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ABSTRACT Recently, edge-cloud computing (ECC) has emerged as a new paradigm for alleviating the
intensive overhead for mobile IoT applications. However, data security remains a significant concern that
has not been adequately addressed. Moreover, the diversity of mobile devices leads to overloaded edge
servers and thereby perpetually increasing the latency and limiting the gain of performance. Therefore,
this paper proposes a new security, load balancing, and energy-aware task offloading framework for the
ECC system environment to bypass potential security threats and the edge servers’ balancing challenge.
Specifically, a new layer of security based on an advanced encryption standard (AES) cryptographic method
and fingerprint combination is introduced in order to protect the data from vulnerabilities during offloading.
Moreover, to organize the load on edge servers, a new load-balancing algorithm is being developed.
Subsequently, task offloading, data security, and load balancing are jointly formulated as an integer problem
whose objective is to reduce the system’s energywith latency constraints. Finally, extensive simulation results
demonstrated that our model is scalable and can save about 19%, 17.5%, 20.3%, 14.4%, and 13% of system
energy with respect to other benchmark solutions.

INDEX TERMS Cloud/edge computing, security, computation offloading, load balancing, optimization.

I. INTRODUCTION
The exponential expansion of wireless sensors and the Inter-
net of Things (IoTs) has resulted in the eruption of a vast array
of industrial IoT applications and complicated services that
create vast quantities of data. Additionally, many industrial
IoT applications and services demand increased computing
capacity and energy efficiencies, such as augmented and vir-
tual reality, real-time online gaming, the internet of vehicles
(IoV), smart healthcare, image recognition, and smart health-
care [1], [2]. However, the power supplies and computational
capabilities for these devices pose new obstacles to the emer-
gence of these applications to meet the Quality-of-Service
(QoS) [3], [4].

Consequently, the computation offloading concept is intro-
duced as a prominent solution to alleviate these limitations,
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where the intensive and delay tasks could be transmitted and
remotely executed at more powerful devices [5], [6]. Through
themobile cloud computing (MCC) paradigm, cloud comput-
ing has become a useful service for mobile devices, where it
offers a range of adaptable processing, storage, and service
capabilities while consuming less energy [7], [8]. MCC is
nevertheless criticized as having high latency of communi-
cation and security issues, especially in delay-sensitive and
real-time applications [9].

In order to addressMCC’s main limitations, the edge cloud
computing (ECC) paradigm has just recently been introduced
as a viable solution, where the placement and installation of
their resources at the edge of mobile networks [10], [11]. For
instance, real-time video analytic is considered as one of the
killer application types that can efficiently utilize the ECC
paradigm as it demeaned more processing and computation.

Several methods for offloading computation have been
developed for mobile devices, some of which were handled
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in a single-server environment, while others were dealt with
in a multi-server environment [12], [13], [14]. However, the
majority of the offloading methods in place right now let
mobile devices send their tasks to the same edge server that’s
connected to them, and as a result, these edge servers are
subject to higher loads, which invariably results in increased
latency for mobile devices and limits performance gains.
Furthermore, it may well be the case that some of these
devices are not capable of completing computation tasks
within a reasonable amount of time. This is because it takes
overloaded edge servers to communicate and compute. In the
meantime, data offloading is still fraught with security threats
that have not been well handled. This motivates our study
in this paper to propose an energy-efficient and data-secured
framework for multi-user with multi-task offloading in a
multi-tier environment. The main contribution is detailed and
clarified in the next subsection.

A. CONTRIBUTIONS
The objective of this paper is to minimize the energy con-
sumption of mobile devices while simultaneously protecting
the data of applications from cyber-attacks before they are
transferred to the MEC server. Therefore, in this study,
to bypass potential security threats and the edge servers’
balancing challenge, a new layer of security based on an
advanced encryption standard (AES) cryptographic method
and fingerprint combination is introduced in order to protect
the data from vulnerabilities during offloading. Furthermore,
a novel load-balancing algorithm is being developed to dis-
tribute loads among edge servers. The main contributions of
this study can be summarized as follows:
• To protect the vulnerability of data during transmis-
sion, a new layer of AES cryptographic method is
introduced, which is secured with a fingerprint-based
security encryption and decryption key.

• To balance the load between edge servers, an effi-
cient algorithm is proposed where mobile devices are
re-distributed between edge servers according to their
location, CPU cycles, current number of users, and avail-
able data rate, and each device is forced to be handed
over to the most suitable available edge server.

