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ABSTRACT In this study, we present an infrastructure-independent multi-floor indoor localization scheme
that uses a deep learning (DL)-based floor detection method and a particle filter with clustering. To imple-
ment localization with limited measurement data, we incorporate the user’s vertical motion information
to initialize and optimize the system. This method assumes two prerequisites: the capability for rapid
floor detection and extraction of vertical motion features. These ensure a correlation between vertical
movement and two-dimensional location and can be efficiently integrated with map information. The
proposed scheme has several notable features. First, we utilize the strong feature extraction capability of the
sequence-to-sequence (Seq2Seq) model for sequential data to implement real-time step action prediction.
We also develop a floor decision algorithm to extract vertical movement information from the step action
sequence. The proposed floor detection method can track the floor regardless of the user’s activities.
Second, we configure calibration nodes (CN) on the map based on prior knowledge from the environmental
information. By combining CNs with DL-based floor detection, we not only extend the particle filter to
three-dimensional applications but also achieve calibration and repair of the localization. Third, we introduce
a clustering method to improve localization accuracy and reduce computational complexity in uncertain
measurements. The experimental results show that the Seq2Seq model has good robustness to noisy data, the
proposed DL-based floor detection achieved an average floor number accuracy of 93.42%without restricting
user behavior, and all the floor transitions were successfully recognized.Moreover, under the long pathmulti-
floor scenario, our scheme achieved a localization accuracy of over 96% within a 2m error boundary.

INDEX TERMS Smartphone, indoor, deep learning, Seq2Seq, barometer, multi-floor localization, inertial
measurement unit, floor transition, particle filter, clustering.

I. INTRODUCTION
Indoor localization research is being actively pursued due
to the growing demand for localization-based services
(LBS). Although satellite-based schemes provide a good
LBS in outdoor environments, they are inefficient in indoor
spaces due to the obstruction of the building. Smartphone-
based indoor localization schemes have become prevalent
due to the high penetration of smartphones and the vari-
ous micro-electromechanical systems (MEMS) sensors they
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carry. Among these, the most direct way to obtain a smart-
phone user’s location is to use received wireless signal infor-
mation, including Wi-Fi, Bluetooth, ultra-wideband (UWB),
and received radio-frequency identification (RFID) [1], [2],
[3], [4], [5]. However, these technologies are not always
available in specific situations due to dependence on infras-
tructure (e.g., disasters, power outages), and manual setup
and maintenance are time-consuming and labor-intensive.

As another feasible solution in indoor localization systems,
pedestrian dead reckoning (PDR) methods are independent
of infrastructure. It iteratively updates the user’s location
using a smartphone equipped with an inertial measurement
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unit (IMU) as the input device, which includes an accelerom-
eter, magnetometer, and gyroscope. PDR is lightweight and
can work in a place without signal coverage. Unfortunately,
since PDR’s current estimation is derived from previous
states, the estimation errors accumulate as the location
changes. Thus, conventional PDR is used in conjunction with
a dedicated IMU to ensure accuracy in practical applications.
Fusion algorithms have been proposed to improve the perfor-
mance of cheap IMU-based PDR, such as the complementary
filter (CF) and Kalman filter (KF) [6], [7], [8], [9], [10].
Moreover, environmental information can be used as prior
knowledge for boundary constraints and location calibration.
Since the map information can fit conveniently into particle
propagation, an efficient way that combines the particle filter
(PF) and spatial information was successfully implemented
in [11], [12], and [13]. The PF does not require assumptions
about whether the problem is Gaussian or linear and can
be applied in various situations. However, the PF approach
suffers from two notorious problems: multimodality and sam-
ple impoverishment [14], [15], [16]. Multimodality can be
caused by simple or symmetric structures of the building,
which allows for multiple possibilities during propagation
and is dispersed into various modes after several iterations.
In particular, this problem is more likely to occur when
the initial location is not provided [17]. On the other hand,
particles tend to collapse at one or a few locations when
the PF relies too heavily on measurement data, resulting
in a loss of diversity, known as sample impoverishment.
In this case, the PF can fail after the particles cross a wall
and are eliminated due to inevitable noise in measurements.
In addition, resampling also causes the particle distribution
to become concentrated [18]. These problems are more likely
encountered when measurements are insufficient.

Furthermore, the initial state is crucial for relative meth-
ods such as PDR, as it directly determines their subsequent
computation. Although the initial location and height can be
acquired when the user enters a building, in most cases, the
localization process begins indoors where the user’s exact
location is typically unknown. One advantage of the PF is
that it enables the calculation of user location without a
given initial state [12]. Some techniques introduce received
signal strength (RSS) as one of the inputs for PF localiza-
tion. Although RSS contains absolute location information,
which can assist the particle initialization, wireless signals
are not always available. On the other hand, PDR-only PF
approaches find the user’s location by uniformly distributing
particles on a floor plan, updating particle states through
PDR estimation, and assigning weights to particles according
to predefined rules until the particles gather into a place
after several iterations. This approach requires no infras-
tructure resources but more computation because it has to
generate enough particles to cover the interesting state space
areas and update them. Furthermore, because IMU data does
not contain absolute location information, it requires many
iterations for the particles to collapse to the user’s loca-
tion. The user may enter another area before convergence

FIGURE 1. The barometer reading measured at the same altitude drifted
by approximately 3m within 15 minutes.

(e.g., another floor), rendering previous calculations point-
less and wasted. The underlying cause of these issues is
that the information obtained from PDR is insufficient.
Thus the introduction of more user movement informa-
tion is necessary to aid in the initialization and updating
of particles.

Another drawback of PDR is that it only calculates the
two-dimensional (2D) location, while most buildings are
multi-floor structures. The user’s altitude in a multi-floor
building can be represented as a floor number, and a three-
dimensional (3D) location can be derived by integrating the
2D location with the floor number. There are a few PF
approaches assist in determining the user’s vertical move-
ment by propagating particles to predefined vertical transition
areas [12], [19]. However, particles tend to move to broader
areas, while floor transition zones are generally narrow.
When a user moves to another floor, only a small num-
ber of correct particles enter the transition zone. Altitude
calculation based on features extracted from different IMU
modes presented during the user’s vertical movement was
successfully implemented in [20], [21], and [22]. Refer-
ence [20] proposed two acceleration integration methods to
determine height difference, and [21] formed a mapping table
from distinct movement patterns for floor change estimation
using travel time and step count. An inherent issue with
IMU-based floor detection is that the IMU sensors are sen-
sitive to user behavior, with unpredictable actions from the
user severely impacting their measurements. Consequently,
these systems typically maintain optimal performance under
constant user behavior. The barometer sensor avoids this
problem because its measurement is dominated by atmo-
spheric pressure instead of user motion. Numerous floor
localization methods based on barometric pressure have been
developed [23], [24], [25], [26], which can broadly be clas-
sified as reference station-based floor localization methods
or pressure difference measurement-based floor localiza-
tion methods [27]. Since station-based methods require the
deployment of infrastructure within the environment, they are
not considered in this paper. On the other hand, a relationship
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FIGURE 2. Architecture of our scheme.

between atmospheric pressure and height h was constructed
in [28].

h(p, p0) = 44330 ·

[
1−

(
p
p0

) 1
5.255

]
, (1)

where p and p0 are the current barometer reading and
standard pressure at sea level in mbar. However, due to atmo-
spheric pressure error caused by weather factors, the altitude
calculated by (1) is inaccurate. Figure 1 demonstrates an
example of the atmospheric pressure drift effect. Therefore,
it’s generally accepted to estimate the change in altitude
through the pressure difference, instead of directly calculat-
ing the altitude. Another challenge of the pressure difference
measurement-based method is that barometric measurement
is also affected by smartphone usage and environmental fac-
tors. Although the pressure distribution of each floor, even
containing various noises, has a range in an overall view, wait-
ing for enough data to characterize the pressure distribution
in a specific region will result in a significant delay, which
is not conducive to cooperating with 2D locations. Moreover,
height information can not only be combined with 2D loca-
tion to provide 3D location but can also be used to optimize
2D localization since both are derived from the user’s motion
measurements. However, only a few solutions took advantage
of this feature to optimize the performance [14], [29]. The
reasons could be as follows.
• Delays that result from slow floor transition detection
lead to a loss of correlation between height information
and 2D location.

• Most floor detection solutions merely compute altitude
without the capacity to extract features associated with
floor transitions, while altitude alone does not suffice to
correct the user’s 2D location.

