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ABSTRACT Automated vehicles rely heavily on image data from visible spectrum cameras to perform a
wide range of tasks from object detection, classification, and avoidance to path planning. The availability
and reliability of these sensors in adverse weather is therefore of critical importance to the safe and
continuous operation of an automated vehicle. This review paper presents a data communication-inspired
Image Formation Framework that characterizes the data flow from object through channel to sensor, and
subsequent processing of the data. This framework is used to explore the degree to which adverse weather
conditions affect the cameras used in automated vehicles for sensing and perception. The effects of rain
on each element of the model are reviewed. Furthermore, the prevalence of these rain-induced changes in
publicly available open-source datasets is reviewed. The degree to which synthetic rain generation techniques
can accurately capture these changes is also examined. Finally, this paper offers some suggestions on how
future adverse weather automotive datasets should be collected.

INDEX TERMS Adverse weather, automated vehicles, computer vision, rain, sensor availability.

I. INTRODUCTION
Automated vehicles is an area of research that has gar-
nered huge amounts of interest in recent years, in both
academia and industry. Despite the vast amount of publicly
available research that has been conducted, the impact of
adverse weather conditions on automated vehicle perfor-
mance remains an under-explored and under-researched area.
Much existing research into automated vehicles focused on
the operation in optimal weather conditions, as a result,
the influence of adverse weather conditions on sensor per-
formance has yet to be comprehensibly considered. For
autonomous vehicles to be suitable for widespread use, they
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need to be able to operate reliably across all weather con-
ditions. For level 5 automation [1], where a vehicle can
safely operate in all conditions with no driver involvement
or monitoring, the negative effects of adverse weather on the
sensors used on a vehicle need to be fully understood to allow
optimal and robust sensor configuration [2].

This review aims to explore how a camera is affected
by adverse weather conditions in the context of automated
vehicles. The review focuses on visible spectrum cameras
as these are of critical importance to autonomous vehicle
operation and are heavily involved in the majority of cur-
rent autonomous vehicle functionality. To fully explore the
problem space, a data communications-style Image Forma-
tion Framework for data transmission from the object being
imaged to the sensor and subsequent image processing is
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proposed. This framework is used to segment the problem
space, with a focus placed on the changes that occur in each
component of the framework under adverse conditions. Given
the passive nature of cameras, any changes to the optical
path are likely to result in changes to the data on the image
plane. The accurate characterization of camera performance
in adverse conditions will help to provide guidance for sys-
tem design to facilitate safe, reliable autonomous vehicle
operations.

The contributions of the paper are as follows: (1) A data-
communications-inspired Image Formation Framework that
characterizes data flow from objects in the scene through to
the image sensor, and the subsequent processing of the col-
lected data is presented; (2) a detailed review of the literature
on the impact of rain on camera images is presented, using
the Image Formation Framework as a basis for the review;
(3) the degree to which current automotive datasets capture
rain-induced changes is reviewed; (4) some guidelines on
how future adverse weather automotive datasets should be
collected are presented.

II. CHARACTERISTICS OF RAIN
Rain is one of the most common adverse weather conditions.
Across Europe, rainfall varies significantly with location and
season, with North-Western Europe experiencing the most
rain [3]. The mean rainfall intensity, including periods of no
rain, is between 0.05-0.3 mm/h [3], while the total annual
precipitation ranges from 100 to 1300 mm. In Ireland, it rains
up to 300 days per year depending on location [4], with an
average rainfall of approximately 1000 mm per year [5] and
an average rainfall rate of approximately 2 mm/h. Rainfall
can be broadly classified into three categories based on the
rainfall intensity [6], as follows:

• Slight: < 0.5 mm/h
• Moderate: 0.5 to 4 mm/h
• Heavy: > 4 mm/h

In tropical climates, the rainfall rate can exceed 50 mm/h;
however, this typically occurs in short sharp bursts rather than
on a continuous basis over an extended period of time.

Rain is often described as a stochastic process [7]. It can be
viewed as a series of falling water particles that act as a series
of near-spherical lenses, creating fluctuations over time in
the optical path at varying spatial locations. The interactions
between raindrops, with each other and the environment,
produce ‘random’ fluctuations in lighting across a scene.
These changes in the optical path are encoded on the image
plane when capturing a scene with a camera. Several features
of rainfall, including drop size and speed, can be measured
using a laser disdrometer. The rainfall features discussed in
the remainder of this section are typically measured using a
disdrometer.

Several studies have investigated different features of rain-
fall, the results of which indicate that raindrops are uniformly
distributed in space [9], [10]; however, this is not the case
for drop size distribution. Laws and Parsons [8] noted that
the drop size distribution is correlated with rainfall intensity.

FIGURE 1. Drop size distributions for rainfall of varying intensities based
on [8].

FIGURE 2. Drop shape variation for drops of varying size (given as drop
radius) [11].

As rainfall intensity increases, so too does the average drop
size. This increase in drop size is also characterized by awider
distribution, meaning that as the rainfall intensity increases,
so does the range of the droplet size distribution. Figure 1
shows the distribution of raindrop size for three rainfall inten-
sities. Typical drop sizes range from just above 0 mm to
6 mm for rain falling at 12.5 mm/h (0.5 in/h). The shape of a
raindrop is also correlated with its size. As raindrops increase
in size, their shape changes from spherical toward that of
an elongated ellipsoid. The base of a raindrop experiences
the most significant distortion owing to the effect of air
resistance [11]. This effect is illustrated in Figure 2.

As the drop size increases, the terminal velocity of a given
drop also increases [12]. Several studies have produced differ-
ent models for the terminal drop speed [12], [13], [14], [15],
[16], [17], [18]. The results of these studies are summarized
in Figure 3, with a high level of correlation demonstrated
between the studies, the exception being the model proposed
by Garg [16], which estimates higher terminal velocities than
the other models for the same drop size. Typical terminal
velocities are in the range of 2 to 10 m/s.

Drop size is one of the key parameters that affects the
visibility of a drop on an image plane [16]. Mason and
Andrews [19] noted that drop size is also dependent on the
type of rain. They also noted that broadly applicable uni-
versal relationships between rain parameters are unlikely to
hold true given the possible sources of variation, including
wind shear and inhomogeneities in the system. These sources
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FIGURE 3. Raindrop terminal velocity models versus drop radius [20].

of variation, which introduce errors into any mathematical
model of rain, need to be considered when attempting to
simulate the effects of rain.

