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ABSTRACT Park-level integrated energy system has the potential to improve system efficiency and facilitate
friendly interaction with the power grid. This paper proposes an integrated energy system for parks that
harnesses wind, solar, and geothermal energy sources, alongside three types of energy storage: cold, heat,
and electricity. A two-stage coordinated optimization method is proposed that considers both long-term
system operation and short-term operation scheduling. The effectiveness of this method is compared with an
actual case in Tianjin, and the results demonstrate that the capacity configuration optimized by the two-stage
optimization method yields economic and energy-saving benefits under long-term operation. It also satisfies
the requirement of near-zero external power load fluctuation or participates in peak shaving and valley filling
on the grid side during operation. The proposed two-stage optimization method achieves optimal capacity
under long-term operation and favorable interaction with the power grid during daytime scheduling, thereby
reducing decision-making difficulties.

INDEX TERMS Integrated energy system, capacity configuration, energy storage, renewable energy.

I. INTRODUCTION
The energy crisis and environmental pollution are pressing
issues that countries around the world are facing. Building
energy consumption accounts for over one-third of total soci-
etal energy consumption and is expected to rise to 50% by
2060 [1] due to development and economic growth. It is
of paramount importance to develop comprehensive energy
conservation and emission reduction strategies. While an
efficient building energy system is undoubtedly one of the
pivotal measures to curtail building energy consumption, the
current separation of planning, construction, and operation in
building energy systems leads to low overall energy conver-
sion efficiency. Therefore, the park-level integrated energy
system (PLIES) leverages the complementary characteristics

The associate editor coordinating the review of this manuscript and

approving it for publication was Branislav Hredzak .

of energy sources to break down various energy network
barriers and achieve the coordinated and efficient supply of
cooling, heating, and electricity in buildings [2], which is also
a hot topic in current energy system research fields [3]. Given
the further development of the concept of carbon neutrality
and the large-scale increase in renewable energy, the use of
PLIES with renewable energy and multi-energy complemen-
tarity holds significant implications for energy conservation
and emission reduction.

Planning and design are fundamental components of an
integrated energy system, with direct impacts on the econ-
omy, environment, and system reliability [4]. The planning
and design phase must consider the intermittent, flexible,
and ever-changing combinations of renewable energy sources
and system operation control strategies. Due to this, tradi-
tional deterministic optimization methods are insufficient for
capacity planning in this context, as observed in [5]. Effective
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capacity planning for PLIES can improve system energy
supply reliability, meet users’ energy quality requirements,
and fulfill government environmental protection objectives.
The research on system capacity planning is currently limited
and mainly centers on minimizing economic costs and envi-
ronmental costs in micro-grid and distributed power supply
capacity planning. However, it is important to pay attention
to the size of energy storage devices to balance and optimize
IES operation and enable friendly interaction with the power
grid. As a high-power consumer in the park, the operation
and scheduling of PLIES have a significant impact on the
power grid. Therefore, it is crucial to consider the interaction
between PLIES in the park and the power grid, which is rarely
mentioned in the previous research. To address this research
gap, a two-stage optimization method for PLIES that takes
into account both economic and environmental factors while
ensuring grid compatibility is proposed.

Planning and design constitute crucial technical sys-
tems for PLIES, with significant impacts on its econ-
omy, reliability, and environmental protection. With the
advancements in intelligent algorithms, various optimization
algorithms such as the artificial bee colony [6], grasshop-
per optimization algorithm [7], gray wolf optimization
algorithm [8], bat search algorithm [9], firefly algorithm [10],
as well as multi-objective algorithms like multi-objective
genetic algorithm [11], [12], Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [13], and Multi-Objective Particle
Swarm Optimization (MOPSO) [14], have found exten-
sive application in optimizing the capacity configuration
of PLIES. However, present research has mainly focused
on capacity planning for combined heat and power sys-
tems, and micro-grids, with some studies only examining the
system’s economic costs. Even when multi-objective opti-
mization is employed, it typically emphasizes either planning
or operational objectives exclusively. Furthermore, most of
the current studies have failed to incorporate the interaction
capability with the power grid during the operational phase.

To address both planning and operational objectives,
numerous studies have proposed a two-stage stochas-
tic optimization method. This approach builds upon
the single-stage planning study discussed above and
has been extensively applied in various fields, as evi-
denced by the use of this method in several stud-
ies [18], [19], [20], [21], [22], [23], [24], [25]. Typically,
the two-stage optimization of integrated energy system (IES)
considers the equipment configuration layer in the first stage,
while the system operation layer is considered in the other
stage. Zhou et al. [23] proposed a two-stage stochastic model
that uses genetic algorithms to search for variables in the first
stage and Monte Carlo methods in the second stage to handle
uncertainty and solve optimization problems. Guo et al. [26]
proposed a two-layer collaborative optimization method that
considers both the configuration of the upper equipment
and the operating parameters of the lower energy storage,
which makes the operation of IES more stable and safe.
However, hierarchical optimization cannot fully consider the

long-term time scale during the operation stage, resulting in
most current hierarchical collaborative optimization studies
using multiple typical days for analysis. This limitation leads
to IES configurations that do not fully consider the impact
of seasonal load fluctuations on the operating results. Indeed,
the consideration of time scales is crucial in the optimization
of IES, and the selection of time scales varies depending on
the different optimization objectives. Short-term time scales
of 24 hours are typically used when optimizing for operation
strategies under fixed designs, while longer time scales are
necessary for system planning and design to account for sea-
sonal weather changes and long-term terminal load changes,
resulting in more robust solutions [27].

