy and increase in loss
function implies that Scenario 2 has a less significant impact
on accuracy than Scenario 1, but it still helps to reduce the
loss function. However, the number of parameters and size
increased drastically, showing that Scenario 2 convolution
modules are good at optimizing the overall complexity of the
model.
Scenario 3 (No Scaling, N==M): When the Scenario 3

module was disabled, the accuracy dropped from 0.802 to
0.76, and the loss function increased from 0.66 to 1.21. This
change in performance suggests that Scenario 3 significantly
improves the accuracy and reduces the loss of the LCRM
algorithm. Similar to Scenario 2, the model size and parame-
ters have increased significantly.
Scenario 4 (Downscaling When M>N): When the

Scenario 4 module was removed, the accuracy dropped from
0.802 to 0.73, and the loss function increased from 0.66 to
1.46. This change in performance indicates that Case 3 has a
good impact on the accuracy and loss function of the LCRM
algorithm.

Overall, the results of the ablation study suggest that all
three cases play essential roles in improving the accuracy,
reducing the loss, model size, parameters, and inference
latency of the LCRM algorithm. However, the importance of
each case may vary depending on the specific application or
use case.

V. INFERENCES
In this section, we answer the four research questions of this
paper based on the findings from the experiment evaluation.
The RQs and answers are summarized below:

RQ1: What are the impacts of computational complexity
while applying LCRM to different CNN models, and how do
the optimized models result in a noticeable reduction in the
number of parameters and floating point operations?

The application of LCRM on different parent CNN mod-
els resulted in a considerable decrease in the number of
parameters and floating-point operations or multiplications,
the size of the models, and inference latency. Table 4 shows
the parameter reduction of bothmodels and Table 2 shows the
decrease in the number of multiplications for all 4 cases of the
proposed algorithm in the image classification application.

The reduction in computation and complexity is also seen
in different LCRM-CNNs and their applications that we
studied in Table 10 for image segmentation applications.
Similarly, in Tables 9 and 11 for image enhancement and
optical character recognition applications, respectively.

RQ2: What are the performance impacts of training the
LCRM-generated models?

We have evaluated training efficiency using performance
metrics like throughput, accuracy, peak memory consump-
tion, GPU energy consumption, and GPU utilization. The
results show that the LCRM-generated model’s throughput
has increased by 5–6 times, energy consumption per epoch
has reduced by 82% - 85%, and peak memory consumption
by 25% - 34%. A significant limitation found was the reduced

VOLUME 11, 2023 66853



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

GPU utilization profile during the execution of the proposed
algorithm at a smaller batch size. Even though larger batch
sizes give goodGPU utilization, they also elevate PMC. Thus,
a performance trade-off exists between batch sizes, PMC, and
GPU utilization.

However, When LCRM is applied to any CNN model, the
time taken to converge the algorithm while training is a little
higher when compared to the parent model.

RQ3: How do the LCRM-generated models affect the
inference efficiency?

We have considered metrics like inference latency, energy
consumption per epoch, testing accuracy, and memory
footprints to evaluate inference efficiency. In NVIDIA
RX1650 GPU, The inference latency and energy consump-
tion per inference have reduced to 94%-95% and 91% to 93%,
respectively, compared to the parent model. The memory
footprint of TensorFlow models has been reduced to 30%
to make them suitable for end device deployment without
compromising the overall testing accuracy.

We have also tested the feasibility of the optimization
technique on Raspberry pi 4, and the results show that the
TFLite version of the LCRM optimized model works well
when deployed on the above device (i.e., there is a reduction
of 62.84% in inference latency concerning the parent model).
The results also show a reduction in CPU utilization and
memory utilization.

The accuracy of various applications studied in this paper
remained the same despite a considerable decrease in the
computations, size and inference requirements, as seen in
Table 10 for image segmentation application. Similarly,
in Tables 9 and 11 for image enhancement and optical char-
acter recognition application, respectively.