III. IMAGE FORMATION FRAMEWORK
To fully assess the impact of rain on a camera, a data
communications-style framework is used to segment the
problem. The Image Formation Framework is shown in
Figure 4. This framework describes the ‘‘data channel’’ from
objects in 3D space to the image plane and the subsequent
processing of the acquired data. This section explores how
each part of the proposed framework is influenced by rain.
The components of the framework are defined as follows:

1) Target: Any object of interest in a scene including,
but not limited to, pedestrians, vehicles, road signs,
traffic lights, and road markings. In this paper, special
consideration is given to vulnerable road users (VRUs).

2) Path: The space between the ‘Target’ and the sensor
enclosure i.e. the lens of a camera. This space is charac-
terized by atmospheric and environmental changes over
time. The path is where the majority of adverse weather
conditions occur.

3) Lens: An optical lens fitted to the camera to focus
light onto the image sensor. The accumulation of water
droplets on a lens, due to adhesion, leads to occlusions
on the image plane.

4) Camera:
a) Sensor: An image sensor is an electronic device

that detects light and converts the detected light
to an image. The type of image collected depends
on the color filter array, for example, the Bayer
Filter [21].

b) ISP: An image signal processor (ISP) is a digi-
tal signal processing unit optimized for images.
ISPs have a wide range of functions including
auto-exposure, auto-gain, white balance, noise
reduction, sharpening, and demosaicing.

5) Algorithm: Further processing is completed on the col-
lected image. Processing is completed with a view to
extracting useful information from the image plane.
This includes image enhancement (e.g., rain removal),
object detection, and classification.

While the analogy is not strict, these components of the
framework can be considered to correspond to elements of
a typical data communication system. The Target is similar
to the data transmitter (source of the signal), while the Path
is similar to the transmission channel. Lens distortion can be
considered similar in nature to a ‘‘noise source’’ or additional
distortion in the channel or receive filter, while the camera
is a form of ‘‘demodulation’’ system that produces output
data. Additional processing e.g. image enhancement could be
viewed in the same manner as channel coding (used for error
detection and correction in a data communications system).

A. TARGET
Under rain conditions, several factors affect how targets are
viewed by a given sensor. These factors include changes
to the characteristics of the target, such as color, contrast,
and reflectivity. Each of these properties is highly depen-
dent on the others and they overlap significantly. VRUs also
experience sociological factors such as changes in behavior
and changes in physical appearance due to rain. As water
accumulates on a target, the interaction between light and the
target is affected by scattering, absorption, and attenuation.
Depending on the material properties of the target, water
can either accumulate on the surface of the target through
adhesion or be absorbed by the target. Generally, only porous
materials, such as concrete and fabric absorb water.

1) TARGET CHARACTERISTICS
It is well known that as porous materials become wet, they
appear darker in color. Twomey et al. [22] attributed this
change, in multiple scattering media, to a decrease in relative
refractive index as the material becomes surrounded by water
instead of air. Ångström [23] proposed that colors appear
darker when wet due to total internal reflection in a film of
water coating the material. Rough surfaces, including roads,
are more prone to this effect owing to the diffuse reflection
of light. The orientation of the target is also likely to affect
the likelihood of this occurring due to surface run-off. This
work was later verified and refined by Lekner and Dorf [24],
who also investigated how absorption decreases the relative
refractive index. The effect can also be seen in fabrics; as a
fabric moves from a dry state to a wet state, the color darkens.
The change in appearance is due to less light being reflected
by the fabric; therefore, the color of the fabric appears darker.
This is true across the full spectrum of visible light [25].
Lee et al. [26] investigated the lightness value, the perceived
luminance of an object, and found that the lightness of a
textile sample decreases linearly when plotted against the
absorption weight of water up to a value of 60%. The change
in moisture accounted for a decrease of approximately 14%
in the lightness value of the HSL colorspace.

Nayar and Narasimhan derived a model to describe
the chromatic effects of atmospheric scattering in fog or
haze [27]. The model referred to as ‘The Dichromatic Atmo-
spheric Scattering Model,’ proposes that the color of a scene
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FIGURE 4. The data communications-inspired Image Formation Framework used to segment the problem space.

point (or target) under fog or haze conditions is a linear
combination of the direct transmission color (as measured
at a time of low atmospheric scattering) and airlight color.
Airlight is a phenomenon that causes the atmosphere to act
as a source of light. This concept was first introduced by
Koschmieder [28] and recently reevaluated by Lee [29], who
noted that Koschmieder’s model of visibility is akin to iden-
tifiability but not necessarily to detectivity.

The visibility of a target is directly related to its reflectivity.
The more reflective a target is the more light that returns
from the target to the sensor. Higher reflectivity improves
the contrast of a given target relative to the background.
Retroreflective objects, which redirect light back toward the
illumination source, are used to boost visibility in low-light
conditions. Common retroreflective objects that are typically
found on the roadside include traffic cones, certain road
signs, and road studs (commonly referred to as cat’s eyes).
Coulomb et al. [30] measured the spectral response, in the
wavelength range of 350 to 2450 nm, of several common
targets in a road environment. Of particular interest in these
results is the spectral response of a pedestrian wearing a blue
fleece. The spectral response to visible light (400 - 700 nm) is
very poor, with the maximum response being 10% at 400 nm.
With some exceptions, such as [30], how the spectral response
of automotive targets changes in adverse weather is an under-
explored area; however, some studies have investigated the
impact of water on reflectance for specific surfaces and mate-
rial types.

Hautiere et al. [31] noted that there is a change in the
reflectance of wet materials, in particular, the surface of a
road. They noted that the road can appear darker or more
specular, depending on the viewing angle of the observer.
The increased specularity generally occurs with low light
sources such as the sun, at dawn or dusk, or the headlights
of oncoming vehicles. The mirror-like surface of the road
leads to increased glare and high dynamic range scenes,
which are challenging to image. They also attributed the
reduction in reflectivity to water on the surface of the road,
which leads to more internal reflections at the water-air
interface, and to water under the surface of the road, which
leads to more scattering, and consequently, more absorption.
Senthilkumar et al. [25] measured the reflectance of wet and

dry fabric and found a minimum reflectance decrease of
approximately 10% across the full visible light spectrum.
While exploring the spectral response of wet and dry sand,
Nolet et al. [32] found a distinct difference in the reflectance
between wet and dry conditions; however, after the initial
reduction, the reflectance remains relatively constant as the
percentage of water content in the sand varies. This implies
that the surface moisture of the sand is a key factor governing
the change in reflectance. It is currently unknown how this
effect translates onto a porous road surface.