NOMENCLATURE
EST Energy storage tank.
GSHP Ground source heat pump.
IES Integrated energy system.
LCIC Initial investment of the system’s

life cycle.
LCOC Operating cost of the life cycle.
Li-ion Lithium.
OC Operating cost.
PV Photovoltaic.
PLIES Park-level integrated energy sys-

tem.
REP Utilization rate of renewable

energy.
SD Standard deviation.
WT Wind turbine.
COPnom Cooling or heating efficiency of the

GSHP under full load conditions.
COPPLR Corrected heat pump efficiency

under partial load conditions.
Ci Initial investment cost of each com-

ponent of the energy system.
Eb Rated capacity of Li-ion batter.
Euser Users’ electrical load.
Egrid−buy Electricity purchased from the

power grid.
Egrid−waste Waster power of in the renewable

system.
Egrid Local peak and valley electricity

price.
f Derating factor of PV panels.
ftank,in/ ftank,out Energy storage efficiency/energy

release efficiency.
GSTC Light intensity under standard test

conditions.
GAC (t) Light intensity at time t.
NPV Number of PV panels.
NWT Number of WTs.
NHP Number of GSHPs.
PSTC Rated capacity of PV panel.
PWT Output power of WTs.
Pr Rated power of a WT.

VOLUME 11, 2023 66401



L. Zheng et al.: Two-Stage Co-Optimization of a Park-Level IES Considering Grid Interaction

PLR Part load rate.
Pbattery,in / Pbattery,out Charging power of Li-ion batteries/

the discharging power of Li-ion bat-
teries.

Ptank,in /Ptank,out Charge power of the EST / energy
release power of the EST.

QHP−SH Heat produced by the GSHP.
QHP−SC Cooling capacity of the GSHP.
Qh−user Users’ heating load.
Qc−user Users’ cooling load.
Qtank (t) Cooling capacity or heat storage at

time t.
Qtank,max Rated capacity of the EST.
SOC (t) State of the battery at the moment.
SOCmin / SOCmax Minimum and maximum depth of

charge and discharge.
νi Starting wind speed of WT.
νr Rated wind speed of WT.
νc Cut-off wind speed of WT.
WHP Power consumption of the GSHP.
y Number of years in the whole life

cycle (y = 60).

Different optimization objectives can significantly impact
the results in IES optimization. The most common objec-
tive functions used in capacity configuration optimization
are economic, reliability, and environmental indicators. Eco-
nomic indicators include total operation cost (TOC) [15],
total present cost (TPC) [15], [25], [28], and life cycle cost
(LCC) [10], [15]. Reliability indicators include on-site load
cover ratio [29], [30], deficiency of power supply probabil-
ity (DPSP) [31], system interactive power [14], [16], load
dissatisfaction rate [32], renewable energy penetration [14],
and loss of power supply probability (LPSP) [10], [33], [34].
Environmental indicators mainly focus on greenhouse gas
emissions, with CO2 emissions being the most commonly
used optimization target [16], [35], [36], [37]. With the
increasing promotion and application of renewable energy,
the proportion of renewable energy output has become an
essential indicator to measure the sustainability of the energy
system [15], as it can accurately reflect the actual contribution
of renewable energy. Therefore, this study aims to include
renewable energy utilization rate (REP) as one of the opti-
mization objectives.

To avoid any potential influence of weight size on the
optimization results and to ensure a more robust analysis
and decision-making process, this study uses a more rigorous
capacity configuration method for PLIES compared to the
previous method of determining optimal capacity through
TOPSIS or multi-criteria decision-making. It considers fac-
tors such as the economy, environment, and the ability to
interact with the power grid, and aims to develop an optimal
planning and design method which focuses on realizing the
interaction between the park and the power grid. In light of
PLIES’ various renewable energy and energy storage sys-
tems, a two-stage optimization mathematical model has been

established to determine the optimal capacity configuration.
The first stage focuses on optimizing the system capacity
configuration over a long timescale. The second stage then
filters the capacity configuration obtained in the first stage
through optimization over a short timescale to determine
the optimal capacity for long-term operation and daytime
scheduling, which facilitates good interaction with the power
grid and reducing decision-making difficulty. This paper’s
key contributions can be outlined as follows:

1) An optimization model is developed in two stages,
consisting of capacity planning and operation optimiza-
tion. The first stage involves capacity configuration
optimization, which has a significant impact on the
objectives and constraints of the second stage’s opera-
tion optimization. The second stage screens the results
of the first stage and determines the optimal capacity
configuration. This determination considers the diverse
objectives of interaction with the power grid.

2) The first stage in planning the system’s capacity
involves considering the objective functions of the life
cycle initial investment cost (LCIC), life cycle oper-
ating cost (LCOC), and REP. This is followed by
establishing a PLIESmulti-objective capacity planning
model that takes into account the impact of electricity,
heat, and stepped electricity prices on the system’s
capacity planning. MOPSO is used to solve the capac-
ity configuration solution set under a typical operating
strategy throughout the year.

3) In the second stage of operation optimization, the
objective functions are to minimize the external power
load fluctuation or participates in peak shaving and
valley filling on the grid side. A PLIES operation opti-
mization model is established, which comprehensively
considers the interaction capabilities of the park and
the power grid. To obtain the optimal system operation
solution, a mixed integer linear programming problem
(MILP) is solved.

The article is organized as follows: Section II describes the
system composition and principle of PLIES used in this study,
and briefly describes the control strategy used by PLIES
in the first stage of optimization. Section III defines the
mathematical model of the main equipment in PLIES. The
two-stage co-optimization method and optimization process
are introduced in detail in the section IV. Section V con-
ducts a case study to verify the feasibility of the two-stage
collaborative optimization method proposed in this study and
evaluate the energy-saving potential of the optimized PLIES.
Section VI presents significant conclusions that help readers
gain a deeper understanding of our research’s content.