Therefore, the use of height information to improve 2D loca-
tion requires the ability to detect fast floor transitions and
extract vertical motion features. Moreover, despite the wide
usage of the PF in indoor localization, handling the state of
particles when the user changes floors is a tricky issue, and

its optimal strategy for multi-floor scenarios remains an open
problem.

In recent years, deep learning (DL) has been widely used
in the analysis and processing of sensor data, creating sig-
nificant advances in data feature engineering and providing
many solutions in LBS [30], [31], [32]. An important aspect
of the DL scheme in LBS is that, since the platform for LBS
is generally a mobile device, the power consumption and
computational complexity must be considered.

To address the aforementioned issues, we propose an
indoor multi-floor localization scheme that is infrastructure-
independent and solely relies on the onboard sensors of a
smartphone. Because of the scarcity of wireless signal infor-
mation, the main challenge for our scheme is determining
how to extract as much motion information as possible from
the limited sensor data and combine them comprehensively
to provide stable, fast, and mobile-friendly indoor multi-
floor localization. This research is an extended version of our
previous work [33]. We propose a DL-based floor detection
that exploits the sequence-to-sequence (Seq2Seq) model to
predict the user’s step action from time-series barometric
data. A floor decision algorithm is developed to not only
identify floor transitions and estimate floor numbers from
the step action sequence but also extract vertical movement
features of a step. Based on the proposed Seq2Seq model’s
stable performance for noisy data, our floor detection can
work regardless of how the smartphone was worn. Next,
we design and implement a PF with clustering to fuse sensor
data, map information, and floor detection prediction for esti-
mating 2D locations. We introduce mean shift and calibration
nodes (CN) matching-based location correction to improve
the PF’s performance. The mean shift is applied as a cluster-
ing algorithm to detect PF divergence and improve location
estimation. In addition, according to clustering results, the
proposed scheme dynamically adjusts the number of particles
to reduce the computational complexity without sacrificing
performance. The CN matching-based location correction
is used to combine prior knowledge from the map and the
vertical user movement obtained from the proposed floor
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FIGURE 3. Height range of the smartphone relative to the body.

detection to accelerate particle convergence, correct the parti-
cle state, and provide an effective way to extend the 2D PF to
3D scenarios. The contributions of this paper are summarized
as follows:
• We propose a Seq2Seq-based step action recognition
and floor decision algorithm that enables fast calculation
of step height and vertical movement features, without
constraints on user behavior.

• We employ a PF to integrate vertical movement features
from floor detection, PDR, clustering, and map infor-
mation to address the sample impoverishment issue in
particle filters and optimize localization performance,
as well as reduce the computational complexity without
sacrificing performance.

• Our approach is integrated into an infrastructure-
independent positioning system, enabling reliable
indoor multi-floor localization.

The remainder of this paper is structured as follows.
Sections II and III elaborate on the methodology of our pro-
posed indoor multi-floor localization scheme. Section IV is
devoted to the evaluation and analytical examination of our
scheme, followed by Section V which presents a detailed dis-
cussion. Finally, we conclude and outline potential avenues
for future work in Sections VI and VII.

II. SEQ2SEQ-BASED FLOOR DETECTION
Figure 2 illustrates an overview of the proposed scheme,
which consists of two modules: DL-based floor detection and
PDR-PF with clustering. As illustrated in Figure 2, the pro-
posed scheme reads barometer and IMU sensor data while the
user is walking in a building. The DL-based floor detection
receives barometric data as the input to perform the floor
tracking. Meanwhile, the PF incorporates the PDR estimation
based on the IMU data, the prediction from floor detection,
and the data from the smartphone database to calculate the
2D location. Finally, the results of floor detection and PF
are combined to achieve indoor multi-floor localization. The
DL-based floor detection is introduced in this section, which
is responsible for floor transition detection and floor number
calculation.

A. USER ACTIVITY ANALYSIS AND FLOOR
DETECTION SCENARIO
In this study, we divide multi-floor localization into two
stages: the first stage where the user enters the building and

FIGURE 4. Examples of raw and smoothed barometric data and
associated time lag effect.

moves around freely, and the second stage where the local-
ization begins. To provide the height information required
for initializing 2D localization, it is necessary during the
first stage to obtain the floor number from the entrance or
other technologies (e.g., GPS) [34], [35] and track the floor
while the user moves around with the smartphone. The floor
number will be used to provide the correct floor plan in
stage two. Consequently, the stability and accuracy of the
floor detection significantly determine the performance of the
entire scheme.

The barometer measurement is primarily based on altitude.
However, it is also affected by short-term noise from user
activity and the ambient environment, as well as long-term
drift caused by weather in practical applications. We pre-
sume that for most cases, the height of the device relative
to the user’s body is within a specific range, as shown in
Figure 3. There are several representative modes of smart-
phone usage listed: (a) calling, (b) typing, (c) swinging, and
(d) pocket [36]. Here, (a) represents the highest case of a
smartphone, (c) represents the lowest case, and (d) represents
the different surroundings such as when it’s in the pocket or
bag. The data in Figure 4 shows an example of barometric
data collected including the above cases. From Figure 4,
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FIGURE 5. Various tasks of the RNN model.

we observed that the means and variances of barometric data
collected on the same floor differ due to changes in height
and environment. In addition, outliers appeared when the
user switched smartphone usage cases. We demonstrated the
possibility of recognizing step actions through time-series
pressure data and proposed an MLP-based step action recog-
nition approach to identify the user’s floor transition from
noisy pressure data [33]. However, because we assumed in
previous work that the user always carries the smartphone
in front of their body (i.e., do not change the height of
the smartphone with respect to the body), the user behav-
ior is easily recognized as the stair step under the free
activity scenarios. The typical approach to smoothing these
transient pressure fluctuations is to utilize a lowpass filter,
such as simple moving average (SMA) or weight smoothing,
as follows [37].

xdt =

∑t
i=t−m+1 xi
m

, (2)

xdt = (1− β) · xdt−1 + β · xt . (3)

Here, xt and xdt indicate the t-th sampling data and smoothed
sampling data, respectively. m is the size of the average
window, β is the smooth factor, and they are used to con-
trol the smoothing effect. The trade-off between delay and
smoothing effect is a known problem with the smoothing
algorithm. Figures 4(a) and 4(b) demonstrates the smooth-
ing and delay effect of (3) with different values of β, and
they were smoothed under a sampling frequency of 20Hz.
In Figure 4(b), the barometer reading with β = 0.6 only
smoothed out a few severe outliers, and caused a delay of
less than 0.05s; while the smoothed barometer reading with
β = 0.03 exhibited a clear height correlation, but the trade-off
is causing a delay of 5.1s, which means that the user may
take 6–8 steps before the pressure measurement shows the
characteristics of the flat floor. These missing steps constitute
a significant error in our system because the floor transition
signal generated from floor detection is exploited in the PF
component to correct the PF’s estimation (to be described
in Section III-B6). The time difference between the step
action and the 2D position should be as small as possible
to ensure their correlation. Therefore, we design a Seq2Seq
model that can predict the correct step action from barometric
data containing noise and outliers instead of heavily relying
on the smooth filter. In addition, because a delay of 0.05s is
acceptable, we utilize (3) with β = 0.6 to smooth the data.

TABLE 1. Time and weather conditions during training data collection.

B. MODEL SELECTION, DATA PROCESSING, AND
TRAINING RESULT
We found the potential of the Seq2Seq model for han-
dling noisy time-series pressure data. The Seq2Seq is an
encoder-decoder framework model using recurrent neural
network (RNN) [38] and consists of three components:
encoder, decoder, and state vector that connects them. The
encoder is responsible for compressing the input sequence
into a state vector as the initial hidden state of the decoder,
and then the decoder predicts the probability of each class
from the state vector. The Seq2Seq model can deal with
various tasks such as many-to-many, many-to-one, and one-
to-many, as shown in Figure 5. In this study, we apply the
Seq2Seq model to the many-to-one task. Unlike MLP, the
most widely employed DL model, the output of Seq2Seq is
determined by both current and previous inputs, thus it is well
suited for handling sequences such as time-series data. In this
paper, the Seq2Seq model receives time-series pressure data
that includes the previous and current barometer readings to
confirm whether the current barometric fluctuation is caused
by noise or height change.