RQ4: How does the LCRM technique outperform the exist-
ing state-of-the-art optimization techniques?

Out of the seven SOTA optimization techniques under
section IV-D, the LCRM attains significantly fewer trainable
parameters. It also outperforms in terms of reduced inference
latency (62.84%) at lower energy consumption per epoch,
memory, and CPU utilization with a comparable testing accu-
racy. Hence the end devices can use the LCRM-optimized
models for performing time-critical applications where the
speed of the model execution and resources matter.

1) ADVANTAGES OF THE LCRM FRAMEWORK
Two significant advantages of the proposed method are:

1:The LCRM-generated CNN optimization models
can significantly reduce inference latency and resource
requirement of parent CNNs, resulting in the faster and
more efficient data processing. This gain makes the
LCRM-optimized models well-suited for end-device deploy-
ment with limited computational and hardware resources.
The experiments conducted on the state-of-the-art techniques
in the section IV-E with the LCRM-generated model show
that the proposed model results in reduced inference latency,
better accuracy, and CPU utilization.

TABLE 14. Comparison between parent models and LCRM-generated
models in terms of point of convergence (Epochs).

2: Another significant advantage of the LCRM-optimized
models is their ability to reduce memory requirements to
store the saved model compared to the parent model. A lesser
memory requirement benefits applications such as mobile
and edge computing environments. Additionally, the reduced
memory requirements and complexity are optimized with-
out compromising the model’s overall performance. The
results of experiments on various applications using CNN
models generated by LCRM, as presented in Section IV-D,
demonstrate that the proposed framework achieves reduced
complexity by decreasing the number of parameters. This
reduction in parameters leads to lower memory requirements
while maintaining performance metrics.

2) LIMITATIONS OF THE LCRM FRAMEWORK
Two limitations of the proposed method are:

1: The LCRM-generate models require more training
epochs to converge compared to the parent model due to
their reduction in training parameters. The epochs required
to converge both parent and LCRM-generated models are
summarized in Table 14.

We also conclude that the number of epochs used for
training the parent and LCRMmodelsmay vary depending on
several factors, such as the model’s complexity, the dataset’s
size, the availability of computational resources, and the
desired level of performance.

2: Another limitation is that the optimized LCRM models
are not capable of on-device training and are designed to be
trained using a GPU. The minimum GPU requirement for
training the model is 4 GB, meaning that users should ensure
they have a compatible GPU before attempting to train it.
While this may present a challenge for some users, it is essen-
tial to note that the optimized LCRMmodels offer significant
improvements over parent models and are well worth the
investment in time and resources. By setting up and training
the model correctly, users can expect impressive results in
different image processing tasks and obtain optimizedmodels
that can be executed on the end devices. We aim to address
these limitations in our future research work.

VI. CONCLUSION AND FUTURE SCOPE
This paper proposes a layer-wise complexity reduction
method (LCRM) for optimizing CNN models. The criti-
cal designs included are the LCRM algorithm, architecture,
parameter estimation, complexity calculations, and the profil-
ing of performance analysis. To our knowledge, this paper is
the first work that proposes a layer-wise complexity reduction

66854 VOLUME 11, 2023



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

and optimization for accuracy-oriented CNN models (stan-
dard CNN models) that aims to: (i) reduce computational
complexity, (ii) optimize hardware resource utilization, and
(iii) study training and testing efficiencies, with respect to
resource utilization and other performance metrics.

The feasibility of the proposed framework was tested
on four different applications: image classification, image
segmentation, image enhancement, and optical character
recognition. Experimental results show that the proposed
framework reduces inference latency, model compression,
and parameter reduction without compromising accuracy
for all tested CNNs, namely AlexNet, U-Net, VGG-9 and
Retinex-Net (Decomposition-Net). The proposed framework
is then tested with state-of-the-art techniques like pruning,
quantization, clustering and their cascadedmodels by deploy-
ing them on an end device to show the proposed model’s
efficacy in latency reduction and hardware utilization.