II. SYSTEM DESCRIPTION
Combined cooling, heating and power supply (CCHP) is the
most typical form of IES [38] and has been proven to be
an effective solution for energy conservation and emission
reduction [39]. However, with the growing promotion of
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FIGURE 1. Schematic diagram of PLIES.

building electrification, electric energy is increasingly used
instead of fossil energy [40], resulting in a reduced appli-
cation of steam turbines in practical engineering. Therefore,
the PLIES proposed in this paper is primarily composed
of wind turbines (WTs), Photovoltaic (PV) panels, ground
source heat pumps (GSHPs), batteries, energy storage tanks,
and the power grid, without consideration of diesel generators
or turbine generators, as shown in Fig.1.

PV power generation, WT power generation, batteries and
the power grid are combined to satisfy the power demands
of energy system and buildings while GSHPs provide users
with cold and heat tomeet dynamic cooling and heating loads.
Additionally, the energy storage tank can effectively adapts
the system by storing excess cold and heat under different
operating conditions. The batteries are used to improve the
system’s renewable energy consumption capacity and form a
positive interaction with the power grid.

The control of PLIES in this study mainly follows the
following principles:

1. The electricity generated by PV panels and WTs is first
allocated to meet the electricity demand of users in order to
increase the consumption and absorption capacity of renew-
able energy. If the instantaneous electrical energy generated
by PV panels and WTs exceeds the electricity demand, the
surplus electricity is stored in the battery. If the battery’s
maximum capacity is exceeded, the excess electricity is fed
into the power grid.

2. Since most of the GSHP units have only fixed frequency
operation, an operation strategy is formulated for adding and
subtracting units to ensure that the system operates efficiently
within the efficiency range of 80-100% load.

3.When the electricity demand cannot bemet by PV panels
and WTs, the batteries are used first for discharging. If the
battery capacity is insufficient, the power grid is used as a
backup source to make up for the shortfall in electricity.

4. During periods of low electricity prices at night, the
system stores cooling and heating energy by activating the
GSHPs and energy storage tank. During periods of high

electricity prices during the daytime peak, the energy storage
tank is prioritized for the release of cooling or heating. If the
stored cooling and heating energy is not sufficient to meet
the demand, the GSHPs will be turned on to supplement
the shortfall. This operating strategy is commonly used in
practical projects.

III. METHODS
A. SYSTEM MATHEMATICAL MODELS
1) RENEWABLE ENERGY GENERATORS
In this study, PV panels and WTs are selected as the
renewable energy source equipment, taking advantage of the
complementary nature of solar and wind energy. Previous
studies have demonstrated that solar and wind energy com-
plement each other to some extent, and their combination
can increase the stability of a hybrid system [41], [42], [43].
The power output of PV panels can be calculated using
(1) [44], [45].

PPV (t) = NPVPSTC f
(
GAC (t)
GSTC

)
[1 + 0.005 × (Tt − 25)]

(1)

where, NPV is the number of PV panels; PSTC is the rated
capacity, which is taken to be 0.2 kW; f is the derating factor,
which is set at 0.95;GSTC is the light intensity under standard
test conditions, which is taken to be 1 kW/m2; GAC (t) is the
light intensity at time t , Lux; Tt is the ambient temperature,
◦C.
After obtaining the wind speed of the fan at a height of

h, the relationship between the output power of WT and the
wind speed can be obtained as follows [44], [46]:

PWT (t) =


0, v (t) < viorv (t) < vc
NWTPr

(
v (t)k − vki

)
vkr − vki

vi ≤ v (t) ≤ vr

NWTPr vi ≤ v (t) ≤ vc
(2)

where,NWT is the number ofWTs;PWT (t) is the output power
of WTs, kW; Pr is the rated power of the unit, 30 kW; νi
refers to the starting wind speed, taking 2.5 m/s; νr refers to
the rated wind speed, which is set to 12 m/s; νc is the cut-off
wind speed, 25 m/s; k is the distribution parameter, which set
at 3.

2) ENERGY CONVERSION EQUIPMENT MODEL
The energy conversion equipment involved in this study is
the GSHP. GSHP systems can be divided into three types
based on the form of geothermal energy exchange: buried
pipe GSHP, groundwater GSHP, and surface water GSHP.
In this study, a buried pipe GSHP with a 200 m vertical depth
is selected. During the cooling season, the GSHP absorbs
indoor heat and stores it in the shallow soil through buried
pipes, achieving the cooling effect. During the heating season,
the buried pipe first extracts heat from the shallow soil,
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provides it to the heat pump on the evaporation side of the
GSHP, and then converts it into high-grade heat through the
GSHP to heat the room. It can be assumed that the heat
extracted by theGSHP during the heating season is equivalent
to the heat stored in the soil during the cooling season,
which constitutes long-term cross-seasonal energy storage.
Most existing studies consider the COP of the GSHP as a
constant value, which is inconsistent with reality [47]. As the
GSHP selected in this paper works at full load, the heat
production, cooling capacity, and power consumption of the
heat pump are calculated using (3)-(5), which are based on
the manufacturer’s testing data.

QHP−SH = 1434.45 + 48.21Te − 11.31Tk + 0.78T 2
e

− 0.057TeTk − 0.0126T 2
k + 0.0045 (3)

QHP−SC = 1199.16 + 40.32Te − 9.45Tk + 0.66T 2
e

− 0.048TeTk + 0.0105T 2
k + 0.0045T 3

e (4)

WHP = 229.62 + 8.58Te − 5.67Tk + 0.129T 2
e

− 0.327TeTk + 0.165T 2
k + 0.00102T 3

e (5)

where, QHP−SH is the heat produced by the GSHP, kW;
QHP−SC is the cooling capacity of the GSHP, kW; WHP is
the power consumption of the GSHP, kW; Te and Tk are
the evaporation temperature and condensation temperature,
respectively, which are determined according to the soil tem-
perature and the water supply temperature, ◦C.
TheCOP of the GSHP in the cooling and heating condition

are determined:

COPnom =

{
QHP−SC

/
WHP When in cooling condition

QHP−SH
/
WHP When in heating condition

(6)

where COPnom is the cooling or heating efficiency of the
GSHP under full load conditions.