The training data was collected from Hyeongnam Engi-
neering Building at Soongsil University, with 22 stairs
between each floor and a height of 17cm for each stair.
Regarding the data collection, a barometer reading is
recorded in the smartphone database once a step is detected.
The step’s label is determined based on the region where the
user is located. For example, if a user enters the upstairs at
the 30th step and exits the staircase at the 60th step, then
the labels for the 30th to the 60th steps would be assigned as
‘‘Going up.’’Moreover, unlike IMU sensors, barometric mea-
surements are primarily driven by changes in altitude. Thus,
the impact of individual user characteristics (e.g., weight,
gender, height) on barometric measurements is negligible
compared to the noise induced by user activity. The pri-
mary impact of different users on barometric measurements
comes from their walking styles on the staircase, such as
some pedestrians taking two stairs in one step. Therefore,
we ensure the inclusion of features from various movement
patterns in the training data by randomly taking one or two
stairs while climbing stairs during data collection. There were
3,726 barometric data collected for model training, which
included 14 events of ascending stairs and 14 events of
descending stairs. The time andweather conditions during the
data collection are shown in Table 1. Next, we applied a data
augmentation method to the collected data, as follows.

δi = xdi+1 − x
d
i , (4)
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TABLE 2. Hyperparameters used in model training.

xa1 = xdlast − δ1, (5)

xai = xai−1 − δi, (6)

where δ is the pressure difference of adjacent steps, xdk is
the k-th smoothed pressure data, xdlast is the last pressure
data of the collected dataset, and xa is the barometer data
generated by data augmentation. Through data augmenta-
tion, the ascending and descending pressure data can be
mutually transformed. A thorough analysis on the reasoning
behind, feasibility, and optimization strategies for ensuring
high dataset quality in this data augmentation method can be
found in [33]. We concatenated xd and xa as training data xw.
By performing data augmentation, the size of the training
dataset was increased to 7,098, and the number of events for
ascending and descending stairs was expanded to 28.

Subsequently, a sliding window method was used to con-
vert the data into learnable forms, as follows.

Xwk = {x
w
k−s+1, · · · , x

w
k }, (7)

where s stands for the window size. Xwk is a subset of the
dataset, which contains the pressure change from the previous
s steps. Its label is determined by the label of the k-th step.
It is recommended that the value of s be between 10 and 20 to
ensure that the barometer sequence of size s is sufficient to
represent the pressure change information over a short period,
and s = 15 in this paper. Next, mean centering is used to shift
the feature’s center to 0.

Xk = Xwk − µk

= {xk−s+1, . . . , xk}, (8)

where µk is the mean of Xwk , and Xk is the input of the model.
Our model predicts the step action based on the pressure
changes over the past s steps. The reason for employing
mean centering instead of normalization or standardization
lies in our desire to shift the data close to 0 to aid the model
training while refraining from scaling operations that modify
the data’s original units. Furthermore, the main advantage of
using fixed-length Xk as the input (i.e., many-to-one) to pre-
dict a step action instead of generating the output whenever
each input is read (i.e., many-to-many) is that the Seq2Seq
model is capable of fitting the trajectories of different lengths
well and eliminates the effect of outliers that accumulate over

FIGURE 6. Seq2Seq model overview.

FIGURE 7. Step action recognition examples.

time and the weather factors. The performance of the many-
to-many approach becomes unstable in long path scenarios,
which results from the accumulation of outliers in previous
inputs. Additionally, early barometer data have little correla-
tion with the current step action. In contrast, the fixed-length
input means that the model’s prediction only depends on
past s measurements and has approximate performance for a
sequence with arbitrary lengths. Furthermore, since pressure
fluctuations typically require tens of minutes to hours to
produce a significant altitude drift [39], a pressure sequence
with a size of 15, which corresponds to a pressure change
over a 10 seconds period, enables the avoidance of long-term
errors arising from weather factors.

Table 2 lists the hyperparameters adopted in the Seq2Seq
model. The hyperbolic tangent (Tanh) was used instead of
Sigmoid for faster and better training. Xavier uniform was
utilized as a weight initializer to make the variance of the
output of each layer roughly equal to the variance of its
input, to prevent the gradients from becoming too large or
too small during training [40]. They are both commonly used
hyperparameters in RNN training, and their definitions are
given in (9) and (10), where the fanin and fanout indicate the
number of input units and output units in the weight tensor,
respectively.

tanh(x) =
e2x − 1
e2x + 1

, (9)

Wi,j ∼ U
(
−

√
6

fanin + fanout
,

√
6

fanin + fanout

)
. (10)

Figure 6 provides an overview of the proposed Seq2Seq
model. The decoder and encoder of the model are both com-
posed of an LSTM layer with 16 hidden units [41]. The
model is initialized using the uniform Xavier initialization,
then sequentially receives past k barometric data. As the

VOLUME 11, 2023 66099



C. Lin, Y. Shin: Multi-Floor Indoor Localization Scheme

model processes the time-series data, it utilizes the hidden
state transitions of the Seq2Seq model to extract the temporal
dependencies in the data, thereby effectively extracting the
inherent features associated with ascending or descending
stairs. Subsequently, the dense (or fully-connected) layer
outputs the probabilities of three distinct classes: ‘‘Normal,’’
‘‘Going up,’’ and ‘‘Going down.’’ The model then updates its
weights according to the ground truth. Each of these actions
represents a potential pattern of walking behavior. Owing to
the lightweight architecture of our Seq2Seqmodel, it achieves
training convergence in less than 30 epochs.

Figure 7 shows simple step action recognition examples.
The test data was collected within a building with a floor
interval of 3.5m, where the tester ascended the stairs and then
returned via the elevator. As can be observed in Figure 7,
the barometric data exhibits notable noise even when the
tester is walking on a flat floor, making it difficult to dif-
ferentiate between pressure differences caused by changes
in altitude and those caused by noise. For such data, the
Seq2Seq model (left in Figure 7) correctly identifies the
majority of step actions in real-time. Additionally, the pro-
posed Seq2Seq model exhibits sensitivity to sudden changes
in barometric data, which allows to immediately detect the
first step after the user takes the elevator, as indicated by
the red arrow in Figure 7. This characteristic is crucial for
our approach because it enables the immediate detection
of an elevator event from the first step through the floor
decision algorithm described in the following subsection.
Furthermore, we experimented with simple LSTM models,
which are commonly used in many-to-one tasks for step
action recognition, and found that they lacked the ability to
detect a change in step action from the first step of elevator
use. The right plot of Figure 7 shows a prediction by an LSTM
model, which is constructed with 12,771 trainable parameters
and composed of two LSTM layers with a dropout layer of
rate 0.2 and 0.1 after each, followed by a dense layer [42].
The red arrow in the figure confirms that the LSTM model
did not immediately detect the elevator step. The potential
reasons for this discrepancy between the two models could
include:
1) Enhanced representation capabilities: The Seq2Seq

model offers more robust representational capabilities
through its distinct encoder and decoder for handling the
input and the output.

2) Better performance with long-term dependencies: The
encoder condenses the entire input sequence into a con-
text vector, which the decoder uses to generate predic-
tions. This mechanism aids in capturing long-distance
dependencies within the input sequence.

Therefore, Seq2Seq is employed for this study.

C. FLOOR DECISION ALGORITHM WITH RELATIVE
PRESSURE MAP
In this study, the user’s vertical movement is represented
by step actions instead of directly calculating the altitude.
The advantage of this approach is that, due to factors such

Algorithm 1 Floor Decision Algorithm
Input: predicted action act of current step
Output: floor detection of a step

Initialization: nwait , pelevator ← 3, 0.35
1: if act is same as previous & queue is empty then
2: Calculate pressure value p with a lowpass filter
3: return floor detection result same as previous step
4: else
5: Enqueue current IMU and barometer data into queue
6: Count number of consecutive occurrences ncon
7: // Decide whether to change walking state
8: if ncon > nwait then
9: Generate a floor transition signal
10: Calculate average pressure value pa of the step data in

queue
11: Obtain pressure difference by pdelta ← p− pa
12: if act ̸= Normal then
13: // Decide transition type
14: if pdelta < pelevator then
15: transition type← stairs
16: else
17: transition type← elevator
18: end if
19: Update and dequeue the steps in queue
20: return transition type and direction
21: else
22: // Update floor number when back to floor
23: floor number← UpdateFloor()
24: Update floor number of current step
25: Update and dequeue the steps in queue
26: return floor number
27: end if
28: else
29: Wait for prediction of next step
30: end if
31: end if

Algorithm 2 UpdateFloor()
Input: relative pressure map RM, pivot floor, pdelta
Output: floor number
1: // Obtain pressure value of pivot floor from RM
2: ppivot ←RM[pivot floor]
3: // Calculate new pressure value after floor transition
4: pnew ← ppivot + pdelta
5: floor number← the floor with the closest pressure value to pnew

in RM.
6: return floor number

as pressure drift and user behavior, the barometer reading
can vary even if the altitude is the same (i.e., the user is on
the same floor). These short-term and long-term noises in
barometer measurements cause the height calculation to be
inaccurate, such as being identified as another floor level. [24]
applied an iterative optimization method to track pressure
changes and eliminate the drift effect in real-time, but con-
stant calibration is laborious. The step action sequence is a
form of data without atmospheric pressure value, thus avoid-
ing the above problems. The only requirement is to ensure
that DL predictions are accurate and robust enough. Based on
the step action sequence, we know the exact step of the floor
transition that occurred. Therefore, this study estimates the
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height change based on barometric pressure difference only
when the region changes are detected.