Although there are a few limitations in the framework, such
as the requirement for extra training epochs and the inability
to perform on-device learning, these shortcomings can be
addressed by incorporating the future directions of research
such as:

(a) Introducing on-device training: One way to overcome
the inability to perform on-device learning is by integrat-
ing methodologies like federated learning, incremental
training, and accelerator arrays [16].

(b) Cascaded Optimization and resource utilization: To
address the requirement for extra training epochs, the
framework can incorporate advanced cascaded opti-
mization techniques such as ensemble PCQ to improve
resource utilization.

(c) Hardware and software co-design: Exploring hardware-
aware designs for deep learning model optimizations
holds promise and requires further effort to suc-
ceed [56]. By focusing on this aspect, the framework
can leverage hardware capabilities and enhance its
performance.

By incorporating these future directions of research, the limi-
tations of the framework can be effectively balanced, leading
to improved performance and efficiency.

APPENDIX A THE SELECTION OF SUBSTITUTIONAL
LAYERS
Grid search is a process that searches exhaustively through a
specified subset of the hyperparameter space of the targeted
algorithm. For example, to search for an optimal learning
algorithm of a CNNmodel, the subgroup has choices ranging
from SGD, RMSprop, Adagrad, Adam, and Nadam. The
search algorithm returns Adam as the best option from the
subset when it attains better accuracy than others.

Similarly, the search algorithm returns the best substi-
tutional layers for the LCRM algorithm from the subset
of available convolution layers in the literature. The layers
include standard convolution (Std Conv), transpose con-
volution (TrC), Groupwise convolution (GrC), depthwise

TABLE 15. Comparison between different substitutional convolutions,
number of parameters, type of architecture and change in accuracy with
respect to parent model.

FIGURE 14. Test accuracy of the parent model and other three parameter
reduced models.

convolution (DWC), pointwise convolution (PWC), and
dilated convolution (DiC). The returned structures of the
CNN models are in both series (single type of convolu-
tion) and parallel (combination of different convolution). The
Table 15, included only the models from the above com-
bination, with less than 15% accuracy reduction than the
parent model. The experimental results from the Table also
show a trade-off between the number of parameters and
accuracy reduction. For example, in models 2,3,5 and 7, there
is a reduction in parameters by 32%, resulting in an accuracy
reduction. However, accuracy may or may not decrease when
the parameter remains unchanged (e.g., models 1, 4, and 6).

As the objective of this paper is to reduce the number of
parameters of CNN models using substitutional layers, only
three models: (i) Group convolution (when the number of
groups is G=32), (ii) Group convolution+ dilated convolu-
tion (when G=32 and dilation factor=2) and (iii) depthwise
separable and pointwise convolution, met the condition. The
rationale behind selecting the best model among the three is
the percentage accuracy reduction, as seen in Table 15.
Models 2, 3, and 7 give a 31.25% reduction in the

total number of parameters at 11.45%, 14.99%, and 0.2%
reduction in accuracy, respectively. Hence, the substitutional
convolution layers of model 7 (Depthwise separable and

VOLUME 11, 2023 66855



H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

FIGURE 15. Test loss of the parent model and other parameter-reduced
models.

TABLE 16. Hyperparameter results obtained from grid search.

pointwise convolution layers) are optimal according to the
experiments.

Additional information on the testing accuracy in Figure 14
and the loss function (sparse categorical entropy- SCE) in
Figure 15 of all the threemodels, alongwith the parent model,
are plotted for comparison with the help of the tensorboard.
After finalizing the substitutional layers, a hyperparame-
ter grid search is conducted to get the optimal results for
the learning algorithm, learning rate, weight initialization,
activation function, and batch size. The result from the hyper-
parameter search of the LCRM model is given in Table 16.