The selected compressor starts for stepless adjustment as
the load reaches 30% of the full load. The COP correction of
the GSHP with different load rates is calculated:

COPPLR
COPnom
= 0.7626 + 0.0017PLR5 − 0.0181PLR4 + 0.096PLR3

− 0.2697PLR2 + 0.4276PLR (7)

where, PLR is the part load rate;COPPLR is the corrected heat
pump efficiency under partial load conditions.

3) ENERGY STORAGE EQUIPMENT MODEL
The energy storage equipment in PLIES proposed in this
study includes battery and energy storage tank (EST). Multi-
ple types of energy storage equipment can make rigid power
system more flexible, and significantly improving the reli-
ability, safety, flexibility, and economical efficiency of the
power grid have been greatly improved [26], [41], [45].

a: BATTERY
The technical performance data used to measure energy stor-
age equipment mainly includes rated power output, charging
time, depth of charging and discharging, cycle efficiency,
number of cycles, dynamic response time, energy density,
and power density [49]. From both technical and economic
perspectives, different types of energy storage have their
own advantages, disadvantages, and specific usage environ-
ments. To achieve the optimal balance between technical
and economic factors, the optimal energy storage system
configuration may vary depending on specific circumstances.
Lithium-ion (Li-ion) batteries are often utilized to store elec-
tricity due to the intermittency of renewable energy.

In the first stage, Li-ion batteries are mainly used to ensure
the full consumption of renewable energy. When the con-
straints shown in (8) are met, it is determined that the Li-ion
batteries are in a state of charge, and the state of charge at the
moment can be calculated by (9).

{
PWT (t) + PPV (t) > [(1 + β) ×WHP(t) + Euser (t)]
SOC (t − 1) < SOCmax

(8)

SOC (t) = (1 − σ) SOC (t − 1) + Pbattery,in (t) ηc1t
/
Eb
(9)

where, σ is the self-discharge rate of Li-ion batteries which
is set at 0.03; Pbattery,in (t) is the charging power of Li-ion
batteries at the moment, kW; ηc is the charging efficiency,
which is set at 0.9 [48]; Eb is the rated capacity of Li-ion
batteries; Euser is the users’ electrical load, kW; β is the ratio
of the power consumption of the transmission and distribution
system and the terminal to that of the GSHP, 30%; SOC (t) is
the state of the Li-ion battery at the moment, and the initial
value of SOC is set at 0.8 [26], where SOCmin and SOCmax are
the minimum and maximum depth of charge and discharge,
respectively.

When the constraints shown in (10) are met, it is deter-
mined that the Li-ion batteries are in a discharged state, and
the state of charge at the moment can be calculated by (11).

{
PWT (t) + PPV (t) < [(1 + β) ×WHP(t) + Euser (t)]
SOC (t − 1) > SOCmin

(10)

SOC (t) = (1 − σ) SOC (t − 1) + Pbattery,out (t) 1t
/
ηdEb
(11)

where, Pbattery,out (t) is the discharging power of Li-ion bat-
teries at the moment, kW; ηd is the discharging efficiency,
which is set at 0.9 [50].

In the second stage, Li-ion batteries only need to meet the
constraint conditions which are determined by (12)-(13), the
charge and discharge state can be adjusted according to the
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optimization objectives.
SOCmin ≤ SOC (t) ≤ SOCmax

0 ≤ Pbattery,in ≤ Pbattery,in,max

0 ≤ Pbattery,out ≤ Pbattery,out,max

(12)


Pbattery,in (t) × Pbattery,out (t) = 0
Pbattery,in (t) ≥ 0
Pbattery,out (t) ≥ 0

(13)

where, the Li-ion battery’s maximum charge power, mea-
sured in kW, is denoted as Pbattery,in,max; while its maxi-
mum discharge power, also measured in kW, is denoted as
Pbattery,out,max.

b: ENERGY STORAGE TANK
Energy storage tank (EST) can be used to store the heat or
cold generated by the energy conversion equipment according
to the cooling season and the heating season. Taking the
advantages of peak and valley electricity prices, cold and
heat storage can be carried out during the low and trough
electricity prices at night.

In this study, a simple non-layered water tank model is
used. The cooling capacity or heat storage Qtank (t) at time t
is affected by multiple factors including the cooling capacity
or heat storage Qtank (t-1) at time t-1, heat loss coefficient
σtank (which is set to 0.01), rated capacity Qtank,max in kWh;
charge power of the EST Ptank,in in kW; energy storage
efficiency ftank,in (which is set to 0.92), energy release power
Ptank,out in kW and energy release efficiency ftank,out (which
is set to 0.92). The mathematical model of the EST can be
calculated by (14)-(16), and the reliability of the model has
been verified experimentally [50].