Under adverse weather conditions, especially rain, targets
are harder to distinguish from the background scene. This
is due to a reduction in contrast across the scene. In very
wet conditions, the light reflected from targets is severely
scattered by the atmosphere. The resulting change in con-
trast decreases with the depth of scene, according to an
exponential function [33]. Therefore, targets positioned far-
ther from the camera are more difficult to find in a given
scene. Burghardt et al. [34] investigated the contrast change
of road markings in rain. They found that the contrast ratio
in rain (Weber Contrast, also referred to as luminance con-
trast [35]) decreased by approximately 70% compared with
with weather. They noted that high retroreflected luminance
(RL) values are strongly correlated with machine vision per-
formance, with higher RL values leading to better contrast
ratios, which machine vision algorithms can take advantage
of.

2) BEHAVIORAL FACTORS
Under adverse weather conditions, VRUs, especially pedes-
trians, undergo significant changes to their physical appear-
ance. When it rains, many pedestrians elect to carry an
umbrella or wear a jacket with a hood. This wide varia-
tion in pedestrian appearance, coupled with lower visibility,
makes pedestrian detection in rain particularly challenging.
Rasouli et al. [132] investigated which pedestrian attributes
contribute to pedestrian detection performance, and noted
that the presence of an umbrella, which is rarely seen in
datasets, is associated with high algorithm failure rates. In a
behavioral study examining the decision-making of house-
holds on whether to walk or cycle, the importance of having
suitable clothing to protect from the weather was noted. This
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clothing included waterproof coats and trousers, hats of vari-
ous types, and shoes [37]. The protective clothing combined
with an umbrella significantly changes the appearance of
a pedestrian, which can lead to a domain mismatch for an
algorithm attempting to detect pedestrians.

Coupled with a change in appearance, VRUs also expe-
rience a change in behavior under inclement weather con-
ditions. VRUs tend to try to limit their exposure to adverse
conditions. This manifests itself in more erratic behavior,
with VRUs being more willing to take risks than in better
weather conditions. Movahhed et al. [38] investigated pedes-
trian crossing speed in rain and found that pedestrian crossing
speed increased by up to 20% in rain conditions. A study
examining pedestrians’ risk-taking behavior in rain con-
cluded that pedestrians take more risks [39]. Kulmala and
Salusjarvi measured the gaps between an oncoming vehicle
and a pedestrian who chose to cross the road. In rain, they
found that the gap allowed by a pedestrian was on aver-
age 0.4 seconds shorter (an 8% reduction). They also noted
that pedestrians without adequate protection from the rain
accepted shorter gaps while crossing.

Although VRUs undergo significant changes in appear-
ance and behavior in rain, it should also be noted that several
studies indicate that the overall number of VRUs is likely
to decrease in rain. de Montigny et al. [40] found that on
days when there was precipitation the number of pedestri-
ans dropped by 32% to 42% depending on which city the
pedestrians were located in. One limitation of this study was
that all meteorological data was measured with a resolu-
tion of one day. Other studies reported similar reductions:
Clifton and Livi [41] noted that 40% of people reported
a reduction in walking activities in inclement weather, and
Aultman-Hall et al. [42] found a reduction of approximately
13% in hourly pedestrian volumes under precipitation condi-
tions.Miranda-Moreno andNosa [43] investigated the impact
of weather on cycling inMontreal and found that precipitation
significantly reduces the number of cyclists on the roads.
They also observed a lagging effect, where the number of
cyclists was reduced if there had been precipitation in the
previous three hours.

The variation in pedestrian behavior makes the accurate
sensing and perception of pedestrians more challenging.
More erratic pedestrian behavior leads to shorter crossing
gaps with oncoming vehicles, requiring quicker reaction
times for automated vehicles. The change in pedestrian
appearance can lead to a domainmismatch for detection algo-
rithms, resulting in increased algorithm error rates. Despite
the more challenging conditions for perception, there is typi-
cally a reduction in the overall number of VRUs that need to
be monitored.

B. PATH
Rain is complex and dynamic in nature. The path of the Image
Formation Framework is arguably the component that is most
affected by rain. The ‘path’ is characterized by the optical

FIGURE 5. Simplified Raindrop Model showing light rays interacting with
a raindrop, inspired by [16].

path of visible light between the target and the lens. In clear
weather conditions, light undergoes atmospheric attenuation
while traveling between the target and the sensor, which can
be modeled according to a power law [44]. However, given
the relatively short range of an automotive camera, the effects
of this attenuation are negligible, therefore, we can assume
a clean optical path under clear conditions. Unlike other
adverse weather conditions such as fog and haze, which are
relatively static, rain is more dynamic in nature. As rain falls
it causes random spatial and temporal changes to the optical
path. As light travels between the target and the sensor along
the path, changes to the light pattern are encoded onto the
image plane.

1) INTERACTION OF RAIN AND LIGHT
Every falling raindrop has the potential to interact with light
rays in a scene. This interaction usually occurs in the form
of reflection or refraction, where a given light ray is redi-
rected. This redirection means light that ordinarily would
have reached a camera may not get there and rays that would
not ordinarily have traveled to the camera will be received.
This leads to a misrepresentation of the data on the image
plane, which takes the form of fluctuations in pixel values.
Figure 5 shows three light rays interacting with a raindrop,
with each ray experiencing a different phenomenon. Path
r̂ experiences refraction, ŝ experiences specular reflection,
and p̂ experiences internal reflection from the drop. Each
phenomenon redirects a light ray toward the camera; as a
result, the appearance of the drop on the image plane is a
complex mapping of the scene radiance.

Adding more drops to the model shown in Figure 5 leads
to a scenario in which each light ray is affected by multiple
drops. The extra raindrops add a further layer of complexity
to the model, and as a given ray undergoes more reflection
and refraction, the effect of an individual drop contributes less
to the overall effect. In such scenarios, scattering theory and
geometric optics can be used to model the effect of raindrops
on light rays. Twowidely used scatteringmodels are Rayleigh
scattering [45] and Mie scattering [46]. The choice of model
depends on the size of the scattering particles interacting
with light. Rayleigh scattering is suitable for use when the
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particle size is significantly smaller than the wavelength of
light. For visible light, this would place an upper limit of
approximately 70 nm on the particle size (assuming that the
maximum particle size is limited to 1/10 of the wavelength of
light [47]). Particles that fit this description include small dust
particles and cigarette smoke; however, it is unsuitable for
significantly larger raindrops. Mie scattering is used to model
scattering in particles of sizes up to the wavelength of light,
up to approximately 700 nm for visible light. Particles of
this scale include water droplets in fog and clouds; however,
raindrops that are typically larger than 700 nm, are still too
large for Mie scattering to be accurate.