• Task offloading, data security, and load balancing are
collectively stated as an optimization problem to min-
imize the energy cost of mobiles while meeting the
latency restriction.

• Finally, simulation outcomes proved that our model is
scalable and can save about 19%, 17.5%, 20.3%, 14.4%,
and 13% of system energy with respect to other bench-
mark solutions (i.e., local, edge, cloud, and work in [15]
and [16]).

The remainder of this work is structured as follows. The
Section II describes the related works. The system model is
introduced in Section III which also explains the problem
formulation for our suggested framework. Section IV demon-
strates the discussion and experimental results. Section V
presents the paper’s conclusion.

II. RELATED WORK
Recently, MEC provides mobile IoT devices with extensive
computation and storage capacity at the edge of the net-
work to handle IoT device issues. In the majority of these
studies, the issue of offloading computations in single-tier
contexts has been discussed [13], while others have dealt
with offloading computations inmulti-tier environments [17].
An overview of common models is provided in this section.

A collaborative task offloading and resource allocation
framework for MEC networks is investigated in [15], where
the computation tasks of IoT devices can be partially per-
formed locally, or at the edge or cloud nodes. In addition,
an offloading scheme is developed based on the pipeline,
in which the intensive task of both IoT devices and edge
nodes can be respectively offloaded to a particular edge and
cloud node, with the goal of minimizing the overall latency
of IoT devices. Further, an efficient classic successive con-
vex approximation-based scheme is proposed to derive the
solution. Finally, their results indicated that using the pipeline
strategy in the proposed scheme make it efficient and can
achieve better performance than other offloading approaches.

An integrated architecture for enhancing cloud comput-
ing security is proposed in [18]. This architecture utilized
blockchain technology to guarantee data integrity for all
homophobic encryption schemes as well as decentralized
data storage and exchange platform. In addition, a safe and
transparent system for cloud-based data storage and exchange
is developed. Whereas in cite, Zhongjin et al. proposed an
energy-aware and secured task offloading framework for
D2D communication. Specifically, they provided a technique
for work offloading in D2D communication that takes both
energy efficiency and security into account. In addition, the
main objective of this study is to safeguard sensitive data
and calculations from unauthorized access while conserving
energy to extend the battery life of the associated devices.

Elsewhere, [19], [20], and [21] jointly considered task
offloading and resource allocation for MEC networks. More
specifically, He et al. [19] focused on enhancing the per-
formance of task offloading and resource allocation in
UAV-assisted VANETs by balancing the need to improve
resource consumption, facilitating efficient task offloading,
and assuring network security. They provided a system that
strikes a trade-off between job offloading, resource alloca-
tion, and security guaranteeing. The objective of the current
solution is likely to be to ensure that jobs are offloaded to
UAVs quickly, that available computing resources are uti-
lized effectively, and that sensitive data is protected from
unwanted access. Finally, in terms of successful task process-
ing ratios and task processing delays, their approach performs
significantly better than other schemes. Meanwhile, in [20],
a deep learning-based task offloading technique is proposed
for MEC networks, where it makes dynamic decisions for
tasks regarding where jobs should be offloaded for process-
ing. Themain objective is to optimize the performance of task
offloading by ensuring tasks are processed efficiently and
with the quickest response time possible. Whereas in [21],
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an energy-efficient and deadline-aware algorithm is proposed
for MEC networks, where each IoT device can offload its
tasks to edge servers placed at the network’s edge. In addition,
this algorithm prioritizes tasks depending on their deadlines
and the available energy of themobile device and edge servers
with the goal of maximizing the performance of task offload-
ing by ensuring that tasks are processed efficiently and with
the quickest reaction time feasible, while conserving energy.
The simulations show that the proposed algorithm improves
deadline satisfaction ratios by 85.4% and reduces average
response times by 62.9%, while only 13.4% more energy is
consumed by IoT devices.

Similar to the enumerated efforts, Alhelaly et al. [16]
jointly optimized task offloading and resource allocation for
multi-user multi-UAV-aided ECC systems. They proposed an
efficient and scalable model that can support the network
trafficwithout effect on the performance.Meanwhile, in a dif-
ferent contribution, task offloading and bandwidth allocation
are jointly optimized [22], in which the processing require-
ments of tasks, the available resources at the edge servers,
and the condition of the network are considered through an
efficient approach. In addition, this approach enables real-
time, dynamic decisions regarding where tasks should be
handled and how bandwidth should be allocated. According
to experimental findings, the proposed model significantly
boosts the energy and time efficiency of the system.