Qtank (t) = Qtank (t − 1) × (1 − σtank)

+
Ptank,in (t) × ftank,in × 1t

3600

−
Ptank,out (t) × 1t
ftank,out × 3600

(14)

0 ≤ Qtank (t) ≤ Qtank,max (15)
Ptank,in (t) × Ptank,out (t) = 0
Ptank,in (t) ≥ 0
Ptank,out (t) ≥ 0

(16)

B. TWO-STAGE CO-OPTIMIZATION METHOD
1) DECISION VARIABLES
a: FIRST STAGE DECISION VARIABLES
Rational capacity configuration plays a crucial role in the
economic and energy efficiency of the entire energy system.
For instance, if the capacity of the wind power generation
system is too large, wind power may not be fully utilized
due to its concentration during nighttime when the electricity
demand is low. Excess power may then cause severe impact
on the power grid or require excessive batteries, which could
decrease overall economic efficiency. Similarly, in matching

the capacity of energy storage equipment, selecting a capacity
that is too large would result in a significant increase in the
initial investment, system risk, and potential difficulties in
user acceptance. Conversely, a capacity that is too low would
hinder the energy storage system’s ability to fully realize its
adjustment function, thus limiting the advantages of efficient
operation of the overall system. Therefore, the number of
PV panels (NPV ), the number of WTs (NWT ), the number of
GSHPs (NHP), the rated capacity of EST (Qtank,max), and the
rated capacity of Li-ion batteries(Eb) should be selected as
decision variables in the first stage.

b: SECOND STAGE DECISION VARIABLES
In addition to considering the optimization of capacity con-
figuration on a long-term timescale, it is also important
to focus on the operating performance of different capac-
ity configurations on a short-term timescale. The operating
parameters of Li-ion batteries, EST, andGSHPs play a critical
role in the overall operation of PLIES, reducing the operat-
ing costs of the system and improving interaction with the
power grid. Therefore, the hourly status of the PV system,
WT system, Li-ion batteries, EST, and GSHPs will be used
as decision variables in the second stage.

2) WORK CHARACTERISTIC CONSTRAINTS
To ensure optimal results, the optimization process must
comply with both the primary equipment capacity constraints
established during the first optimization stage and the energy
storage equipment constraints detailed in Section III.These
constraints include (1)–(16) and additional constraints speci-
fied in (17)–(19). Electrical balance constraints:

NPV × PPV (t) + NWT × PWT (t)

+ Pbattery,in (t) ηc1t + Egrid−buy (t)

= (1 + β) ×WHP (t) + Euser (t)

+ Egrid−waster (t) + Pbattery,out (t) 1t/
ηd

(17)

where, Egrid−buy is the electricity purchased from the power
grid, kW; Egrid−waste is the waster power of in the renewable
system, kW. Thermal balance constraints:

NHP × QHP−SH (t) × PLR+ Ptank,out (t)

= Qh−user (t) + Ptank,in (t) (18)

where, Qh−user is the users’ heating load, kW, and NHP is the
number of GSHP in operation. Cold balance constraints:

NHP × QHP−SC (t) × PLR+ Ptank,out (t)

= Qc−user (t) + Ptank,in (t) (19)

where, Qc−user is the users’ cooling load, kW.
In addition to energy balance, it is necessary to restrict the

storage of cold and heat only during the trough of electricity
consumption to ensure that the storage of cold and heat is
equal to the discharge of cold and heat throughout the day.
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3) OBJECTIVE FUNCTIONS
a: FIRST STAGE OBJECTIVE FUNCTIONS
Optimization objectives are diverse based on with different
needs and preferences. Initial investment costs, operat-
ing costs, renewable energy utilization, and environmental
factors are often considered in the optimization of IES. There-
fore, LCIC, LCOC,and REP are selected as the objective
functions of this study.

LCIC discussed in this paper only includes the purchasing
cost of the energy system, which can be calculated from (20).

LCIC =

∑n

i=1
(Ci × Ni) (20)

where,Ni represents the number of components of the energy
system; n represents the number of components of the energy
system; Ci denotes the initial investment cost, measured in
RMB, of each energy system component. The efficient oper-
ation of the system through the rational configuration of
IES, is critical to reduce operating costs. Therefore, LCOC
is selected as one of the objectives in this paper, which can be
calculated by (21).

LCOC =

∑
Egrid−buy × Egrid × y (21)

where, Egrid is the local peak and valley electricity price,
RMB. y is the number of years in the whole life cycle, which
is set to 60 according to the typical life of the building.

The wind, solar, and geothermal energy are all considered
as renewable energy sources in this study. Among them, the
use of GSHP for heating fall within the scope of renewable
energy utilization. The ‘‘Technical standard for nearly zero
energy buildings’’ GB/T 51350-2019 gives the calculation
formula for the REP [51]. As the demand for domestic hot
water is not considered in this study, the REP can be calcu-
lated by (22).

REP =

8760∑
t=1

(PPV (t) + PWT (t)) × 2.6 +

8760∑
t=1

QHP−SH (t)

8760∑
t=1

Euser × δc +

8760∑
t=1

(Qh−user (t) + Qc−user (t))

(22)

Here, REP is the proportion of renewable energy output, δ
is the proportion of lighting and elevator electricity consump-
tion in total electricity consumption, which is set at 0.5.

b: SECOND STAGE OBJECTIVE FUNCTIONS
Although the capacity configurations of PLIES are deter-
mined in the first stage to meet the objectives of LCIC,
LCOC, and REP over a long time scale, using PLIES to dis-
patch energy and achieve good interaction between the park
and the power grid is a key issue to be considered in the sec-
ond stage [52]. Therefore, objective functions are formulated
in the second stage based on different interaction methods.
The indicators of interaction with the power grid encompass
several aspects, including power grid response ability [53],
power grid balance ability [53], scheduling and optimization

ability [54], [55], reliability [56], and robustness [25]. Based
on the focus of this study on evaluating the scheduling capa-
bility of PLIES, the first objective function is to reduce the
impact on the power grid, which can be expressed as the
standard deviation (SD) of the system’s external purchased
electricity. The external purchased electricity by the entire
system should be smoothed as much as possible to achieve
good interaction between the park and the power grid. This
objective aims to minimize SD and can be calculated by using
(23), with a scheduling cycle of 24 hours and a time scale of
1 hour [54].

min SD

= min


√√√√ 1

24 − 1

24∑
t=1

(
Egrid−buy (t) − Egrid−buy (t)

)
(23)

where, Egrid−buy (t) is the average electricity purchased from
the power grid.