For larger particles such as raindrops, geometric optics
can be used to model their interactions with light. Geometric
optics, also called ray optics, refers to modeling the prop-
agation of light in terms of rays [48]. Inakage [49] noted
that geometric optics is suitable for modeling the refrac-
tion of light by raindrops, albeit with some simplifications.
While defining a ‘Rainbow Model,’ Inakage assumed that all
raindrops individually act as refractive prisms and take the
form of spherical lenses. This assumption leads to a simple
optics problem that can be modeled using Snell’s law of
refraction. The issue of the refraction of light with multiple
raindrops remains an unmodeled effect. In addition to the
obvious simplification of the raindrop shape, this model also
fails to account for raindrop oscillation as drops fall. Tokay
and Beard [50] noted that all raindrops over 1 mm in diameter
oscillate as they fall.

2) AFTER-EFFECTS OF RAIN
The path is also susceptible to several static effects during
and after rain in the form of changes to the scene. The
accumulation of water produces puddles that in turn produce
reflections. These reflections are essentially a source of noise
from the perspective of the camera, as they distort the appear-
ance of the scene and can cause several issues depending
on their size and location relative to the camera. At best,
reflections have no effect on the camera; however, they can
lead to false positives in terms of object detection [51] and
the occlusion of lane markings [52]. Resnick et al. [53] iden-
tified ‘Cloudy Dark Puddles’ as a challenging area for object
detection algorithms.

Puddles can also produce dynamic effects, such as spray,
in a scene. Yu and Sun [54] investigated the effects of spray
caused by high-speed vehicles. They found that the effects
of spray are similar to that of heavy rain when the depth of
water is at least 5 mm. On very wet roads, vehicles tend to
spray water backward, often toward the front-view camera of
an autonomous vehicle. Given the direction of the spray, this
often leads to heavy lens occlusion.

3) SCENE LIGHTING
Another important factor to consider is the effect of lighting in
the scene. Garg and Nayar [16] proposed a photometric rain-
drop model to describe the effects of refraction and reflection

of light by a single drop of rain. The model illustrates how
light from different sources (and different directions) can
reach the lens of a camera. This effect increases the radiance
of the drop, thereby increasing its visibility on the image
plane. Typically, lighting phenomena in urban scenes are
complex with multiple sources of light, further compounded
by reflections from objects in the scene; therefore, the lighting
is very unlikely to be uniform or symmetrical. The dominant
lighting source will have the largest influence on the visibility
of raindrops in the path. During daylight hours, this is likely
to be the sun, and at night, this is likely to be from either
street lighting or the headlamps of other vehicles. At night,
the problem of uneven scene lighting is more severe given the
lower relative levels of ambient lighting. Garg and Nayar [10]
a the strong dependence of the appearance of a water streak
on the illumination direction.

The presence of rain in the ‘Path’ scatters light resulting in
fluctuating pixel values on the image plane. The after-effects
of rain, including puddles and spray, can increase the number
of reflections in the scene and create complex occlusions on
the lens. The brightness and dynamic range of the scene will
influence the degree to which rain in the ‘Path’ is visible on
the image plane.

C. LENS
For automated driving, the choice of lens fitted to a camera
is of critical importance. Several lens parameters signifi-
cantly influence the quality of data collected by a camera.
One of the key lens parameters is the field of view (FOV).
As the FOV increases, each pixel on the image sensor is
mapped to a larger real-world area, thereby reducing the
pixel density on a real-world target. The reduction in pixel
density relates the maximum object detection distance to the
FOV. For autonomous vehicles, different FOVs are typically
used depending on the location of the camera on a vehicle.
To avoid blind spots, camera systems are designed such that
the rear-view and sometimes the side-view lenses are gener-
ally wide-angle fish-eye lenses with a FOV of approximately
180◦. Multiple side-view cameras with narrower FOVs can
also be used. Front-view cameras tend to have a considerably
narrower FOV. The current industry trend is to have a FOV
in the region between 30◦ and 100◦, and occasionally, more
than one camera is located at the front of the vehicle. A nar-
rower FOV allows objects to be detected over a much longer
range, which is important when traveling at higher speeds.
Figure 6 shows the typical camera locations and FOVs of an
autonomous vehicle.

Automated vehicles typically use fixed-focus lenses, also
called focus-free lenses, instead of autofocusing lenses.
Fixed-focus lenses are designed such that every object in a
scene, beyond a certain point, is in focus. For a fixed-focus
lens, the f-number is particularly important. The f-number
refers to the ratio of the focal length to the diameter of
the aperture. For automated vehicles, an f-number between
F1.6 and F2.4 is typically used [55]. Given that the focal
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FIGURE 6. A typical camera setup for an autonomous vehicle.

length is directly related to the FOV, which is already con-
strained, changing the f-number requires a change to the
aperture of the lens. This directly controls the amount of
light that passes through the lens to the image sensor. The
low f-number typically observed in automated vehicle cam-
eras implies a wide aperture. This has the added benefit of
reducing noise as more light reaches the image sensor, which
requires lower gain values to achieve target image brightness.

1) LENS OCCLUSION
In autonomous vehicles, the lens, lens covering, or windshield
(if the camera is located inside the car) is vulnerable to the
impact of adherent raindrops. These raindrops stick to the
lens and form occlusions in the image plane. This area of
research is being actively investigated, and there is a strong
overlap with lens soiling [56], where dirt accumulates on
the surface of the lens, causing occlusions on the image
plane. An example image with adherent raindrops is shown
in Figure 7. In the image, several adherent drops of varying
sizes are shown, although each drop does not cause a total
occlusion but rather acts as a secondary lens heavily distorting
the light passing through. In the case of a front-view camera
located behind a windshield, the impact of lens occlusion is
likely to differ from that of other cameras positioned around
the car. The presence of an active wiper system will periodi-
cally remove adherent drops, and the system will also benefit
from aerodynamic self-cleaning. Both of these factors limit
the impact of adherent drops on cameras located behind the
windshield.

You et al. studied the effect of a single adherent raindrop.
They found that the effect of a raindrop is similar to that
of a fish-eye lens and that the scene is contracted through
the drop [58]. This effect is illustrated in Figure 8. It was
also noted in the same study that motion viewed through an
adherent raindrop is significantly slower than that in other
parts of an image, on the order of 20 to 30 times.

Several attempts have been made to model adherent rain-
drops. The determining factor of the geometry of an adherent
water drop is wetting. Wetting refers to the ability of a
liquid to remain in contact with a solid surface [59]. One

FIGURE 7. The impact of adherent raindrops [57].