Recently, [23] and [24] proposed a task offloading
scheme for Internet of Vehicles systems. More specifi-
cally, in [23], an end-edge-cloud vehicle architecture for
task computation offloading is proposed using three task
computing approaches. In addition, an Asynchronous Advan-
tage Actor-Critic (A3C)-based task offloading technique is
designed to solve the formulated problem and finds opti-
mal offloading decisions in the IoV’s dynamic environment.
Meanwhile, in [24], a distributed multi-hop task offloading
decision model for task execution efficiency is developed,
which primarily is consisting of two parts which are a can-
didate vehicle selection mechanism for screening nearby
vehicles that can participate in offloading and a task offload-
ing decision algorithm for determining the task offloading
solution. Finally, according to the results, offloading in which
all tasks are completed locally, as well as offloading from
neighboring vehicles, is more efficient in terms of time delay
performance, task number, task required computation power,
and task size environment than offloading in which all tasks
are completed under greedy or bat-based algorithms.

According to the above summary of related research,
many methodologies and models have been presented for
multi-user job offloading in MEC networks employing single
or multiple edge servers with or without the cloud. According
to our study, the highlighted studies failed to appropriately
examine load balancing concerns across multi-edge nodes,
which greatly affect consumers’ energy expenses. Moreover,
the lack of data protection for applications in multi-user,
multi-tier environments, is considered another drawback that
has not been addressed well.

III. SYSTEM MODEL
A. NETWORK MODEL
As part of this section, a model of the proposed multi-user,
multi-tier ECC environment will be presented, where our goal
is to minimize the system’s energy consumption. This system
is made up of three layers, as shown in Fig. 1, with a M set
of mobile devices linked to a k set of edge servers. Moreover,
each device has a set ofN intensive tasks to complete. Further,
the edge servers’ set is managed through a centralized router,
which is responsible for routing traffic, addressing load, and
linking them with the remote cloud. M = {1, 2, . . . ,M},
N = {1, 2, . . . ,N }, and K = {0, 1, 2, . . . ,K + 1} are used
in this study to indicate the sets of mobile devices, tasks,
and available servers for task execution, where 0 denotes
the local execution and K + 1 denotes the cloud execution.
Mobile devices can access edge server resources and offload
compute duties via wireless channels. Moreover, guided by
the previous work [25], [26], [27], the set of mobile devices
remains quasi-static during the task offloading period butmay
change between periods.

Suppose aijk ∈ {0, 1} represents the decision to offload task
j from device i to server k . It is specifically (aij0 = 1) indicates
local execution, (aijK+1 = 1) indicates cloud execution, and
(aijk = 1,∀k ∈ [1..K ]) indicates edge server execution.
Additionally, each task can only be completed on one server,
whether it is local, edge, or cloud-based. Thus, the following
equation can be used to guarantee that these requirements are
met:

K+1∑
k=0

aijk = 1, (1)

B. MODEL OF COMMUNICATION
Throughout this section, we describe our communication
model, which includesMmobile devices and k edge servers.
In addition, each device is expected to complete N intense
tasks. Furthermore, these tasks can be represented with a
4-tuple value {αij, βij, γij, δij} (i.e., input size, the output size,
the CPU cycles, and the required deadline for each task),
in which these values can be determined via a task execution
careful profiling [28], [29].

Hence, orthogonal frequency division multiple access is
used for simultaneous offloading in the same channel to
reduce intracellular interference in uplink transmission [30].
Moreover, according to Shannon law, each device’s available
data transmission and receiving rate is as follows:

RUik = BUik log2(1+
pTi G

2

ωBUik
), (2)

RDik = BDik log2(1+
pTk G2

ωDDik
), (3)

where BUik , B
D
ik , p

T
i , p

T
k are denote the up-link, downlink

bandwidth, and transmission power of the device and edge
server, respectively. In addition, G and ω are indicate the
channel gain and noise power of the edge server.
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FIGURE 1. System model.

C. MODEL OF COMPUTATION
This section outlines the computation model for our envi-
ronment, which includes M mobile devices linked to k edge
servers. In addition, each device has aN set of intensive tasks
that should be completed. Therefore, both local and remote
calculations are detailed in further detail in the subsections
below.