Algorithm 1 explains the proposed floor decision
algorithm. We obtain the step action sequence according to
the prediction of the Seq2Seqmodel, which implies the user’s
vertical movement. For example, a sequence of ‘‘Going up’’
steps means that the user is climbing the stairs. We can update
the floor number according to the number of such steps.
However, this method has two drawbacks: 1) the number of
steps required to walk up a floor varies depending on the
user’s climbing method, and 2) false floor transitions on a
flat floor are also recognized as floor transitions. Therefore,
it is necessary to calculate the height difference through the
barometer reading. Although the atmospheric pressure drifts
due to weather conditions, the pressure difference in a short
time interval is credible [43].

Before applying the step action sequence, incorrect DL
model predictions need to be eliminated. Outlier data is
typically isolated and unordered, whereas height-induced
pressure changes are persistent and ordered. Therefore, con-
firming a floor transition through multiple step actions can
eliminate most of the incorrect predictions. When detecting a
different step actionwith previous steps, the proposedmethod
does not immediately confirm the region changed, but instead
enqueues the step data in memory and waits for the prediction
of new step actions until the queue length exceeds nwait .
At the point the current region is changed, a floor transition
signal is generated.

A method to mitigate pressure drift is to calculate the
pressure difference based on the exact steps of entering
and exiting the transition zone, ensuring the minimum time
interval between them. This can easily be achieved accord-
ing to the Seq2Seq model’s prediction. The floor decision
algorithm first calculates the pressure difference pdelta when
a region change is confirmed. In particular, the pressure value
p of the previous floor is calculated through a lowpass filter
(line 2 in Algorithm 1), while the current pressure value
pa is obtained from the average of the data in the queue
(line 10 in Algorithm 1). This ensures that the time interval in
calculating the pressure difference is minimized to avoid the
impact of long-term drift errors and smoothens the pressure
values of the previous floor and current floor against short-
term noises. At line 12 in Algorithm 1, a step action not equal
to ‘‘Normal’’ indicates that the user moves from the flat floor
to an elevator or stairs, and the decision between elevator
or staircase is made based on the pressure difference pdelta.
Otherwise, if the step action is ‘‘Normal,’’ it means the user
is returning to the flat floor, and the floor number must be
updated accordingly.

The new floor number is obtained from the UpdateFloor(),
as shown in Algorithm 2. UpdateFloor() reads the pressure
value of the pivot floor and calculates pnew by adding the
pressure difference. The floor with the closest pressure value
to pnew is mapped as the new floor number. Next, the floor
number of the current step and steps in the queue is updated.
The proposed floor detection can immediately estimate floor

number when a step is detected, with only a delay of nwait
steps when the region changes. In particular, this delay refers
to the delay of output results, rather than the time difference
between vertical movement information and 2D position,
because sensor data at the same time is saved in the queue
when a different step action is detected.

III. PDR-PF WITH CLUSTERING
The 2D location calculation is introduced in this section,
which is activated when a user starts localization. As shown in
Figure 8, the PF fuses data from floor detection, smartphone
database, and PDR to calculate the 2D location of the user’s
k-th step. The PF first updates the state of particles based
on the transition signal from the DL-based floor detection
or PDR estimation and then utilizes mean shift to cluster
them. Afterward, the location estimation and resampling are
performed based on the clustering results.

PDR is described first because it drives the entire
scheme. Then, PF will be introduced in detail, including
map constraint, clustering, and CN matching-based location
correction.

A. SMARTPHONE SENSOR-BASED PDR
The Android and iOS operating systems respectively provide
the SensorEvent and CoreMotion classes to report motion
information from the onboard sensors of devices [44], [45],
which enables us to estimate the location through PDR. The
PDR approach suggests that a step can be expressed as a
distance and an angle referring to the previous state, i.e., the
current location is determined by the current displacement
and previous location. Inmathematics, the location of the k-th
step Pk (xk , yk ) can be expressed as

Pk (xk , yk ) =
[
xk
yk

]
=

[
xk−1
yk−1

]
+ λk

[
sin(αk )
cos(αk )

]
, (11)

where λk and αk are the stride length and heading direction
of the k-th step. Next, we introduce the step detection, stride
length calculation, and heading direction estimation of PDR.

1) STEP DETECTION
When a pedestrian walks, the vertical acceleration presents
periodic sine waves, with each step represented by a local
peak or valley in the acceleration. This pattern enables step
detection by recognizing these peaks and valleys in vertical
acceleration. To counteract the impact of device tilts on sensor
measurements, rotation transformation needs to be performed
to convert the accelerometer readings from the local coordi-
nate system (LCS) to the global coordinate system (GCS).
The rotation matrix R can be calculated through several
methods, including quaternions and sensor fusion [46], [47].
In this paper, we utilized getRotationMatrix() function in
SensorManager class to compute the rotation matrix by
cross-product of accelerometer and magnetometer measure-
ments. The acceleration vector in the GCS AGt can then be
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FIGURE 8. Flowchart of the PF used in our scheme.

determined as

AGt = Rt · ALt , (12)

where ALt are the acceleration vectors in LCS. Subsequently,
a valid step is defined as

{at > aupper , at+1t < alower , 0.15s < 1t < 0.6s}, (13)

where at is the vertical acceleration, and 1t is the time inter-
val between the peak and valley.We established the amplitude
thresholds aupper = 1.0m/s2 and alower = −0.8m/s2 in this
study.

2) STRIDE LENGTH ESTIMATION
Theoretically, displacement can be calculated by integrat-
ing acceleration. However, due to the limited accuracy
of the onboard accelerometer, the step length is typically
derived based on features of the acceleration data, such as
peaks/valleys and variance [48], [49], [50]. We use [51] to
estimate the stride of a step, which establishes a relationship
between vertical acceleration and step length, as follows.

λk = τk ·
4
√
amax,k − amin,k , (14)

where amax,k and amin,k denote the maximum and minimum
vertical acceleration value during k-th step, and τk is the
coefficient that can be specified for different subjects. Due to
the influence of gravity, the variance of acceleration for steps
taken in stairs is typically greater than that for steps taken on
flat ground, and causes errors in the stride estimation within
stairs. To improve the step length calculation, we adjust the
value of τk based on the region where the user is located
using (15). The region information is obtained through the
proposed floor detection method.

τk =

{
ρ · τ, if stairs
τ, otherwise.

(15)

Here, ρ denotes a scale factor used to compensate for step
length calculation in stairs. It is recommended that the

value of ρ ranges from 0.5 to 0.8, and we empirically set
τ = 0.43 and ρ = 0.6 in this paper. In fact, the exact value
of ρ is not strictly required in our scheme, since a correction
will be made both when detecting entering and exiting stairs
(to be described in Section III-B6).