FIGURE 8. The fish-eye effect of adherent raindrops [58].

of the major challenges of modeling adherent raindrops is
that their appearance is heavily dependent on the background
of a given image. The ability to model adherent raindrops
accurately is a key step when attempting to remove them
from an image. Roser and Geiger [60], attempted to improve
image registration in rainy scenes by modeling raindrops
as sections of spheres. They also noted that the occlusion
caused by adherent raindrops can be filled in using pixel
intensity values from subsequent frames, provided that the
image registration is accurate. Roser et al. [61] later proposed
using Bézier curves to more accurately capture the shape
than using a simple spherical model. They found that a
cubic Bézier curve is sufficient to model the curve of an
adherent drop. One advantage of this approach is that the
model is able to describe the shape of drops that are not on
a flat surface. Kurihata et al. [62] proposed an image feature
extraction method based on principal component analysis,
to detect adherent drops in an image. By creating a raindrop
template, referred to as an ‘eigendrop,’ they were able to
perform template matching. Three key properties of adherent
raindrops were identified:

• Edges that feature a raindrop outline.
• Blurry edges behind raindrops.
• Refraction of light by raindrops.

The main disadvantage of this approach is a high false pos-
itive rate due to variations in the background of the image.
Eigen et al. [63] attempted to use a convolutional neural
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network (CNN) to try to predict the ‘clean’ image from an
input rainy image. While their algorithm performed better
than the median filtering used as a benchmark, the simple
structure of the network struggles to capture the complex
nature of adherent drops.

Yamashita et al. have published several studies in this
area [64], [65], [66], [67], all of which focus on the detection
and removal of adherent raindrops. Reference [64] detects
areas of interference in an image and replaces these regions
with pixel values from another camera. This work was
extended to a stereo camera pair in [65]; after transforming
the images to a parallel stereo pair, disparities between each
image within the common FOV can be easily detected. The
main drawback of both techniques is that multiple similarly
aligned cameras are required to detect and remove adher-
ent drops. Reference [67] makes use of pan-tilt cameras to
achieve the same outcome; two images taken from differ-
ent reference angles are compared, with high noise regions
being detected. As the camera rotates, adherent raindrops
occlude different regions in the two images. Following image
registration, the regions behind the adherent drop in the
initial image can be replaced with the relevant pixel values
from the second image. This technique assumes that adher-
ent drops are stationary and is therefore unsuitable for use
in heavy rain conditions. Finally, [66] uses spatio-temporal
images collected from a single rotating camera. As a result
of the projective transform, which describes what happens
to the perceived positions of objects as the perspective of
the observer changes, the trajectories of a static background
become vertical in the cross-section of a spatio-temporal
image with the trajectories of adherent noise regions forming
curves. These curved tracks in the spatio-temporal image are
used to identify regions of adherent noise. Once identified, the
regions can be filled in using the image restoration technique
described in [68].

2) IMPACT OF LENS PARAMETERS ON RAIN VISIBILITY
Garg and Nayar [69] conducted extensive research on how
different camera parameters, including some lens parameters,
affect the visibility of rain. Among other parameters, they
noted that reducing the f-number of a camera has a significant
effect on reducing the visibility of rain. A lower f-number
narrows the depth of field, leading to fewer raindrops in
focus on the image plane. Garg and Nayar also noted that
rain visibility decreases linearly with scene brightness. This
effect is likely echoed by increasing the aperture diameter.
As previously discussed, autonomous vehicle cameras typ-
ically use a relatively low f-number, which helps to limit
the impact of rain. Finally, Garg and Nayar noted that rain
visibility is also related to the depth of field and the focal
length of a lens. However, in the case of autonomous vehi-
cles, the focal length tends to be fixed in order to set the
FOV. Notwithstanding the work of [69], the influence of lens
parameters on the appearance of rain in an image remains
underresearched. The work completed by Garg and Nayer

used traditional low dynamic range cameras; when using high
dynamic range (HDR) cameras, the visibility of rain is likely
to be still dependent on scene brightness; however, due to
contrast compression [70], the effect is unlikely to be linear.
The visibility of drops is also likely to be dependent on the
local tone mapping, which in turn is highly dependent on the
local content in an image.

D. CAMERA
1) SENSOR
The key component of any imaging system is the image sen-
sor. For an autonomous vehicle, several key design features
need to be considered when selecting an image sensor. For
automotive sensors, a dynamic range of 100 to 120 dB, and
a resolution of 2 to 4 MP provide a good indication of cur-
rent industry standards. Another important factor that must
be considered is the sensitivity (signal-to-noise ratio) of the
sensor. In an ideal world, each of these parameters (dynamic
range, resolution, and SNR) would be as high as possible,
but inevitable trade-offs between performance and cost place
upper limits on one or more of the parameters. The current
trend for dynamic range is still 120 dB while 8 MP cameras
are currently being explored in practical systems [71].

Pixel size is usually in the range of 2-3um [72], [73].
A smaller pixel size means that the image sensor will not have
the necessary dynamic range or signal-to-noise ratio, whereas
a larger pixel size means that the sensor will lose spatial
resolution. Pixel bit-depth is typically 10-12 bits; this value
sets the number of unique shades of color that can be rep-
resented. Automotive image sensors are almost exclusively
CMOS sensors, which are preferred over CCD sensors for a
number of reasons:

• Lower cost
• Higher potential frame rates
• Lower power consumption.

The majority of automotive image sensors still use the Bayer
color filter array [21]. Very little, if any, research exists that
demonstrates how the primary design parameters of an image
sensor influence the impact of rain on the sensor. The noise
profile of the sensor will likely affect the visibility of rain in
an image, with rain being less visible in regions of high noise.

2) ISP
The role of the ISP is to adjust the data collected from the sen-
sor to optimize image quality. Traditionally, ISPs have been
configured and optimized for the human visual system, with
efforts focused on making images as perceptually realistic as
possible. However for computer vision tasks, especially in the
automotive sector, the concept of ‘‘image quality’’ is poorly
defined, with a single definition yet to be agreed upon [74].
ISPs are used for a wide variety of tasks including denoising,
demosaicing, sharpening, and automatic white balancing.
A sample pipeline for an ISP is shown in Figure 9.

The impact of rain on an ISP is an underexplored
topic, with a relatively small number of studies examining
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FIGURE 9. A representative ISP pipeline [75].

individual elements of the ISP. Garg and Nayar [69] explored
how exposure time is related to the visibility of rain in an
image. They found that significantly increasing the exposure
time reduces the visibility of rain in an image. However,
this comes at the expense of motion blur of a given drop,
resulting in streaks and blurring in an image. A long exposure
time is also infeasible in the automotive space owing to
increased motion blur caused by the motion of the vehicle.
The frame rate of the camera also imposes an upper limit on
the maximum permissible exposure time. To the best of our
knowledge, no other study exists that attempts to tune an ISP
to minimize the effects of rain. Under normal circumstances,
an ISP adapts to mitigate the effects of adverse changes in
the signal path. However, the degree to which a standard ISP
configuration can achieve this is unknown because of the
large number of parameters that a typical ISP can control,
and the confounding effects of these parameters operating
simultaneously. There is potential to optimize the configura-
tion and parameter tuning for a given task, for example, object
detection, for use in wet conditions. Certain ISP parameters
are likely to be more sensitive to the presence of rain which
could be leveraged to detect rain in an image.