1) LOCAL EXECUTION
The study considers the possibility that different devices have
varying levels of processing power. As such, we can use
equations 4 and 5 to calculate the amount of time and energy
required to do all the computations locally on each device i:

T Lij =
γij

f Li
, (4)

ELij = ψiγij, (5)

where ψi and f Li are denote the energy consumed per each
cycle of CPU and device i computing capability.

2) REMOTE EXECUTION
In this subsection, we introduce the possibility of remotely
executing the tasks of mobile devices, with each task being
allocated and then executed by one of the available servers.
Therefore, 6 and 7 can be used to estimate the time required
for all computations to be done remotely: 6 and 7:

T eij = T offij + T
e_ex
ij + T donij , (6)

T cij = T offij +1+ T
c_ex
ij + T donij , (7)

where 1 denotes the propagation delay between edge server
and cloud as well as = T offij , T e_exij , T c_exij , and T donij are
indicate the offloading, edge execution, cloud execution and
downloading time, respectively, that can be expressed as:

T offij =
αij

RUik
, (8)

T e_exij =
γij

f ei
, (9)

T c_exij =
γij

f ci
, (10)

T donij =
βij

RDik
, (11)

where f ei and f ci are denote the assigned capabilities for
device i at edge and cloud server.

Moreover, based on equation 12, the amount of energy
necessary to perform all the computations remotely at one of
the servers can be calculated as:

ERij = piT
off
ij , (12)

It should be noted that edge servers have computing
resources denoted by Fk , which will be allocated to all
devices connected by the offloading process and thereby
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should be limited as follows:

M∑
i=1

N∑
i=1

K∑
i=1

aijk ≤ FK , (13)

D. MODEL OF LOAD BALANCING
Designing a load-balancing process between edge servers that
jointly considers computation and communication resources
is a complex task that requires balancing multiple competing
objectives, while also taking into account real-time consid-
erations, scalability, energy efficiency, privacy, security, and
QoS guarantees. Fig.2 shows an example of mobile device
Distribution on edge servers. As shown in the figure, we can
observe the following limitations:

1) Resource allocation: One of the main challenges in
designing a load-balancing process is to find an effi-
cient and fair way to allocate resources between edge
servers. This includes balancing the load between
edge servers based on computation and communication
requirements, while also taking into account factors
such as energy consumption and network congestion.

2) Real-time considerations: Load balancing in edge
server networks must be done in real-time, which
means that the algorithm must be able to quickly
respond to changes in the network, such as new user
connections or changes in resource availability.

3) Scalability: As the number of edge servers and users in
the network increases, the load-balancing process must
be able to scale to handle the increased demand.

4) Energy efficiency: The load balancing algorithm
must be designed to minimize energy consumption,
as edge servers are typically powered by batteries
and need to be energy-efficient to ensure long-term
operation.

5) Complexity: The load-balancing algorithm must be
able to handle the complexity of the network and make
decisions based on a large amount of data and variables.

6) QoS guarantee: The load balancing algorithm must
guarantee the Quality of Service (QoS) of the users,
ensuring that the users’ needs are met.

Therefore, we must spread the load between edge servers
by compelling mobile devices to transfer to the best available
edge server [31]. The technique for doing this is described in
the following text.

First, a summary of mobile devices is transmitted to the
central control by each edge server. This summary includes
the number of linked mobile devices, data rate, CPU cycles
assigned to each mobile device, and the number of mobile
devices that can be reallocated to other edge servers. Fol-
lowing that, the central control manager cycles through
the mobile devices, compelling them to give over to the
most appropriate edge servers. The steps required to execute
our suggested algorithm for load balancing are depicted in
Algorithm 1.

Consider a scenario with three edge servers and twelve
mobile devices, with seven, four, and one MD connected

Algorithm 1 Load Balancing Algorithm
1: Input: Every mobile device i is assigned to edge server k .
2: Output: Mobile devices are forced and connected to the

most suitable edge server through the hand-over process.
3: for all edge server k do
4: ι← Count the number of connected mobile devices.
5: χ ← Calculate the data rate for each mobile user i and

its assigned capabilities.
6: ~ ← Locate the mobile devices that are reallocatable.
7: Regarding the values of ι, χ, and ~, each mobile device

is forced to be handed over to the most suitable edge
server.