ACKNOWLEDGMENT
The work of Hanan Hussain was supported by the Ph.D.
Research Fellowship with BITS Pilani, Dubai Campus. The
authors would like to thank the Creative Laboratory and the
Faculty Member, specifically Dr. Pranav Pawar with BITS
Pilani, Dubai Campus, for their generous provision of the
GPU and end devices used in our LCRM-CNN optimization
experiments.

An earlier version of this paper was presented at the
20th ACM Conference on Embedded Networked Sensor
Systems (ACM SenSys ’22), Boston, MA, USA, [DOI:
10.1145/3560905.3568299].

REFERENCES
[1] H. Hussain, P. S. Tamizharasan, and C. S. Rahul, ‘‘Design possibilities

and challenges of DNN models: A review on the perspective of end
devices,’’ Artif. Intell. Rev., vol. 55, no. 7, pp. 5109–5167, Oct. 2022, doi:
10.1007/s10462-022-10138-z.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[3] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[5] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[7] V. Gupta, V. G. Panchal, V. Singh, D. Bansal, and P. Garg, ‘‘EmotionNet:
ResNeXt inspired CNN architecture for emotion analysis on raspberry
Pi,’’ in Proc. Int. Conf. Recent Trends Electron., Inf., Commun. Technol.
(RTEICT), Aug. 2021, pp. 262–267.

[8] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5 MB model size,’’ in Proc. CVPR, 2016, pp. 1–13.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[10] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[11] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[12] D. S. Joseph, P. M. Pawar, and R. Pramanik, ‘‘Intelligent plant disease
diagnosis using convolutional neural network: A review,’’ Multimedia
Tools Appl., vol. 82, pp. 21415–21481, Oct. 2022.

[13] T. Arias-Vergara, P. Klumpp, J. C. Vasquez-Correa, E. Nöth,
J. R. Orozco-Arroyave, and M. Schuster, ‘‘Multi-channel spectrograms
for speech processing applications using deep learning methods,’’ Pattern
Anal. Appl., vol. 24, no. 2, pp. 423–431, May 2021.

[14] N. Lopac, F. Hržic, I. P. Vuksanovic, and J. Lerga, ‘‘Detection of
non-stationary GW signals in high noise from Cohen’s class of time-
frequency representations using deep learning,’’ IEEE Access, vol. 10,
pp. 2408–2428, 2022.

[15] S.Mahadik, P.M. Pawar, and R.Muthalagu, ‘‘Efficient intelligent intrusion
detection system for heterogeneous Internet of Things (HetIoT),’’ J. Netw.
Syst. Manag., vol. 31, no. 1, p. 2, Jan. 2023.

[16] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, and M. Shah, ‘‘On-device
machine learning: An algorithms and learning theory perspective,’’ 2019,
arXiv:1911.00623.

[17] G. Menghani, ‘‘Efficient deep learning: A survey on making deep learning
models smaller, faster, and better,’’ ACM Comput. Surv., vol. 55, pp. 1–37,
2021.

[18] B. Wang, F. Ma, L. Ge, H. Ma, H. Wang, and M. A. Mohamed, ‘‘Icing-
EdgeNet: A pruning lightweight edge intelligent method of discriminative
driving channel for ice thickness of transmission lines,’’ IEEE Trans.
Instrum. Meas., vol. 70, pp. 1–12, 2021.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow: A system
for large-scale machine learning,’’ 2016, arXiv:1605.08695.

[20] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,’’
2016, arXiv:1510.00149.

[21] Y. Wang, C. Xu, C. Xu, and D. Tao, ‘‘Packing convolutional neural net-
works in the frequency domain,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 10, pp. 2495–2510, Oct. 2019.

[22] A. S. Aguiar, F. N. D. Santos, A. J. M. De Sousa, P. M. Oliveira, and
L. C. Santos, ‘‘Visual trunk detection using transfer learning and a deep
learning-based coprocessor,’’ IEEEAccess, vol. 8, pp. 77308–77320, 2020.