Another objective function is to adjust the outsourced
power load through PLIES, aiming to absorb electricity con-
sumption during the trough of the power grid and reduce
it during peak hours. This can help to reduce the peak-to-
valley power difference of the grid, promote good interaction
between the park and the power grid, and improve the utiliza-
tion efficiency of the municipal power grid, thereby reducing
operating costs (OC) as much as possible [55].

minOC = min

(
24∑
t=1

(
Egrid−buy (t) × Egrid (t)

))
(24)

4) OPTIMIZATION METHOD
A two-stage co-optimization method that considers both sys-
tem configuration and operation strategy is proposed in this
study. The proposed method combines the MOPSO, Cplex,
and Yamply methods. In the first stage, the optimization
problem is transformed into a multi-objective optimization
problem, and the Pareto solution set is solved using MOPSO.
In the second stage, the optimal solution is selected from
the solution set using Cplex and Yamply, which is different
from the conventional multi-objective optimization that uses
the TOPSIS method for direct selection [24], [28]. As there
are conflicts between different objectives, it is not possible
to find a solution that satisfies all constraints and objectives
in a globally optimal manner. Therefore, the Pareto solution
set is obtained using MOPSO in the first stage, which com-
prehensively considers multiple objectives. The second stage
of operation scheduling optimization can be considered as a
linear mixed-integer programming problem [44], which can
be solved using Cplex and Yamply, which is an interface
between MATLAB and Cplex, can be used to integrate the
two tools easily [10].

C. OPTIMIZATION SCHEME
The specific optimization process is shown in Fig. 2.

66406 VOLUME 11, 2023



L. Zheng et al.: Two-Stage Co-Optimization of a Park-Level IES Considering Grid Interaction

FIGURE 2. Optimization process of the two-stage co-optimization
method for PLIES.

Step 1 (Initial Parameter Setting): Local meteorological
parameters, the hourly cooling, heating, and electrical load of
the park are imported. The relevant parameters and number of
iterations of MOPSO are set. The optimization range of NWT ,
NPV , Eb, NHP, and Qtank,max are set.
Step 2 (Optimization Model for the First Stage): Based on

the parameter settings and constraints established in Step 1,
along with the operating strategy outlined in Section II, the
hourly system equipment output, and energy consumption of
PLIES throughout the year are calculated. As an optimization
algorithm, MOPSO is used to obtain a Pareto set that meets
the three objectives of LCIC, LCOC, and REP of PLIES.The
optimization steps of MOPSO are described in [56].
Step 3 (Optimization Model for the Second Stage): As

the Pareto solution set can be obtained from the first stage,
the decision-making method is not the conventional TOP-
SIS or multi-criteria decision-making, but rather screening
of the solution set based on the ability to interact with the
power grid during the operation stage. Use k-means clus-
tering analysis to obtain the cooling, heating, and electrical
load of multiple typical days that capture the annual load
characteristics. Then, use all the solutions obtained in the
first stage as the input parameters of the second stage. Under
the premise of ensuring the energy balance of the system,
calculate the equipment output, operating cost, and electric-
ity purchased separately according to the objective function
in Eqs.(22)-(23). The capacity configuration solution after
effective screening should not only realize good interaction

FIGURE 3. Hourly load of the park throughout the year.

between the park and the power grid but also achieve eco-
nomical benefits and sustainability, and provide effective
guidance for the park’s energy planning.

IV. CASE STUDY
An office park located in Tianjin, China was used as an
example to apply a two-stage co-optimization method for
optimizing the capacity configuration of PLIES. The current
capacity configuration of the park’s PLIES was used as the
benchmark to compare the economic feasibility, energy sav-
ings, and sustainability of the optimized PLIES.

A. RESEARCH CASE
The selected park in this study comprises of 10 office build-
ings and 2 dormitory buildings, with a total construction area
of 142790 m2. Fig. 3 shows that hourly cooling, heating,
and electrical load were derived from operating data gath-
ered through the energy consumption monitoring system.
The annual total cooling load is 4942 MW, with a peak of
4061 kW, while the annual heat load is 7934 MW, with a
maximum heat load of 4022 kW. The electrical load remains
relatively stable throughout the year, with a maximum of
3489 kW. Renewable energy is mainly provided by the PV
system and GSHPs for heating, with the PV system installed
on the roof having a capacity of 838.79 kWp. All power
generated by the PV system is used on-site, and any excess
power is not transferred to the grid. The maximum storage
capacity of Li-ion batteries configured in the park is 200 kWh.
The park uses three GSHP units as the main heating source,
with each unit having a rated heating capacity of 1267 kW
and a cooling capacity of 1189 kW. Hourly wind speed and
solar radiation for the district are depicted in Fig. 4 and Fig. 5,
respectively.

B. SYSTEM PARAMETER SETTING
The electricity prices in Tianjin are presented in Table 1,
while Table 2 provides the economic parameters of the
equipment. Table 3 shows the parameter settings of MOPSO.
When optimizing the capacity configuration of PLIES, prac-
tical constraints such as the area available for equipment
installation, the amount of renewable energy reserves, and
energy security need to be considered. Electrical reliability
does not need to be considered in this paper as the required
electricity is supplemented by the power grid. The optimal
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FIGURE 4. Hourly wind speed of the district.

TABLE 1. Electricity prices for different time periods.