3) HEADING DIRECTION ESTIMATION
The accuracy of heading direction in PDR is crucial because
the main source of error comes from distortions of direction.
There are twomain methods for the heading direction estima-
tion through IMU sensors: 1. calculate the change in angle
over a period of time by integrating the gyroscope reading
ω, and 2. determine the absolute orientation αm relative to
the north through the accelerometer and magnetometer read-
ings [46]. In this paper, αm is obtained from getOrientation()
in SensorManager class. For the iOS platform, αm can be
retrieved from the CLHeading class in the CoreLocation
framework [52], [53]. The orientation calculated by inte-
grating the angular velocity tends to slowly drift away from
the actual orientation, while the orientation derived from the
accelerometer/magnetometer can be easily distorted by sur-
rounding electronic devices. Thus, the common practice is to
fuse these two measurements based on certain criteria rather
than relying on a single angle source. A typical orientation
fusion can be expressed as follows [54]:

αk = γ · (αk−1 + ωk ·1t)+ (1− γ ) · αmk
= [αxk α

y
k αzk ]

T , (16)

where γ is a coefficient that determines the fusion proportion,
with its value ranging between 0 and 1. A larger value of γ

(e.g., γ = 0.99) indicates a stronger influence of the angle
calculated by the gyroscope in the direction update. Further-
more, since the tilts of device affect the direction estimation,
the orientation is generally transformed into the GCS through
a rotation matrix. However, in this study, we assume that
the user’s smartphone points forward during the localization
stage, and thus we directly utilize the calculated azimuth
(i.e., the z-axis angle) as the heading direction.

B. PF WITH CLUSTERING AND CORRECTION
The PF is a sequential importance sampling (SIS) method
used to estimate a system’s state from noisy and incomplete
measurements. A PF represents the distribution of possible
states of the system using a set of random particles. These
particles are propagated through the state space based onmea-
surement data, and the weights of the particles are updated
each iteration [55]. The weights reflect the likelihood that
each particle represents the true state of the system, given the
measurement data. For more description of the PF in general,
see [18], [56].

As mentioned above, to improve the performance of PF
in inadequate measurements, more user mobility information
must be combined. Therefore, two techniques are proposed in
this study: mean shift and CN matching-based location cor-
rection. Mean shift is used to cluster particles based on spatial
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distance and select the main particle cluster to calculate the
location, thereby improving location estimation performance.
Meanwhile, CN matching-based location correction enables
the PF to utilize the floor transition signal obtained from the
floor decision algorithm and prior knowledge from the floor
plan to accelerate particle convergence, correct the particle’s
state, and optimize particle updates in subsequent tracking.
These two technologies are integrated into 2D localization to
stabilize and sustain the proposed PF. Next, we introduce the
components of the PF as depicted in Figure 8.

1) PARTICLE INITIALIZATION
The PF is activated when the user starts localization
(e.g., press the localization button). Since the user’s location
is not given, the PF first acquires the current floor plan based
on our floor detection, and then N0 particles are uniformly
dispersed on the entire map. The attribute of the i-th particle
at the k-th step, including 2D coordinates, heading, weight,
and cluster number, is as follows.

A(i)
k = [P(i)k , θ

(i)
k ,w(i)

k , c(i)k ], (17)

where P(i)k = (x(i)k , y(i)k ) denotes the 2D location and θ
(i)
k

denotes the heading direction. We assume that the orientation
measured by accelerometer/magnetometer sensors is Gaus-
sian distributed around the true orientation and thus generates
θ
(i)
0 ∼ N (αm, σ ori) as the initial heading of the i-th particle.
w(i)
k and c(i)k stand for the particle weight and cluster label,

respectively, and they are initialized as 1/N0 and −1.

2) PROPAGATION, UPDATE, AND MAP CONSTRAINT
In this subsection, the location P(i), heading θ (i), and weight
w(i) of particles are updated. Whenever a step is detected, the
step length and direction are calculated by the PDR and fed
into the PF. The particles propagate based on the current state
and PDR estimation. In addition, Gaussian errors with zero
mean and standard deviation σ l and σ o are respectively added
to step length and heading direction update to simulate the
effect of the uncertainty and noises of measurements, as well
as avoid the loss of diversity among the particles.

The weight of the particles is determined by the sys-
tem evaluation function, with the commonly used evalua-
tion parameters including direction or distance [57], [58].
We apply Gaussian distribution to calculate the weight of the
particles, as follows [59].

w(i)
k = w(i)

k−1 ·
1

σ
√
2π
· e

[
(1xk−1x(i)k )2+(1yk−1y(i)k )2

−2σ2

]
, (18)

where 1 represents the displacement. Furthermore, map
information is used to detect collisions with walls and elim-
inate invalid particles to guide the propagation of particles.
In this study, the digital map is derived from the floor plan and
comprises blocks and lines. The blocks represent unreachable
areas and are used to eliminate impossible particles during
particle generation (e.g., initialization and resampling). The
lines represent the walls and are used to kill particles that

cross them. Whenever the particle state is updated, the colli-
sion detection algorithm checks whether the particle crosses a
line or falls within a block based on its location at the previous
and current time steps. The weight of invalid particles is set
as zero, while the valid particles are retained. After the map
constraint, the weights are normalized to ensure their sum
is one.

3) CLUSTERING USING MEAN SHIFT
In this study, clustering is used to group the surviving
particles and find the centroid of each cluster. With the clus-
tering results, we 1) confirm the convergence of particles,
2) optimize the location estimation from multiple modes of
particle distribution (to be described in the location esti-
mation subsection), and 3) adjust the number of particles
dynamically subject to reduce computational burden with-
out sacrificing performance (to be described in resampling
subsection). Before explaining these, we introduce the clus-
tering algorithm.

We utilized mean shift as the clustering algorithm [60].
Mean shift is a non-parametric and centroid-based technique
that defines a region around each data point and moves
the center (or mean) of that region toward the densest part
of the region until it converges to the local maximum.
The K-means is the most widely used clustering algorithm,
in which the main parameter is the number of clusters K .
However, K-means cannot delineate non-convex clusters.
In addition, we want to count the number of clusters instead
of manually providing this parameter, thus it is unsuitable
for our scheme. Reference [14] used Density-Based Spatial
Clustering for Applications with Noise (DBSCAN) to group
the particles and detect outliers according to their density,
where the outliers are annexed to a new cluster. Although
mean shift does not identify outliers, having the clustering
algorithm recognize and operate on these outliers is not
desired in our scheme. A surviving particle contains relative
information iterated from the PDR update andmay be correct.
Therefore, these ‘‘outliers’’ remain until they are killed by a
collision detection algorithm or grow up to a larger cluster.
Furthermore, we will introduce how to exclude the effects of
these ‘‘outliers’’ in the location estimation subsection. The
motivation for using mean shift is that it is simple, fast,
and can delineate arbitrarily shaped clusters and count the
number of clusters automatically, which is well suited for
the dynamic and irregularly shaped particle cloud. In the
proposed scheme, mean shift evaluates the similarity between
particles based on their location on the orthogonal coordinate
system. In particular, normalization is not performed as we
want to retain the unit of features to express the real distance.
The main parameter of mean shift is the bandwidth B, which
is set as 3m in our scheme. This is a relatively large value,
which implies that the spatial separation between particles
may need to approximate the distance across a room for them
to be classified into distinct clusters. The purpose of utilizing
mean shift is to describe particle distribution and discover
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dispersed particle clusters rather than dividing a converged
particle cloud into several clusters. Therefore, a slightly larger
value of B is recommended.

In the initialization phase, particles are evenly distributed
across the state space area. As the new step is detected, the
particle cloud converges to where the user might be. The
early particles are meaningless until the filter gathers over
several iterations to represent the user’s possible location.
The clustering results can be exploited to explain the current
particle distribution: the more dispersed the particles are, the
more clusters and the more distant the centroid are from
each other. Therefore, we assume that the PF has converged
enough to provide valid location information when only one
cluster exists. However, particles do not easily cluster in one
place, and waiting for the number of clusters to decrease
to one requires a long time. Thus, it is also considered to
have converged when the largest cluster’s weight exceeds
80% of the total weight. The location estimation starts after
convergence.

4) LOCALIZATION ESTIMATION
In PF, the estimate of user location is obtained by taking
the weighted average of the surviving particle’s location.
Mathematically, they can be expressed as follows.[

xk
yk

]
=

[∑ns
i w

(i)
k x

(i)
k∑ns

i w
(i)
k y

(i)
k

]
, (19)

where ns indicates the number of surviving particles. As we
mentioned before, due to the building structure and uncer-
tainty of the measurement, the particles may become spread
out over multiple modes during propagation. Furthermore,
particles can be regenerated in one or a few locations based on
the user’s motion information and CN profile in our scheme
(to be discussed in the location correction subsection). As a
result, it is difficult to accurately estimate the user’s loca-
tion using the entire particle set. Therefore, we calculate the
location from the selected particles through the results of
clustering. First, we ignore tiny clusters whose weight is less
than 5-10% of the total weight. Second, when the weight
of the largest cluster exceeds 70% of the total weight, the
location is calculated only using that cluster. Otherwise, all
the particles are used to estimate location.