8: end for

to edge server1, edge server2, and edge server3, respec-
tively, to illustrate how the algorithm operates. In addition,
MD3, MD4, MD5, MD6, and MD10 are co-located at the
edge servers boundary, allowing them to be assigned as
required. Moreover, the bandwidth of the channel is assumed
to be 20 MHz for the three edge servers and each edge server
has a computing capability of 20 GHz. The main objective
of this study is to spread the load between edge servers to
optimize the quality of service and latency, as described in
the following sections.

As shown in Table 1, the central control manager ini-
tially obtains a summary of mobile device information from
edge servers. According to this table, MD3 is connected to
edge server1 and can be reassigned to edge server2. Similar
to MD4, MD5, MD6, and MD10, edge server1 and edge
server2 are linked to MD4, MD5, MD6, and MD10, and they
can be reallocated to edge server2 and edge server3. Conse-
quently, it can iterate through these mobile devices and then
find the most appropriate edge server to connect to MD3 is
chosen, where the upload and calculation durations for the
available edge servers are received (5.3 seconds for edge
server1 and 3.7 seconds for edge server2). The optimal edge
server (in this case, edge servers2) is then chosen, and the
rate of data and computing capabilities allocated to each user
is modified. This procedure is repeated till all mobile devices
have been assigned to the most suitable edge servers. In prac-
tice, software-defined network controllers and the standard
OpenFlow protocol can be utilized at the backbone router to
load balance edge servers, where it has a global perspective
of the network and can make more accurate and efficient load
balancing decisions [32].

E. MODEL OF SECURITY
During offloading, the mobile devices may opt to wirelessly
transmit information about the processing burden to ECC
servers. This may raise the system’s susceptibility to various
forms of attack. In addition, the confidentiality of sensitive
and private data may be compromised, hence diminishing the
advantages of ECC [33]. To avoid these dangers, we want
an efficient and secure layer that encrypts offloaded data,
so shielding it from attackers. In this paper, the AES method
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FIGURE 2. Example of mobile devices distribution.

TABLE 1. Proposed algorithm illustration.

is combined with fingerprint images in order to protect the
data and decrease its complexity over time.

The Advanced Encryption Standard (AES) is a symmetric
method that has been shown to be effective in numerous
applications [34], [35]. However, its elementary algebraic
structure and identical replicationmethod for encrypting each
block in the signal make it vulnerable to a variety of attacks.
In addition, the security key is frequently referred to as
the strength-determining component of the algorithm. Incor-
porating fingerprint images into the classic AES algorithm
increases resilience, which is assessed by key efficiency and
indistinguishability of ciphertext.

A fingerprint is a pattern of ridges and valleys on the
surface of the finger that is unique and recognizable. These
patterns are formed during fetal development and remain
unchanged throughout a person’s life [36], [37]. Finger-
prints are used for various purposes such as identification,

authentication, and forensic analysis. Fingerprints are con-
sidered to be one of the most accurate forms of biometric
identification as they are unique to each individual and do not
change over time. In this paper, cryptographic keys will be
generated based on fingerprint images to encrypt and decrypt
data. The methods necessary to include the fingerprint into
our AES scheme are detailed below [38], [39]. Each user
develops fingerprint images using wearable devices, imbu-
ing the images with randomness and individuality. These
images are preprocessed to enhance the quality of the fin-
gerprint images, reduce noise, and make the features of the
fingerprints more prominent. This improves the accuracy and
reliability of the fingerprint recognition system. Then, extract
the unique characteristics of a fingerprint that can be used
to identify an individual using one of the correlation-based
methods [40]. These characteristics, known as minutiae,
include ridge endings, bifurcations, and dots. Based on these
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features, the procedures described in [41] are subsequently
used to generate cryptographic keys. Using the produced
keys, the encryption and decryption processes are performed.

For mobile device i, we refer to a binary decision of secu-
rity as εi ∈ {0, 1}, in which εi = 0 refers to unsecured data
will be sent to the server and εi = 1 indicates that secured
data will be sent to the server. During computational tasks, the
privacy of data is determined by the user’s behavior, which
means that security decisions are made manually by each
user according to the requirements they have. As a result of
applying the security layer, there is an additional overhead in
energy and time as follows:

ten+deij =
ϱij

f Li
+
ςij

f ei
, (14)

eenij = ψiςij, (15)

where ϱij and ςij indicate the cycles of CPU to encrypt and
decrypt data if mobile device i [42], [43]. Following the appli-
cation of the security decision, the time and energy overhead
to remotely send the task j of a mobile device i at a cloud
server or edge server can be calculated as follows:

T seij =
[
εi(t

en+de
ij + T offij )+ (1− εi)T

off
ij

]
, (16)

Eseij =
[
εi(eenij + E

R
ij )+ (1− εi)ERij

]
, (17)

Finally, the total time and energy required for performing
tasks are calculated based on computation, communication,
load balancing, and security models:

Tij =
[
aij0T Lij + aijK+1(T

se
ij + δ + T

c_ex
ij )

+

K∑
k=1

aijk (T seij + T
e_ex
ij )

]
, (18)

Eij =
[
aij0ELij +

K+1∑
k=1

aijkEseij
]
, (19)

F. FORMULATION OF PROBLEM
In this section, we build our model for a multi-tier ECC
system with the goal of reducing energy use while meeting
latency requirements. Our optimization problem is therefore
formulated as follows:

min
a

[ N∑
i=1

M∑
j=1

Eij
]

s.t
[
Eij − ELij

]
≤ 0, ∀k ∈ [1..K ] C1[

Tij − T Lij
]
≤ 0, ∀k ∈ [1..K ] C2

K+1∑
k=0

aijk = 1, ∀i,j C3

N∑
i=1

M∑
j=1

K+1∑
k=1

aijk f ei ≤ Fk , ∀k ∈ [1..K ] C4

aijk ∈ {0, 1}, ∀i,j C5

εi ∈ {0, 1}, C6

(20)

wherein the first two constraints (C1 and C2) are responsible
for energy and delay bounds, and the third constraint (C3)
makes sure that each task is only done once. In addition, the
fourth constraint (C3) is concerned with the capability bound
of edge servers. Finally, the last two constraints ensure task
offloading and security decision binarization.
The problem’s solution can be derived by obtaining opti-

mal task offloading and security values. However, the values
for the security decision can be determined based on the
data’s sensitivity. We presumptively assume that the user
set this. This problem, therefore, belongs to the integer lin-
ear class, where both the objective function and constraints
are linear. Moreover, it is classified as NP-hard and has a
non-convex feasible set [44]. As a result, the binary relaxation
approach can be used to transform this problem into a convex
one, in which variables are relaxed into real variables, and a
new formulation is presented in equations 21 [45]. It is also
possible to derive an efficient offloading decision by using
branch and bound methods [46].

min
a

[ N∑
i=1

M∑
j=1

Eij
]

s.t
[
Eij − ELij

]
≤ 0, ∀k ∈ [1..K ] C1[

Tij − T Lij
]
≤ 0, ∀k ∈ [1..K ] C2

K+1∑
k=0

aijk = 1, ∀i,j C3

N∑
i=1

M∑
j=1

K+1∑
k=1

aijk f ei ≤ Fk , ∀k ∈ [1..K ] C4

aijk ∈ [0, 1], ∀i,j C5

εi ∈ {0, 1}, C6

(21)

IV. PERFORMANCE RESULTS AND DISCUSSION
During the simulations, we use a personal computer with
an Intel® Core(TM) i7-10750H CPU running at 2.6 GHz
and 16 GB of RAM, and Windows 10 Home 64-bit. In addi-
tion, MatLab(R2019b) is installed and utilized to simulate
the proposed framework and solve our model efficiently.
A multi-tier ECC environment is considered that consists
of one cloud server, five edge servers, 100 mobile devices,
and three independent tasks per device that each device can
perform locally or remotely at the edge or cloud server.
Each user’s fingerprint image is obtained from a publicly
accessible and widely used database, namely FVC 2000,
2002, and 2004 [47]. The data in all three FVC databases
are identical [47]. Each database has four distinct datasets
(DB1, DB2, DB3 andDB4). Each dataset has 110 fingerprints
from eight different fingers. This study makes use of eighty
fingerprint pictures (of 10 individuals with 8 images per
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TABLE 2. Simulation parameters.