E. ALGORITHM
1) ALGORITHM PERFORMANCE IN RAIN
The main purpose of any image processing algorithm uti-
lized in autonomous vehicles is to extract useful information
from an image. This is often in the form of detecting and
identifying an object of interest, classification, and locating
where the object is relative to a vehicle. These are often
subdivided into smaller tasks, such as pedestrian detection,
where a single algorithm focuses on a small taskwhile achiev-
ing better results. The majority of state-of-the-art algorithms
use machine learning techniques; however, more traditional
approaches can also be used, particularly for feature extrac-
tion. At its simplest, object detection can be divided into two
stages: feature extraction and classification. Awide variety of
feature extraction techniques exist, including gradient-based
features such as histogram of oriented gradients (HOG) [76],
motion-based features [77], shape-based features [78], and
texture-based features [79]. Following feature extraction,
the extracted features are used to classify detected objects.
Chia et al. [80] examined the performance of feature point
extraction in rain; they found that the performance of SURF

(Speeded Up Robust Feature) and the Harris corner detector
decreased by 67% and 48%, respectively, in rainy conditions
compared to dry conditions.

Deep learning is the most widely-used approach for mod-
ern object detection algorithms, with convolutional neural
networks (CNN) very commonly used for object detection
in images [81], [82], [83], [84], [85]. It is well known that
CNNs fail to generalize outside of the training domain [86],
[87], [88], which presents a problem for systems trained
in dry conditions but used in rain conditions. One of the
most common metrics used to evaluate object detection per-
formance is Average Precision (AP). AP refers to the area
under the precision-recall curve. When calculating the true
positive and false positive rates, the area of overlap between
the prediction and the ground truth must be considered. The
overlap between a prediction and the ground truth is referred
to as Intersection over Union (IoU). AP50 refers to the area
under the curve with an IOU of at least 50%. Mean Average
Precision (mAP) refers to the average AP50 score across all
classes of objects in a dataset.

Hnewa and Radha [89] investigated the performance
of Yolov3 [90] and FasterRCNN [82] under rain condi-
tions. When trained using only ‘clear’ weather images, the
mAP decreased for both algorithms by 3.3% and 5.4%,
respectively. Figure 10 and Figure 11 provide simple illus-
trations of the issues that algorithms have in rain conditions.
In Figure 10, when simulated rain is added, there is a large
discrepancy between the performance of the two algorithms
in terms of object location. Figure 11 shows the performance
of Faster RCNN when synthetic rain is added to an image.
As the synthetic rainfall rate increases, the mAP decreases,
with a maximum decrease of approximately 40% at 80 mm/h.

Dodge and Karam [91] investigated the effect of Gaussian
noise on the performance of deep neural networks. They
concluded that deep neural networks are susceptible to the
effects of blur and noise but are less susceptible to changes in
contrast. This is of particular interest for images subjected
to rain, as rain streaks blur the background and introduce
noise. The loss of contrast caused by rain may be less of an
issue. Da Costa et al. [92] investigated how different types of
noise impact image classification, and arrived at a conclusion
similar to that of Dodge and Karam. Additionally, [92] noted
that while the denoising of distorted images improves per-
formance, the performance with the original image, without
noise, is still significantly better. They attributed this to the
blurring effect of denoising techniques.

Several techniques have been used to attempt to improve
the performance of CNNs in rain. Perhaps the most obvious
technique is to simply include an adequate number of rain
images in the training data. Several adverse weather datasets
exist, such as [95], which contain a large number of images
captured while it was raining. However, the ratio of wet to
clear images required by a machine learning algorithm is
an under-explored topic, and the potential improvement in
performance, due to the use of a broad training set, is also
unknown. On the other hand, if rain is viewed as a form of

67048 VOLUME 11, 2023



T. Brophy et al.: Review of the Impact of Rain on Camera-Based Perception

FIGURE 10. The detected position of a bouncing ball in clear (red) and
synthetic rain (blue) conditions [93].

FIGURE 11. The performance of Faster RCNN against synthetic rain [94].

image ‘‘corruption,’’ simply removing the corruption from
the image should improve object detection performance. Sev-
eral attempts have been made to ‘derain’ an image [96], [97].
Image deraining is discussed in more detail below. Another
valid approach is to artificially add corruption to the training
data. This approach is usually referred to as synthetic rain or
simulated rain. Essentially, the training data, or a portion of it,
is corrupted with synthetic rain to improve the robustness of
the network to real rain. This technique is discussed in more
detail in Section III-E4.

2) DETECTING/MEASURING RAIN
When viewing an image without any prior knowledge of the
weather conditions, it can often be difficult to determine if
it was raining when the image was captured. This presents a
significant challenge formachine learning algorithms. As dis-
cussed in [69], the visibility of rain is heavily reliant on
camera parameters. While having little impact from a human
visual perspective, the impact of rain can heavily influence
the performance of CNN-based algorithms. Knowing if it is
raining is, therefore, an important initial step, as this knowl-
edge can be used to optimize subsequent image processing
and computer vision algorithms.

Several studies have been published using a variety
of techniques concerning the automatic detection of rain.
Barnum et al. [98] demonstrated that despite their appar-
ent chaotic nature in the image domain, rain and snow
have a predictable global effect in the frequency domain.

Xue et al. [99] made use of the wavelet transform and bilat-
eral filtering to create a detailed edge map containing rain.
Several studies have focused on detecting adherent drops on
windshields [60], [62], [100], [101]. All these studies used
an in-vehicle camera located behind a windshield, with a
variety of image processing and machine learning techniques
used to process the subsequent images. Applying some of
these techniques to common datasets, such as [102], could
potentially return coarse labels describing the current rain
conditions in an image. This could potentially alleviate the
problem of a lack of labeled weather conditions in open-
source datasets. Another valid approach to detect rain is to
leverage the changes that take place to ‘Targets,’ especially
pedestrians, in a scene. The indirect observables brought
about by rain, such as a pedestrian using an umbrella, may
prove to be stronger heuristics of rain than any direct mea-
surement obtained from an image.