[23] G. E. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[24] L. Zahedi, F. G. Mohammadi, S. Rezapour, M. W. Ohland, and
M. H. Amini, ‘‘Search algorithms for automated hyper-parameter tuning,’’
2021, arXiv:2104.14677.

66856 VOLUME 11, 2023

http://dx.doi.org/10.1007/s10462-022-10138-z


H. Hussain et al.: LCRM for CNN Model Optimization on End Devices

[25] T. Yu and H. Zhu, ‘‘Hyper-parameter optimization: A review of algorithms
and applications,’’ 2020, arXiv:2003.05689.

[26] C. Liu, B. Zoph, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. Yuille, J. Huang,
and K. Murphy, ‘‘Progressive neural architecture search,’’ in Proc. ECCV,
2018, pp. 19–34.

[27] J. Liu, J. Liu,W.Du, andD. Li, ‘‘Performance analysis and characterization
of training deep learningmodels onmobile device,’’ inProc. IEEE 25th Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019, pp. 506–515.

[28] A. A. Suzen, B. Duman, and B. Sen, ‘‘Benchmark analysis of Jetson
TX2, Jetson nano and raspberry PI using deep-CNN,’’ in Proc. Int. Congr.
Human-Comput. Interact., Optim. Robotic Appl. (HORA), Jun. 2020,
pp. 1–5.

[29] Y. Wang, Q. Wang, S. Shi, X. He, Z. Tang, K. Zhao, and X. Chu, ‘‘Bench-
marking the performance and power of AI accelerators for AI training,’’
2019, arXiv:1909.06842.

[30] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, ‘‘Harmonia: Balanc-
ing compute and memory power in high-performance GPUs,’’ in Proc.
ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015,
pp. 54–65.

[31] C. A. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. D. Bailis, K. Olukotun, C. Re, andM. A. Zaharia, ‘‘Dawnbench: An end-
to-end deep learning benchmark and competition,’’ Training, vol. 100,
no. 101, p. 102, 2017.

[32] A. Shah, C.-Y.Wu, J.Mohan, V. Chidambaram, and P. Krähenbuhl, ‘‘Mem-
ory optimization for deep networks,’’ 2020, arXiv:2010.14501.

[33] Y. Ren, S. Yoo, and A. Hoisie, ‘‘Performance analysis of deep learn-
ing workloads on leading-edge systems,’’ in Proc. IEEE/ACM Perform.
Model., Benchmarking Simul. High Perform. Comput. Syst. (PMBS),
Nov. 2019, pp. 103–113.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[35] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[36] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[37] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, ‘‘Latency and throughput characterization of convolutional
neural networks for mobile computer vision,’’ in Proc. 9th ACM Multime-
dia Syst. Conf., Jun. 2018, pp. 204–215.

[38] A. Agrawal and N. Mittal, ‘‘Using CNN for facial expression recognition:
A study of the effects of kernel size and number of filters on accuracy,’’
Vis. Comput., vol. 36, no. 2, pp. 405–412, Feb. 2020.

[39] C. Yao, W. Liu, W. Tang, J. Guo, S. Hu, Y. Lu, and W. Jiang,
‘‘Evaluating and analyzing the energy efficiency of CNN inference on
high-performance GPU,’’ Concurrency Comput., Pract. Exper., vol. 33,
no. 6, p. e6064, Mar. 2021.

[40] X. Tang and Z. Fu, ‘‘CPU–GPU utilization aware energy-efficient schedul-
ing algorithm on heterogeneous computing systems,’’ IEEE Access, vol. 8,
pp. 58948–58958, 2020.

[41] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, ‘‘EMNIST: An exten-
sion of MNIST to handwritten letters,’’ 2017, arXiv:1702.05373.