TABLE 2. Main equipment economic parameters and carbon emission
factors [23], [26], [54], [57], [59].

ranges of decision variables in the first stage are determined
based on the equipment installation area, cooling and heating
load of the park, as indicated in Table 4. The optimal ranges of
decision variables in the second stage are mainly determined
based on the capacity configuration solution set obtained in
the first stage.

TABLE 3. MOPSO parameters in the first stage [14], [17], [59].

TABLE 4. Two-stage decision variables.

TABLE 5. Test value and calculated value of case.

C. MODEL VALIDATION
The accuracy of the mathematical model is crucial for ensur-
ing the reliability of capacity configuration optimization.
In this study, the mathematical model described in Section III
was used to calculate the total annual PV generation, LCOC,
and REP, based on the current park configuration, and the
results were compared with the actual operating data. The
comparison results are presented in Table 5, which shows
a deviation of 6.7%, 3.5%, and 2.8% for total annual PV
generation, LCOC, and REP, respectively. These results
demonstrate the accuracy of the system mathematical model
and the optimization method employed in this study.

V. RESULTS AND DISCUSSION
The analysis of the results of optimizing the capacity config-
uration in the first stage is presented in Section V-A. Based
on the capacity configuration solutions obtained in the first
stage, the typical daily operation patterns are introduced in
Sections V-B and 5.3, respectively, with the optimization
objectives of reducing the impact on the power grid and
reducing the system operating cost.

A. PARETO SOLUTION SET OF MULTI-OBJECTIVE
OPTIMIZATION IN THE FIRST STAGE
MOPSO is used to obtain the Pareto solution set that satisfies
the comprehensive objectives of LCIC, LCOC, and REP. The
set contains 100 optimal capacity configuration solutions,
as shown in Fig. 6. LCOC and REP decrease significantly
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FIGURE 5. Hourly solar radiation of the district.

FIGURE 6. The optimal solution set for PLIES capacity configuration in the
first stage.

as LCIC increases, mainly due to the need to increase the
renewable energy equipment. As the capacity of the renew-
able energy system reaches its maximum, the proportion of
heat provided by GSHPs in winter is close to 100%, resulting
in the REP also reaching its maximum value after no longer
increasing, which is close to 58%.

In the capacity configuration solution set, it is found
that the optimal installation number of PV panels is close
to the upper limit of the range, with an average value of
8823 pcs, and both the median and upper quantile of the
solution set are 10000 pcs. This indicates that the economy
and energy-saving performance of the PV system over the
entire life cycle are excellent, and the PV panels installed
can be increased as much as possible while ensuring the
PV generation efficiency. The average and median optimized
capacity of WTs in the Pareto solution set is 285 kW, and
the upper quantile is only 460 kW, which is below the upper
limit. It is recommended to use PV panels as the main power
generation and set up WT generation as the auxiliary, which
is appropriate. Compared to the current configuration of the
park, there are about 1-2 more GSHPs, mainly because in

TABLE 6. The capacity configuration determined by MOPSO method in
the first stage.

FIGURE 7. The interplay between recovery period, improvement of REP,
and the incremental changes in LCOC and LCIC.

addition to meeting the nighttime load, GSHPs also need to
provide energy for thermal storage.

Based on the electricity prices in Tianjin, the maximum
recovery cycle range of each capacity configuration in the
Pareto solution set can be calculated to be 40 years, with
an average of 20 years, which is less than the full lifespan
of 60 years. The comparison results with the current capac-
ity configuration of the park are presented in Fig. 7. The
reduced LCOC through the optimized capacity configuration
in the first stage significantly exceeds the increment of LCIC.
Within the payback period, the optimized PLIES through the
first stage can reduce LCOC by up to 14.7%, while increas-
ing the REP by 33%. Therefore, it can be concluded that
the proposed capacity configuration optimization satisfies
the requirements of economy and sustainability, and greatly
improves the utilization rate of renewable energy.

Although the further increase in the capacity of the EST
has not resulted in a significant reduction in LCOC and an
increase in REP, it can further enhance the stability of the
power grid, which plays a vital role in daytime scheduling.
Therefore, the Pareto solution set obtained in the first stage
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FIGURE 8. Clustering results of typical daily loads in the park.

TABLE 7. Profile coefficient at different k values.

is further screened by considering the two objectives on the
short-term scale in the second stage.

B. SYSTEM OPERATION CHARACTERISTICS
1) GENERATION OF HOURLY LOAD SCENARIOS
Since the second stage’s time scale is 24 hours, the park’s
annual hourly data is clustered using the k-means method
to obtain cooling and heating load for multiple typical days.
As the value of k has a significant impact on the clustering
effect, clustering analysis is conducted with k values of 3, 4,
5, 6, 7, and 8. According to Table 7, the best clustering effect
is achieved when k is equal to 3, as the contour coefficient is
the highest at this value. It is important to note that the typical
daily electrical load is determined by taking the average
values of winter and summer, as shown in Fig. 8, as the
electrical load changes relatively little.

2) CONSIDER REDUCING EXTERNAL POWER LOAD
FLUCTUATION
Due to the high power consumption in the park, a rational
PLIES capacity configuration can effectively schedule the
electricity consumption in the park and reduce fluctuations
in daily purchased electricity, thus improving power grid
stability. Fig. 9 shows the daily purchased electricity for
six typical days. The capacity configuration obtained from
the first stage can reduce fluctuations in daily purchased
electricity compared to the current configuration. Multiple
capacity configurations can achieve small-scale fluctuations
in daily purchased electricity. Therefore, the second stage
optimization and screening can obtain superior capacity
configurations that not only narrow the scope of decision-
making, but also reduce the impact of the park’s electricity
consumption on the power grid.

Compared with the current park configuration, the capac-
ity configuration obtained in the first stage can reduce the
average grid fluctuation rate by 39.5%, 45%, 48.7%, 53.4%,

FIGURE 9. Pattern of purchased electricity load for six typical days under
the consideration of reducing external power load fluctuation.