5) RESAMPLING
One drawback of the SIS method is the degeneracy of weight,
where the importance weights concentrate on a few particles
while the majority of particles have weights close to 0 after
multiple iterations. Resampling is a common solution to han-
dle this issue which ignores the particles with low weights
and multiplies the particles with high weights. However,
resampling causes the particles to lose diversity, resulting in
sample impoverishment [11], [18], [61]. A typical approach
to handle this issue is to implement resampling only at certain
iterations [29]. Hence, instead of resampling every iteration,
we only perform it when 1) five iterations have passed since

FIGURE 9. After the user took the elevator, some particles appeared on
the other side of the wall. The gray particles were eliminated due to
falling within the block, the purple particles remained valid, and the navy
particles were not eliminated but were incorrect.

the last resampling, or 2) the number of surviving particles is
less than Np/5, where Np is the current maximum number of
particles, and its value is dynamically adjusted based on the
clustering result.

Theoretically, a large number of particles can reduce
the variance of the estimated posterior distribution, lead-
ing to more accurate state estimation. However, the PF
is a computationally intensive method, and increasing the
number of particles increases the computational cost of the
algorithm. This problem is magnified in real-time tasks and
on the mobile platform. Therefore, balancing the number
of particles with computational efficiency is important for
optimizing the performance of a PF. We assume that fewer
particles can still achieve good localization results when
the particles are concentrated in one area, such as a closed
corridor, while if the particle distribution is dispersed, more
particles are needed to explore the feasible paths. Thus, the
proposed scheme dynamically adjusts the number of particles
Np based on the number of clusters to achieve good perfor-
mance with lower overhead, as follows.

Np = min(15, ncluster )× Nc, (20)

where ncluster is the number of clusters, and Nc stands for the
number of particles assigned for one cluster. In the initializa-
tion phase, there can be many clusters due to the dispersion
of particles. To prevent generating too many particles, the
maximum value ofNp is 15×Nc. A large number of particles
N0 are only used at the first iteration since PF has to cover the
interesting state space areas. Then, Np is determined by (20).

6) CN MATCHING-BASED LOCATION CORRECTION
The performance of PF is improved according to the map
constraint. However, there are still 3 practical problems that
have to be considered:
• In the initialization phase, the convergence of PF is slow
due to inadequate measurement, which can take over a
hundred steps in large buildings.
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• When a user changes the floor, the particle’s state may
not be available on the new map because they were
iteratively updated on the previous floor plan. For exam-
ple, particles cannot reach a room through the wall due
to collision detection algorithms, but the floor change
caused the particles to appear in this room because there
was no wall in the previous floor plan. Figure 9 illus-
trates this example. It is an important issue to efficiently
extend PF to 3D scenarios.

• Due to the absence of absolute location information
(e.g., RSS), the PF cannot correct itself when particles
converge to the wrong location.

To solve these problems, we present CN matching-based
location correction, which combines the floor transition sig-
nal from the floor decision algorithm and prior knowledge
from the map. Whenever a step is detected, the floor decision
algorithm is first checked for the presence of a floor transition
signal. If a transition signal is detected, particles are corrected
based on matched CNs. Otherwise, particles are updated
through PDR estimation.

Before the implementation of location correction, the CN
profile needs to be established for searching and matching.
When the user changes floors, the proposed floor decision
algorithm outputs a transition signal that includes the vertical
motion feature. This vertical motion feature is valuable for the
probabilistic approach such as PF, and it is used to match the
CNs on the floor plan to narrow down the possible area where
the user is located to one or few places. CNs are established
around vertical transition facilities (e.g., elevator, stairwell,
etc.) based on their usage and location. The CN’s profile is
designed as follows.

CNset = {fj,Pcnj ,Typej,Dj, θcnj , j = 1, . . . , ncn}. (21)

Here, fj and Pcnj respectively indicate the floor level and
location of the CN, Typej is the floor transition type
(i.e., stairs or elevator), Dj is the transition direction, θcnj
stands for the possible direction range, and ncn is the total
number of CNs. Because the structure of the facilities
restricts the direction of user movement (e.g., an elevator
having only one exit direction), each CN is assigned a θcn

that is used for initializing the heading of the regenerated
particles.

There is an example of CN matching-based location cor-
rection. A user takes an elevator from the first floor to the third
floor, and the floor decision algorithm returns the first floor as
the previous region and the third floor as the current region,
with the mode of vertical transportation being recognized as
the elevator. Therefore, the CNs that f = 3, Type = elevator,
and D = ascending are matched for location correction.
Location correction is performed according to the following
criteria.
• If the PF has not converged, then Nc particles are gener-
ated around each matched CN. Note that we established
CNs near each vertical transportation, thus there is at
least one CN that exists for matching.

• If the PF has converged, the closest CN is treated as
the main CN based on the estimated user’s location,
and then ncluster × Nc particles are generated near this
CN. The remaining CNs are considered as sub-CNs, and
(ncluster − 1) × Nsub particles are generated near each
sub-CN. In this study, we set Nc = 150 and Nsub = 15;
thus sub-CNs will be identified as tiny clusters and do
not affect the location estimation.

In this way, we not only extend PF to 3D scenarios but also
correct particle states using information from matched CNs.
Additionally, this method accelerates particle convergence,
because the collision detection algorithm can easily eliminate
incorrect clusters due to the narrow transition zone. Further-
more, small clusters generated based on the sub-CN provide
an opportunity for rectification when the PF converges to the
incorrect place: the correct cluster can grow after the other
cluster disappears by colliding with the wall.

Note that while there are variants of the PF to improve
the performance (e.g., the backtracking PF can optimize
the localization results under multimodal particle distri-
bution [14], [62]), the optimal strategy remains an open
question. Our focus in this paper is not on providing the most
accurate localization solution, but rather on offering sustain-
able and reliable long path tracking services with minimal
human effort and limited measurement data. Finally, the 2D
location and the floor number obtained from the floor deci-
sion algorithm are combined to represent the user’s location
in a multi-floor scenario.

IV. EXPERIMENT RESULTS
In this section, multiple experiments were conducted to vali-
date the performance of the proposed scheme. The data was
collected using a smartphone app we built on Android OS.
The experimental device was a Samsung Note 10+ smart-
phone equipped with a barometer and triaxial IMU sensors,
with all sensors having a sampling rate of 20Hz. Whenever
a step is detected by the PDR, our app stores the sensor data
for location estimation based on Python 3.7.7. The creation
of the Seq2Seq model, data augmentation and preprocessing,
model training, and floor decision algorithm was performed
using TensorFlow running on an Nvidia RTX 3070. In this
paper, we consider indoor multi-floor localization as a two-
stage process: 1) entering the building and moving, and
2) starting localization. In the first stage, the initial floor level
is determined when entering the building, utilizing either
the entrance information or alternative technologies, and the
proposed DL-based floor detection tracks the user’s floor
without constraining user activity. In the second stage, when
users start localization, we assume that the smartphone is
pointed forward and remains stationary relative to the user’s
body. Furthermore, to reflect the performance under real-
world usage, the tester exhibited complex mobility patterns
during the experiments, such as varying walking speeds and
occasionally taking one or two stairs in a single step when
navigating staircases. The following subsections describe
the experimental results, including the proposed DL-based
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TABLE 3. Time and weather conditions during test data collection.

TABLE 4. Paths and activities during experiments.

floor detection and indoor localization under a multi-floor
scenario. The results of the experiment were analyzed to
assess the performance of the proposed methods. In addition,
for ease of expression, F# represents the number of floors
above ground, while B# represents the number of floors
below ground in this section. For example, F5 means the
fifth floor.

A. DL-BASED FLOOR DETECTION
The proposed DL-based floor detection aims to track the
user’s floor without limiting user activity, and its evalua-
tion results are presented in this section. When a step is
detected, the Seq2Seqmodel first predicts the step action, and
then the floor decision algorithm calculates the floor number
and user’s vertical movement information based on the step
action, barometer reading, and relative pressure map. The
floor decision algorithm describes a step using one of the fol-
lowing classes: a specific floor, ‘‘Stairs up,’’ ‘‘Stairs down,’’
‘‘Elevator up,’’ or ‘‘Elevator down.’’ A flat step is referred to
as a step on a flat floor in this section.

FIGURE 10. Floor detection result in Sung-deok Hall.