It is also worth noting that rain may also be detected
through the use of on-vehicle hardware. Rain sensors can be
used to detect the presence of rain to control smart wiper
systems, for example, [103] reviews several different rain sen-
sor types. Optics-based rain sensors can be positioned inside
the windshield. Such sensors use the changing reflection
and refraction properties of two surfaces in contact to detect
rain on the windshield. On-vehicle hardware can accurately
detect the presence of rain; however, not all vehicles are
equipped with such hardware. The focus of this paper is on
the most general situation where no assumptions are made
regarding the presence of specific rain-detecting hardware on
the vehicle. In such situations, using an algorithmic approach
to detect the presence of rain is the only viable option.

3) DERAINING
The goal of image deraining is to remove rain from an image
to be left with a clear image, free from the interference
caused by rain. This is an active topic of research and has
been the subject of several recent reviews [104], [105], [106].
Image deraining is not a trivial problem. In their review,
Yang et al. [105] identified several key problems:

1) Rendering physically correct rain, to add to previously
acquired images, is very complicated. Owing to the
complex nature of rain, a large number of factors, such
as shape, size, and orientation need to be considered.
The appearance of rain also depends on the background
of a scene.

2) Decoupling rain information from background and
lighting information is very difficult. Given that an
image comprises a matrix of pixel values, all rain,
object, background, and lighting information is fused
into a single value for each pixel.

3) Rain and background information often overlap in the
feature space. Background textures found in images
can closely resemble those of rain. Without prior
knowledge of the background textures, these textures
can result in false detections.
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FIGURE 12. The RESCAN algorithm with the rainy input on the left and
the derained output on the right [107].

4) Nearly all machine learning trainingmethods for image
deraining rely on image pairs, one with rain and one
without rain. Gathering comprehensive, suitable, real-
world data for this task is nearly impossible. Even for
a static scene in which all objects in the background
remain in place, illumination changes in the scene pre-
vent the collection of an ‘‘ideal’’ image pair for training
purposes. Inaccurate rain models or synthetic rain used
to generate image pairs can result in the development
of inaccurate deraining algorithms.

Given the detailed nature of the reviews already published
in this area, the rest of this section focuses on the mer-
its of the current state-of-the-art deraining algorithms and
their effect on object detection algorithms. Although there is
no doubt about the effectiveness of current deraining algo-
rithms for human viewing, there is little evidence to suggest
that deraining algorithms can improve the performance of
object detection in rain conditions. One of the state-of-the-
art deraining algorithms, RESCAN (Recurrent SE Context
Aggregation Net), is based on a recurrent neural network
(RNN) [107]. An example illustrating the performance of
RESCAN is shown in Figure 12.

Despite their excellent visual performance, deraining algo-
rithms have not yet been optimized for object detection.
Wang et al. [108] noted the lack of a quality benchmark
to evaluate the performance of image-deraining algorithms.
Many deraining algorithms are evaluated using subjective
metrics or image quality metrics, including PSNR and SSIM.
These algorithms work as intended from the perspective of
these metrics; however, this does not necessarily correlate
with improved object detection performance. In their review,
Yang et al. performed a series of tests to evaluate the effec-
tiveness of several deraining algorithms on pretrained object
detection algorithms. They used YOLOv4 [81] and faster R-
CNN [82] to evaluate several deraining algorithms. At best,
the performance of each algorithm was no worse after derain-
ing than before deraining; however, in most cases, a small
decrease in mAP was observed. Li et al. [109] carried out
a similar experiment and formed a similar conclusion. They
found that ‘‘almost all existing deraining algorithms will
deteriorate the detection performance compared to directly
using the rainy images.’’

Pei et al. [110] performed an empirical analysis of vari-
ous de-hazing techniques on both real and simulated haze
images. De-hazing is a similar problem to de-raining and
faces many of the same challenges. They concluded that

de-hazing algorithms had little positive effect on improv-
ing object detection performance. Furthermore, they noted
that there is little correlation between the current image-
level de-hazing metrics, including pixel-wise errors and local
structural similarities, and object detection results. A major
concern for deraining techniques is that the deraining pro-
cess may remove true discriminatory information from the
image. Perhaps a fairer experiment would be to fine-tune
an object detection algorithm with images that have already
been derained. This approach would allow an algorithm to
generalize to the imperfections of a deraining algorithm and
boost the overall object detection performance.

4) SYNTHETIC RAIN
Augmenting existing datasets with synthetic rain has become
a popular technique to attempt to limit the degradation in
the performance of neural networks when presented with
rain images. Adding synthetic rain is essentially the reverse
process of de-raining, and therefore faces many of the same
issues outlined above. Given the difficulty in collecting ideal
image pairs, it is challenging to design accurate synthetic rain
models. Hnewa and Radha [89] noted that the inaccuracy of
synthetic rain models leads to a domain mismatch.

A variety of techniques are often used to generate syn-
thetic rain. Broadly speaking, these techniques can be
divided into three categories: (i) physics-based models;
(ii) data-driven models; and (iii) a combination of the two.
Garg and Nayar were among the first to explore the fac-
tors affecting the appearance of rain [16] and to model
physics-based photorealistic streaks [10]. Halder et al. [111]
used a physics-based simulator [112], to generate synthetic
rain images in an attempt to improve object detection in
rain. Other techniques for rendering rain streaks include a
frequency-based model [113] and a technique that uses ray
tracing, as described in [114].

Ni et al. [115] proposed the Rain Intensity Controlling
Network (RICNet) which is capable of adding or remov-
ing rain from a given image. The bi-directionality of the
network is unique, and allows the user to set the rain inten-
sity to the desired level. The network was trained in a
supervised manner making use of synthetic rain datasets.
Wei et al. [116] designed a CycleGAN network capable of
synthesizing rain in an unsupervised manner. Two generators
create rain-free and rainy images, respectively. The major
advantage of this approach is that the need to use rain and
rain-free image pairs for training is negated, thereby allow-
ing the use of unmatched rain and rain-free images. Several
synthetic rain datasets exist that are commonly used to train
rain rendering and rain removal networks. Synthetic rain
datasets often include images frommore common automotive
datasets, such as [102] and [117], which have been augmented
using a variety of rain rendering techniques. Among the
most common synthetic rain datasets found in the literature
are Rain12000 [118], Rain800 [119], Rain200H [96], and
SPAData [108].
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FIGURE 13. Comparison between synthetic and real rain [94].