63.5%, and 70.9%, respectively, for the six typical days.
Some configurations can completely eliminate fluctuations
in purchased electricity. The average capacity of the Li-ion
batteries and EST in the ten minimum SD solutions is
3250 kWh and 19000 kWh, respectively, which is a sig-
nificant improvement compared to the values in Table 5.
Therefore, increasing the capacity of the energy storage sys-
tem achieves the reduction of daily purchased electricity
fluctuations. Li-ion batteries and EST are used to store energy
during periods of low electricity consumption and release
energy during peak periods.

3) CONSIDER THE EFFECT OF PEAK SHAVING AND VALLEY
FILLING
In addition to reducing the impact on the power grid by
decreasing fluctuations in purchased electricity, PLIES can
also transfer power consumption from peak to off-peak hours
through operation scheduling, thereby reducing operating
costs and helping to achieve peak shaving and valley filling
at the power grid side. Analyzing the objective expressed in
(23), the daily operating cost of the capacity configuration
in the Pareto solution set is calculated for a typical day.
The capacity configuration obtained in the first stage can
reduce the daily operating cost range by 14.8-32.3% in six
typical days compared to the current park configuration, with
Li-ion batteries contributing the most to the cost reduction.
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FIGURE 10. Pattern of purchased electricity load for six typical days under
the consideration of peak shaving and valley filling in the power grid.

Ten optimal capacity configurations are obtained through the
second stage of optimization and screening, and it is found
that daily operating costs can be reduced by up to 43.1%
in six typical days. It can be concluded that the capacity
configuration obtained through the second stage of screening
can greatly reduce operating costs.

Fig.10 shows the variation in purchased electricity on six
typical days. It can be observed that the optimized capacity
configurations can significantly reduce electricity consump-
tion during the two time periods, 9:00-12:00 and 16:00-21:00,
compared to the current park configuration. The average
capacity of Li-ion batteries and EST in the 10 capacity
configurations with the lowest operating cost is 3300 kWh
and 22000 kWh, which is similar to the consideration of
stable operation. As the capacity of the energy storage system
increases, utilizing peak and off-peak electricity prices to
reduce operational expenses becomes more advantageous.

4) SOLUTION SET AFTER OPTIMIZATION IN THE SECOND
STAGE
After screening for different operating objectives in the sec-
ond stage, we compared the optimal 10 solutions and found
that 8 of them were the same, so we used them as the optimal
solution set after screening in the second stage, as shown in
Table 8. It can be observed that the configuration of PV panels
and WTs are at the upper limit, while the capacity of Li-ion
batteries and EST has significantly increased compared to the
average value of the capacity configuration solution set in the

TABLE 8. Eight optimal capacity configurations determined through the
two-stage collaborative optimization method proposed in this study.

first stage. This is mainly because, in the actual operation
process, it is necessary to adjust the energy storage system
according to different operational objectives in order to par-
ticipate in the interaction with the power grid, which has a
significant effect on improving the reliability of the power
grid.

By comparing LCIC and LCOC, we found that all solution
sets show that LCOC is lower than LCIC, which means that
even with the high initial cost of Li-ion batteries and EST,
the optimization of the operational scheduling during the
operational stage can reduce the operational cost and make
it economically feasible. It should be noted that the reduced
operational cost is calculated based on the fixed strategy in
the long-term scale of the first stage. Through the analysis
results of the second stage, we can know that the reduction in
operational cost will be lower than the fixed strategy when the
strategy changes during the operational stage, which means
that the payback period can be further shortened during
the operational optimization stage. This observation further
supports the notion that, alongside a well-designed capacity
configuration, park administrators must enhance their oper-
ational capabilities, elevate the level of system intelligence,
and maximize the benefits of comprehensive energy systems.

At the same time, the increase in REP has reached about
33%, which indicates that with the increase in the capacity
of Li-ion batteries and EST, the increase in GSHP capacity
can also ensure that the utilization of renewable energy in the
heating system reaches the maximum. Based on the findings
of this study, it can be inferred that the proposed two-stage
capacity configuration optimization for PLIES can facilitate
a mutually beneficial interaction with the power grid, while
simultaneously promoting economic and sustainability bene-
fits.

VI. CONCLUSION
This paper proposes the construction of a PLIES consist-
ing of PV panels, WTs, GSHPs, batteries, energy storage
tanks, and the power grid. A two-stage capacity configuration
optimization method is proposed to investigate the PLIES’s
operational and economic performance, considering both the
system’s long-term economic performance and short-term
interaction with the power grid. The feasibility and reliability
of the proposed two-stage capacity optimization algorithm
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are demonstrated through a comprehensive analysis of the
system’s economic performance, operating characteristics,
and energy-saving effects using actual operational data from
a park in Tianjin. The proposed capacity optimization model
satisfies the comprehensive objectives of life cycle initial
investment, life cycle operating costs, and renewable energy
utilization rate while also considering the fluctuation of daily
purchased electricity load, achieving friendly interaction with
the grid, and reducing the impact of the park’s large electricity
usage on the grid or assisting in peak shaving and valley
filling.

Although there has been significant research on the sub-
ject, more work is required to establish a coordination
mechanism between PLIES capacity planning and system
operation. The refinement of mathematical models, opti-
mization of operational algorithms, and the development of
high-precision prediction algorithms are crucial for harness-
ing the benefits of PLIES. However, this study is constrained
by the coarse granularity of the monitored case data and
the absence of wind power operational data, preventing
a thorough validation of all mathematical models. Future
efforts will focus on acquiring additional park data to
comprehensively verify the proposed methods put forth in
this study.
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