The accuracy rate (AR) is adopted to evaluate the accuracy
of floor number calculation as follows.

ARFN =
#{f̂i | f̂i = fi}

nfloor
(×100%), (22)

where f̂ and f are the predicted floor number and actual floor
number, respectively. nnormal indicates the total number of
steps whose actual label is ‘‘Normal.’’ This means the stairs
and elevator steps are skipped in ARFN computation because
they do not represent a floor number.

There were 9 floor detection experiments conducted in
Sung-deok Hall, Jilli Hall, and Cho Man-sik Memorial Hall
at Soongsil University. Each floor of the buildings had a
gap of about 3.0–3.5m and was equipped with both elevators
and stairs. With three experiments per building, we utilized
13 elevators, 12 sets of stairs, and moved across a total of
69 floors. The time and weather conditions during the test
data collection are shown in Table 3. Table 4 provides a
detailed description of the paths and activities performed
during the experiments, where C, T, S, and P stand for call-
ing, typing, swinging, and pocket cases, respectively, while
E
−→ and

S
−→ represent elevators and stairs. For example,

F1 (C)
E
−→ F2 (C-P) means the user goes upstairs from

F1 to F2 by elevator, during which he finishes a phone call
and puts his smartphone in his pocket. A floor detection
result in Sung-deok Hall is shown in Figure 10, where both
‘‘Stairs up’’ and ‘‘Stairs down’’ steps are denoted as ‘‘Stairs
step,’’ and both ‘‘Elevator up’’ and ‘‘Elevator down’’ steps
are denoted as ‘‘Elevator step.’’ The walking path and activity
executed in Figure 10 correspond to the first entry in Table 4.
From Figure 10, it can be observed that the barometer data
collected on the same floor exhibits drift and fluctuation due
to changes in the environment and user behavior, resulting
in unclear boundaries of atmospheric pressure differentiation
between floors, while the proposed DL-based floor detec-
tion correctly calculates floor numbers. However, four false
floor transition detections occurred on the first and second
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TABLE 5. Confusion matrix for floor transition detection.

TABLE 6. AR for floor detection.

floors when the user entered the buildings and changed the
device carrying case. These false detections did not cause
incorrect floor number calculations through the floor decision
algorithm. Particularly, calculating the atmospheric pressure
difference by using the mean of the data in the queue, rather
than merely considering the pressure difference between two
adjacent steps, provides a more accurate representation of the
true pressure changes. In addition, the four false floor transi-
tion detections in Figure 10 can be reduced to one by raising
the region transition threshold Nwait to 6 in the floor decision
algorithm. Since these false transition detections do not result
in incorrect floor number calculation, a smaller Nwait is cho-
sen to minimize waiting time. Furthermore, Tables 5 and 6
present the evaluation confusion matrix and ARFN scores for
floor detection. From Table 5, all elevator steps are accu-
rately recognized, while some stairs and flat floor steps are
misclassified. Table 6 shows ARFN scores of the floor calcu-
lation in the three experimental buildings. The accuracy of
over 90% for all experiments indicates that the majority of
estimated floor numbers are consistent with the actual floor
numbers under conditions of complex user activity. Although
some errors exist, they primarily occur when the user enters
and exits the transition zone or during changes in activity,
as shown in Figure 10. These false positive and negative
errors result in a delay of nwait steps but do not cause inac-
curacies in the computation of the floor level. In a scenario
of unrestricted user activity, our goal is not to guarantee
perfect accuracy in step action detection, but rather to prevent
these potential errors from leading to incorrect floor number
calculations.

Furthermore, we assess the accuracy of our Seq2Seqmodel
against noisy data using raw barometer data. For compari-
son purposes, we incorporate the scores of the MLP model
proposed in our previous work. The comparative data was
collected in Jilli Hall’s F1 to F5, and the collection paths
are presented in Table 7. The dataset size is 4,704, including
2,352 raw barometer readings and 2,352 barometer readings
smoothed by (3) with β of 0.03. The smartphone was held

TABLE 7. Comparative data collection paths in Jilli Hall.

TABLE 8. Step action recognition accuracy for two models.

in front of the body throughout data collection. Table 8 lists
the scores of two models. Based on Table 8, we observed that
the MLP model achieved accuracies of 91.8% for smoothed
data and 76.1% for noisy raw data, which means it performs
well for smoothed data, but its accuracy rapidly decreases
for raw data. In contrast, the Seq2Seq model demonstrates
a similar performance for both smoothed and raw data, yield-
ing accuracies of 90.4% for smoothed data and 87.0% for
noisy raw data, resulting in a mere 3.4%p decrease in accu-
racy compared to the smoothed data. This implies that the
proposed Seq2Seq model demonstrates significantly better
stability when dealing with noisy data compared to the MLP
model. As aforementioned in Section II-A, to reduce the
time difference between altitude information and 2D location
to enhance the performance of the multi-floor localization
scheme, the model should not rely on the filter. In addition,
robustness to noisy data is more suitable for free activity
scenarios. Therefore, the Seq2Seq is more appropriate for this
scheme.

B. INDOOR MULTI-FLOOR LOCALIZATION
To assess the performance of the proposed indoor multi-floor
localization approach, we conducted long path tracking
experiments on the third floor to sixth floor of Cho Man-sik
Memorial Hall. Each floor of the building is composed
of two sections, measuring 75m × 18m and 18m × 42m
respectively. These areas encompass an open study space,
and various corridors and rooms. Additionally, each floor is
equipped with a staircase and a stairwell, as well as three ele-
vators, two ofwhich are adjacent to each other.We employ the
2D location’s AR to compute the proportion of localization
errors that fall below a particular threshold ϵ, as follows [63].

dk =
√
(Pk − P̂k )2, (23)

ARLoc =
#{dk | dk ≤ ϵ}

n
× (100%), (24)

where Pk = (xk , yk ) and P̂k = (x̂k , ŷk ) indicate the estimated
location and actual location of k-th step, respectively, and dk
indicates the Euclidean distance between them. Furthermore,
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FIGURE 11. Results of long path localization experiment.

root-mean-square error (RMSE) was employed to compute
the localization loss, as follows.

RMSE =

√∑n
k=1(Pk − P̂k )2

n

=

√∑n
k=1(xk − x̂k )2 + (yk − ŷk )2

n
. (25)

We collected 1,000 step data for the experiment. To demon-
strate the performance of our scheme, we performed six
approaches to calculate the location, which are: (a) the pro-
posed scheme, (b) PF (1k particles) with CNmatching, (c) PF
(1k particles), (d) PDR with CF, (e) calibrated PDR with CF,
and (f) PDR with Acc & Mag. The setup of each approach is
described as follows.
(a) The PF with CNmatching-based location correction and

dynamic adjustment of particle numbers via (20).
(b) The PF with CN matching-based location correction

uses a fixed number of 1,000 (1k) particles generated
in the resampling phase, instead of using (20).

(c) Conventional PF generates a fixed number of 1k par-
ticles in the resampling phase. When a floor transition
occurs, the particle information from the previous region
is used directly.

(d) Step locations are calculated with (11). The step length
is calculated by (14) and (15), and the heading direction
is calculated using (16), where γ = 0.99.

(e) Step locations are calculated in the same way as (d).
In addition, whenever a floor transition is detected, the
location of matched CN is set as the current location to
correct the location [33].

(f) Step locations are calculated using (11). The step length
is calculated by (14) and (15), and the heading direction
is calculated from the accelerometer and magnetometer
sensors, i.e., αm.

The vertical movement and altitude information were
obtained from the floor detection. Because traditional PDR
can not function without an initial state, the start location of
(d), (e), and (f) was manually annotated. Furthermore, the
probabilistic nature of the PF, slight variations can occur in its
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computational results each time it is run. Hence, the scores of
(a), (b), and (c) are obtained from the average of ten separate
computations.

Figure 11 presents the results of the long path localiza-
tion. Before going through the analysis of the experimental
results, we provided some explanations regarding the visual
representation of the trajectory. Because the pedestrian’s alti-
tude information is expressed in terms of the floor number,
we plotted the estimated step location on the corresponding
floor plan to represent the specifics of user activities and
trajectory. The start and end points are respectively indicated
by a navy square and diamond. The CN is denoted by an
orange circle, with S indicating a CN located at the stairs,
and E indicating a CN at the elevator. Only CNs identified as
main are depicted. Each grid on the map represents a space
of 2m. Text blocks indicate the type of floor transition, and
arrows signify the direction of these transitions. To facilitate
a clear representation, only results from (a), (b), (c), and (d)
were illustrated in Figure 11. Moreover, since the estimated
locations before particle convergence are meaningless and
could potentially hinder visual comprehension, the results for
PF methods are plotted after convergence is confirmed.