[42] C. Wei, W. Wang, W. Yang, and J. Liu, ‘‘Deep Retinex decomposition for
low-light enhancement,’’ 2018, arXiv:1808.04560.

[43] J. C. Caicedo, A. Goodman, K. W. Karhohs, B. A. Cimini, J. Ackerman,
M. Haghighi, C. Heng, T. Becker, M. Doan, C. McQuin, M. Rohban,
S. Singh, and A. E. Carpenter, ‘‘Nucleus segmentation across imaging
experiments: The 2018 data science bowl,’’ Nature Methods, vol. 16,
no. 12, pp. 1247–1253, Dec. 2019.

[44] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ 2015, arXiv:1505.04597.

[45] G. Lu, W. Zhang, and Z. Wang, ‘‘Optimizing depthwise separable convo-
lution operations on GPUs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 1, pp. 70–87, Jan. 2022.

[46] B. Pal and S. Khaiyum, ‘‘Low memory footprint CNN models for end-
to-end driving of autonomous ground vehicle and custom adaptation to
various road conditions,’’ Int. J. Innov. Technol. Exploring Eng., vol. 9,
no. 1, pp. 3252–3259, Nov. 2019.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[48] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ‘‘The unrea-
sonable effectiveness of deep features as a perceptual metric,’’ 2018,
arXiv:1801.03924.

[49] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely
blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[50] N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and
S. S. Medasani, ‘‘Blind image quality evaluation using perception based
features,’’ in Proc. 21st Nat. Conf. Commun. (NCC), Feb. 2015, pp. 1–6.

[51] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘No-reference image quality
assessment in the spatial domain,’’ IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[52] H. Hussain and P. S. Tamizharasan, ‘‘The impact of cascaded optimiza-
tions in CNN models and end-device deployment,’’ in Proc. 20th ACM
Conf. Embedded Networked Sensor Syst., Nov. 2022, pp. 954–961, doi:
10.1145/3560905.3568299.

[53] Cascaded Tensorflow Model Optimization (TFMOT). Accessed:
May 11, 2022. [Online]. Available: https://www.tensorflow.
org/model_optimization/guide

[54] G. Retsinas, A. Elafrou, G. Goumas, and P. Maragos, ‘‘Weight pruning via
adaptive sparsity loss,’’ 2020, arXiv:2006.02768.

[55] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ 2017, arXiv:1712.05877.

[56] J. Song, X. Wang, Z. Zhao, W. Li, and T. Zhi, ‘‘A survey of neural network
accelerator with software development environments,’’ J. Semiconductors,
vol. 41, no. 2, Feb. 2020, Art. no. 021403.

HANAN HUSSAIN received the bachelor’s and
master’s degrees in computer science and engi-
neering from the University of Calicut, India.
She is currently a Ph.D. Researcher with BITS
Pilani, Dubai Campus. With a strong background
in the field, she was a Research Assistant with the
Artificial Intelligence Research Centre (AIRC),
Ajman University, United Arab Emirates. Her
research interests include deep learning algo-
rithms, edge-artificial intelligence, and computer

vision applications. Her work aims to advance AI capabilities for CV-based
applications by enabling enhanced performance and efficiency of edge
intelligence.

P. S. TAMIZHARASAN (Member, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the National Institute of Technology-
Tiruchirappalli, India. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, BITS Pilani, Dubai Campus. His research
interests include high-performance computing and
deep learning.

PRAVEEN KUMAR YADAV (Member, IEEE)
received the Ph.D. degree in computer sci-
ence and engineering from the National Uni-
versity of Singapore, Singapore. He is currently
a Co-Founder and the CEO of Atlastream Pte
Ltd. He is also a Consultant with the Panasonic
Research andDevelopment Centre, Singapore. His
research interests include multimedia systems and
signal processing, specifically focusing on 3D and
video compression.

VOLUME 11, 2023 66857

http://dx.doi.org/10.1145/3560905.3568299