individual). All fingerprint images are 8-bit grayscale TIF
files with a resolution of 500 dpi. In contrast, these databases
employ various scanners and collection methods. To recover
the major features from these preprocessed images, the minu-
tiae extraction method outlined in [48] is applied. These
features are then used to construct the cryptographic key
that is used to secure the AES cryptography technique
used prior to data transmission. In addition, on the edge
and cloud server, CPU capabilities are set to 100GHz and
500GHz, respectively, while on the mobile device, they are
uniformly distributed within {0.4, 0.5, . . . , 1.0}. Moreover,
it is estimated that 500 CPU cycles are required per byte
for each task with data sizes uniformly distributed within a
range of 0 to 10 MB. According to [27], local computing
energy consumes (0, 20× 10−11) Joule per cycle in a uniform
fashion. A uniformly distributed pseudo-random function is
used to determine the value of decision security with regard
to user behavior since user behavior varies from application
to application. The channel bandwidth is set to 20 MHz and
transmission power and background noise of mobile devices
are set to 100 mW and −100 dBm. Table 2 lists the other
simulation settings that are required for the computation and
communication tasks to be carried out by the model. Using
these specifications, the simulation is executed 50 times and
the average values are obtained.

A. EFFECT OF LOAD BALANCING ADDITION
This subsection evaluates the performance of applying our
load-balancing algorithm within a scenario without load bal-
ancing consideration. Fig. 3, shows the allocated users at each
edge server in the two scenarios. As seen thence, in the latter
scenario, GBS1 and GBS4 are underloaded, while GBS2 and
GBS3 are overloaded. Moreover, our proposed algorithm
roughly balances the load by redistributing most of the allo-
catable users to the appropriate GBS. Further, UAVs will
act as MEC nodes for the still-overloaded GBSs (i.e., GBS2)
thereby improving the overall system performance as we
showed later.

B. EFFECT OF SECURITY ADDITION
In this subsection, the effect of security layer addition is
illustrated, where the performance of our proposed model

FIGURE 3. Users distribution at edge servers With and without load
balancing layer addition (M = 100, N = 3, K = 5).

with and without the security layer is evaluated. Fig. 4 shows
the energy consumption for performing the computation tasks
under a different number of users using our proposed model
with and without the addition of a security layer. It’s observed
from the figure that, the consumed energy of our secured
model is a little greater than the unsecured model, for a small
number of users. In addition, this cost is growing as the
number of users increases. This result is traced to the con-
sumed energy demands that are associated with the process of
encryption and decryption. However, enhancing data security
is a critical point that should be considered compared with
this overhead consumption.

FIGURE 4. Energy consumption for the proposed mode with and without
security layer addition (M = 100, N = 2, K = 5).

C. PERFORMANCE MEASUREMENTS WITH OTHER
MODELS
As part of this subsection, five different approaches are com-
pared to verify the performance of our model:
• Local Execution: This approach performs all the tasks
at the device’s resources without offloading.
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• Edge Execution: This approach offloads and performs
all the tasks at the connected edge server.

• Cloud Execution: This approach offloads and performs
all the tasks at the cloud node.

• Task Offloading Approach in [15]: This approach per-
forms the tasks at one of the available servers based on
the work in [15].

• Task Offloading Approach in [16]: This approach per-
forms the tasks at one of the available servers based on
the work in [16].

We evaluate the performance of the proposed model against
the five different offloading approaches and investigate how
changes in user numbers, data sizes, tasks and edge servers
affect performance. First, the consumed energy for perform-
ing the tasks over a different number of users is presented
in Fig. 5. It is deduced from this figure that the proposed
model outperforms the other approaches. In addition, the
gap between the approaches is not large especially for a
small number of users. However, this gap is increasing as
the number of users increases. Moreover, the consumed
energy for the edge and cloud execution approaches exceeds
the local execution approach (i.e., when the number of
users is greater than 60). This result is attributed to the
communication channels’ resources have competed between
users which leads to consuming more energy through the
transmission. Additionally, GBSs’ capabilities are enough
for handling many users, thereby suggesting the redistri-
bution of users among GBSs and utilizing the UAVs as
MEC nodes have a profound impact on the overall system
performance.

Second, the consumed energy for performing the tasks over
a different data size is presented in Fig. 6. It is shown from
this figure that the amount of energy consumed by the four
approaches (i.e., cloud, edge, and work in [15] and [16])
is almost equal and less than the local execution approach,
whereas the proposed model is superior to them. In addition,
with the increase in the size of data, the energy consumed
by edge and cloud execution approaches increases rapidly
and exceeds the energy consumed by the local execution
approach as well. This result is because increasing data sizes
leads to longer communications and thereby consumes more
energy. However, by smartly adapting our model, we can not
only balance the load among GBSs, but also derive the best
decisions as well as handle computation tasks efficiently, thus
consuming less energy.