In Figure 11, we consider a realistic trajectory consisting of
a sequence of movements through various complex sections
within the building, as follows.
• F6 activities: Start from room 613 on F6 ≫ exit the
room and go downstairs through the right stairwells.
We matched three CNs during the floor transition. Since
convergence had not yet been reached, Np particles are
generated around each CN.

• F4 activities: Arrive at F4 and exit the stairwells ≫
enter rooms 404 and 407 consecutively≫ exit the rooms
and move along the corridor ≫ back to F6 through an
elevator. In this segment, S5 was matched as the main
CN.

• F6 activities: Arrive at F6 and exit the elevator≫ move
along the corridor≫ enter the elevator to go downstairs.
In this segment, E4 was matched as the main CN.

• F5 activities: Arrive at F5 and exit the elevator ≫
move along the corridor ≫ enter rooms 525 and
524 consecutively ≫ move to the elevators near the
open corridor ≫ go downstairs through the staircase.
In this segment, E1 and S2 were matched as the main
CNs.

• F3 activities: Arrive at F3 and exit the staircase≫move
along the right side corridor≫ enter room 311 and exit
the room ≫ move to the open study space along the
corridor ≫ enter room 329 and exit the room ≫ move
to the exit along the corridor≫ detected as leaving the
building at the exit. In this segment, S3 was matched as
the main CN.

Note that the user’s walking trajectory may vary between
rooms due to the presence of obstacles (e.g., tables). The first
floor transition occurred at the 32nd step, and convergence
was confirmed at the 42nd step for the PF with CN matching
and at the 150th step for the PF without CN matching.

TABLE 9. Evaluation results for each approaches.

From Figure 11, PDR with CF demonstrates good per-
formance in the early stages of tracking with a given start
point, but it increasingly deviates from the actual path
as the tracking progresses. PF (1k particles) offered an
enhanced result by eliminating cumulative errors in long
path tracking through boundary constraints. However, sev-
eral challenges were encountered during its implementation.
1. Prone to failure: Out of the ten PF experiments conducted,
six resulted in localization failure due to particle conver-
gence to incorrect locations. 2. Slow convergence: In the
remaining four successful instances, convergence to the cor-
rect location was achieved after approximately 150 steps.
3. Inaccurate localization:When entering the first room on F3
(i.e., room 311), there was an incorrect entry into the adjacent
room (i.e., room 310). These issues render the conventional
PF approach inaccurate or impractical in real applications.
Fortunately, they are overcome by our solutions. All ten
instances of PF (1k particles) with CN matching successfully
located the user. Particularly, there were two instances where
convergence to incorrect locations was observed, and both
were rectified using our CN matching-based location correc-
tion. Additionally, it detected all rooms correctly. Moreover,
the proposed scheme demonstrated performance compara-
ble to that of PF (1k particles) with CN matching, i.e.,
achieving successful tracking throughout, convergence at
approximately the 42nd step, and correct detection of all
rooms.

Table 9 shows the AR and RMSE values for approaches.
Regarding the details of the calculation, since we conducted
multiple computations for PF approaches, values in Table 9
were obtained from the average of separate computations.
Furthermore, because the convergence speed of PF depends
on factors such as activity and surrounding environment,
it is unstable and not related to the accuracy of the esti-
mated location. Therefore, the AR score and RMSE loss
of PF approaches were calculated when the convergence is
confirmed, i.e., at the 42nd step. This implies that slower
convergence in the case of PF without CN matching would
yield a lower AR score. Furthermore, because the estimated
locations before convergence are random and would distort
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the informative value of the RMSE loss, the RMSE loss for
PF without CN matching is calculated from the 150th step.

In Table 9, PDR with Acc & Mag achieved an AR
value of 8.1% within the error boundary ϵ = 2.0m,
which demonstrates the inaccuracies introduced when uti-
lizing consumer-grade processors in the conventional PDR
method. PDR with CF and its calibrated version provided
improved results by fusing the orientations, but the perfor-
mance remained insufficient due to the inherent issue of
path deviation when IMU data is used over long trajectories.
On the other hand, the PF methods show a better perfor-
mance. Among them, PF (1k particles) without CN matching
obtained lowAR scores due to slow convergence. By compar-
ing the RMSE values, it can be observed that even excluding
the factor of convergence speed, the PF without CNmatching
still underperforms compared to the PF with CN matching.
Moreover, the performance of the proposed scheme is similar
to that of PF (1k particles) with CNmatching, which obtained
an AR score of 96.7% within the error boundary ϵ = 2.0m.
Furthermore, the average number of particles to be calculated
in each iteration Naverage can be computed as

Naverage =

∑1000
i=42 Np,i
nconv

, (26)

where Np,i is the particle number of the i-th step and nconv is
the number of steps after convergence. By computing (26),
we obtain a Naverage of 198.7. This means that by dynami-
cally adjusting the number of particles, our scheme achieved
performance comparable to the PF using 1k particles with
less than 1/5 of the particle number. Overall, the experimen-
tal results demonstrate the benefits of our proposed floor
detection method for 2D localization systems in multi-floor
scenarios and show the superiority of the proposed scheme in
terms of both performance and computational efficiency.

V. DISCUSSION
In this paper, we contend that the merit of a localization
system should not be solely evaluated based on location accu-
racy, and a robust system should exhibit long-term stability
and the capability to efficiently process and operate on a
limited amount of measurement data.

The proposed DL-based floor detection not only tracks
the floor level but also extracts the vertical movement infor-
mation of a step. The floor level can be used to extend
a 2D localization to the 3D application, and the vertical
movement features are particularly useful for probabilistic
methods such as the PF. Furthermore, the proposed CN
matching-based location correction also holds value within
some infrastructure-dependent systems. For instance, CN is
well-suited to serve as a substitute for anchor nodes in areas
such as stairwells that lack adequate signal coverage to
optimize localization performance and reduce costs.

VI. CONCLUSION
We propose an infrastructure-free indoor multi-floor local-
ization scheme that leverages only a smartphone’s IMU and

barometer sensors. Our scheme consists of two components:
DL-based floor detection and PF with clustering. Our scheme
is designed to facilitate indoor localization without relying on
the infrastructure and calculate the user’s location without a
given initial state. To provide height information when the
user starts localization, our floor detection must track the
user’s floor level with unrestricted user activity. Addition-
ally, the proposed floor detection should be able to detect
floor transitions quickly and stably in order to calibrate the
2D localization. Therefore, we present a Seq2Seq model to
predict in real-time the step action from the noisy barometer
data. Subsequently, we developed a floor decision algorithm
to update the floor level based on the Seq2Seq model’s
prediction and extract vertical movement features which are
used to improve the 2D localization. Furthermore, we applied
a PF assisted by map constraints. Directly applying the PF
in a multi-floor scenario can cause severe errors, thus we
combined it with our floor detection and CNs established
around vertical transportation to extend the PF to 3D scenar-
ios. In addition, we introduced a clustering algorithm based
on the mean shift method to improve the PF estimation and
reduce the computational cost. Finally, the floor number and
2D location are combined to form the user’s 3D location in
multi-floor buildings. We conducted multiple experiments in
typical university buildings to evaluate the proposed floor
detection and indoor multi-floor localization. The experimen-
tal results show the promising performance of our scheme.
The DL-based floor detection accurately tracked the floor
number and efficiently extracted vertical movement informa-
tion under a variety of user activities. The indoor multi-floor
long path localization scheme achieved an average localiza-
tion accuracy of over 96% within a 2m error boundary with a
limited number of particles in the PF.

VII. FUTURE WORKS
Although the proposed scheme works well in typical
medium-sized buildings, its performance may be challenged
in some large, open spaces (e.g., airports) due to the lack of
map constraints. We believe that magnetic field information
is a good alternative, which can provide absolute location
information and is available everywhere, and some research
demonstrates the potential of magnetic measurements as a
data source [32], [64], [65]. In addition, in future work,
we aim to optimize the design of DL models and floor
decision algorithm to extract more information on vertical
movements. Finally, we will accommodate various ways of
carrying smartphones in 2D localization to make our scheme
applicable to more scenarios.
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