Similarly, the consumed energy for performing the tasks
over a different number of tasks is presented in Fig. 7. From
this figure, we deduce that our model can maintain a lower
energy consumption than the other approaches. In addition,
with a growing number of tasks, the consumed energy of
the edge execution approach grows rapidly, even exceed-
ing the consumed energy of the local execution approach.
This result is traced to the GBSs’ computing resources
are shared between all the tasks and multiple of these
tasks will be performed simultaneously, which affects the
performance.

FIGURE 5. Energy consumption versus different number of mobile users
(N = 3, K = 5).

FIGURE 6. Energy consumption versus different data size (M = 100,
N = 3, K = 5).

Furthermore, the consumed energy for performing the
tasks over a different number of edge servers is presented
in Fig. 8. Based on this figure, it is evident that the local
execution approach does not depend on the number of edge
servers, whereas the energy consumed by the other approach
steadily decreases with a growing number of edge servers.
Further, our proposedmodel can also bemore energy efficient
and outperform other approaches. This is due to the fact that
with a growing number of edge servers, the consumed energy
will be decreased as the user will be assigned more resources,
while these resources are not utilized by the local execution
approach.

Finally, Fig. 9 shows the total consumed energy for
performing the tasks over five different types applications
(see Table 3). Based on the results, the proposed approach
consumed the least amount of energy with respect to other
approaches. This is due to the fact that the proposed model
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FIGURE 7. Energy consumption versus different tasks (M = 100, K = 5).

FIGURE 8. Energy consumption versus different edge servers (M = 100,
N = 3).

can smartly select the appropriate execution location based
on the environmental settings.

D. DISCUSSION
Our model offers several significant contributions, and as
part of this subsection, we report the main contributions of
the proposed model, the differences between it and the other
schemes reported in Section II, as well as the performance
enhancements it offers over the other schemes.

As listed in Table 2, most of the reported computation
offloading models only let mobile devices send their tasks
to the same edge server that’s connected to them, and as a
result, these edge servers are subject to higher loads, which
invariably results in increased latency for mobile devices and
limits performance gains. Furthermore, it may well be the
case that some of these devices are not capable of completing
computation tasks within a reasonable amount of time. This

FIGURE 9. Energy consumption versus different applications’ types
(M = 100, N = 3, K = 5).

TABLE 3. Applications complexity.

is because it takes overloaded edge servers to communi-
cate and compute. In the meantime, data offloading is still
fraught with security threats that have not been well handled.
In contrast, the work in this study addresses a multi-tier
edge cloud computing environment with considering the load
balancing and security issue, in which a new layer of AES
cryptographic method is introduced, which is secured with
a fingerprint-based security encryption and decryption key.
In addition, an efficient algorithm is proposed where mobile
devices are re-distributed between edge servers according
to their location, CPU cycles, current number of users, and
available data rate, and each device is forced to be handed
over to the most suitable available edge server and thereby
balance the load between edge servers. Finally, simulation
outcomes proved that our model is scalable and can save
about 19%, 17.5%, 20.3%, 14.4%, and 13% of system energy
with respect to other benchmark solutions (i.e., local, edge,
cloud, and work in [15] and [16]).

V. CONCLUSION
This research proposed an energy-efficient and secure task
offloading Framework for a multi-tier edge-cloud computing
system using a new layer of AES cryptographic approach
with a fingerprint-based security encryption and decryption
key. In addition, to balance the load between edge servers,
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an efficient algorithm is proposed where mobile devices are
re-distributed between edge servers according to their loca-
tion, CPU cycles, current number of users, and available data
rate, and each device is forced to be handed over to the most
suitable available edge server.Moreover, task offloading, data
security, and load balancing are jointly formulated as an
integer problem whose objective is to reduce the system’s
energy with latency constraints. Finally, extensive simulation
results demonstrated that our model is scalable and can save
about 19%, 17.5%, 20.3%, 14.4%, and 13% of system energy
with respect to other benchmark solutions (i.e., local, edge,
cloud, and work in [15] and [16]).

As part of future work, mobile devices’ mobility will be
handled, so that they can dynamically change their locations
and move between edge servers during offloading. Moreover,
an automated decision of security will be improved by devel-
oping an intelligent technique based on user behavior. Finally,
deep learning techniques will be applied to model problems’
solutions and address the complexity of making decisions on
ECC large scale.
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