Figure 13 shows an example of synthetic rain which has
been added to an image. The results are visually impres-
sive; however, as in the case of image deraining, there is no
standardized objective quality benchmark to evaluate perfor-
mance against. Many rain rendering algorithms are evaluated
subjectively using surveys that ask participants to rate the
realism of rendered rain. One of the major issues with this
evaluation technique is demonstrated in [120], where only
slightly over 75% of the participants agreed that a control
image with real rain was representative of real rain, whereas
the remaining 25% failed to agree that the rain appeared to be
real. As with rain removal algorithms, the subjective measure
from a visual perspective has little bearing on computer vision
interpretation.

Despite the lack of qualitative evaluation metrics for syn-
thetic rain, some other limitations also need to be considered.
Given that synthetic rain is overlaid on top of an image
taken in dry conditions, the current techniques fail to account
for several of the changes previously outlined in the data
communication-based model presented earlier in this review.
Perhaps the most important change unaccounted for is the
change in object (pedestrian) behavior. Changes in pedes-
trian behavior and appearance can have a large effect on
algorithm performance, and these changes are not accounted
for using the current state-of-the-art synthetic rain generation
techniques. These behavioral changes are among the most
difficult to model.

Rain has the potential to negatively influence the perfor-
mance of computer vision and machine learning algorithms.
Techniques to limit the impact of rain, such as augmenting
training data with synthetic rain or removing rain from the
image plane, do not appear to have the required mitigating
effect. In order to fully characterize the impact of rain on

computer vision and machine learning performance, datasets
with detailed adverse weather labeling are required.

IV. DESIGNING A DATASET
The selection of data for training a neural network for any
application is of critical importance. If the data are not an
accurate representation of the real scenario, the performance
of any network will degrade significantly when tested under
realistic conditions [86]. Similarly, the amount of available
training data is also of particular importance. The ideal
amount of data required strongly correlates with the network
depth and the number of trainable parameters in the network.
Using toomuch training data will cause the network to overfit
the training data and fail to generalize on similar scenarios.
Conversely, when using too little data, the network fails to
capture the relationships between the input data and the out-
put of the network.

Within the context of this review, for an automotive dataset
to accurately represent the complex effects of rain, all the
factors discussed in previous sections should be included.
Several of the changes discussed are difficult to model.
Therefore, the most appropriate way to accomplish this is to
capture real data in a realistic environment. The importance
of labeling data should not be underestimated. Providing
detailed weather and lighting labels may not improve the
overall performance of a network; however, they will provide
more details about the edge cases where the network fails.
Ideally, as much environmental data as possible should be
captured alongside the sensor data.

A. EXISTING DATASETS
Table 1 presents a collection of major publicly released
automotive datasets used for object detection and semantic
segmentation. Each of the datasets has been analyzed in
terms of the diversity of conditions, namely Day, Night,
Dawn/Dusk, and Rain, and the presence or absence of
detailed weather labels and ambient light information. Other
basic details of the datasets have also been included in
Table 1.

When presented in tabular form, the trends across many
major datasets become clear. The general diversity of many
datasets is high, with several datasets containing images
across all times of day and in a variety of rain conditions
e.g. [95] and [124]. All of these datasets captured images
in real-world conditions and are therefore assumed to have
accurately captured the changes between wet and dry scenes
described in Section III of this paper.

The table reveals a lack of weather labels included with the
sensor data. The Berkley Deep Drive (BDD) dataset [95] is
the only large-scale dataset that contains any weather infor-
mation. These labels are coarse and lack detail of specific
conditions; however, they are still useful for segmenting the
dataset into various weather conditions. To the best of our
knowledge, no major publicly available automotive dataset
contains any labels describing the ambient light conditions.
The NightOwls dataset [131] attempts to infer ambient light
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TABLE 1. Adverse weather datasets for autonomous vehicles review. OD: Object detection, SS: Semantic segmentation, D: Day, N: Night, DD: Dawn/Dusk,
R: Rain, BB: Bounding box, WL: Weather labels, AL: Ambient light, SR: Synthetic rain, ✓*: Coarse label estimated from pixel intensities.

conditions by estimating a value from pixel intensity values.
At best, this approximation only provides an estimate of the
actual ambient light level.

B. CONSIDERATIONS FOR BUILDING A DATASET
Section III-A to Section III-D of this paper, which describes
the ‘data channel’ of the Image Formation Framework, sum-
marized the changes that take place in the environment. The
changes that occur to the ‘targets,’ in the ‘path,’ and on the
lens of the camera should all be captured when collecting
data. Ideally, data should be collected under varying condi-
tions and at varying times of year. The more adverse weather
training data, and the more variation within the data that
is collected, the more robust an algorithm trained on the
data is likely to become. Current state-of-the-art synthetic
rain generation techniques are not a suitable replacement for
gathering real rain data because they fail to account for the
full scope of changes that occur under rain conditions.

The major problem with open-source autonomous vehicle
datasets, from the perspective of adverse weather, is the lack
of detailed weather labels. The lack of labels makes charac-
terizing the effects of adverse conditions more challenging.
Adding weather labels to a dataset as a post-processing step
is challenging and unlikely to be accurate. When designing a
dataset suitable for characterizing sensor performance under

adverse conditions, as many labels as possible should be
recorded at the time of data acquisition. The more labels
that are recorded and the greater the granularity within these
labels, the easier the task of characterizing sensor perfor-
mance becomes. In urban environments, owing to occlusion
by buildings, local conditions at the vehicle change rapidly;
therefore, weather and environmental data labels should be
regularly updated and reviewed during data collection. The
addition of sensors to monitor ambient conditions, such as lux
meters, canmake the process of updating labelsmore reliable.

Categorizing rainfall into discrete categories is desirable,
and categorization should be completed from the perspective
of a machine learning algorithm. If a large volume of data
with labeled continuous rainfall information becomes avail-
able, this process could be completed using contribution value
plots, that is, plotting the rainfall rate (or some other feature of
rainfall) versus an algorithm performance metric. Identifying
key regions in the plot, such as knee points, would reveal
the boundaries that should be used for the categories. The
plots should be repeated for various features of rainfall, as the
rainfall rate may not be the feature that has the largest impact
on machine learning performance.

Another approach to categorize rainfall, which would
require less detailed rainfall labeling, is through the use of
generative adversarial networks (GANs) [148]. A similar
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concept is explored in [149], to examine how lens soiling is
viewed from the perspective of a network. The discriminator
in the GAN is asked to identify whether a lens is soiled
or not. The performance of the discriminator, coupled with
human intuition, indicates the degree of separability between
the classes. Poor discriminator performance indicates low
discernibility between classes, with the GAN struggling to
distinguish between the categories. Starting with arbitrarily
assigned rainfall categories, a GAN could be used to measure
the separability between each category from a network’s
perspective. If the classes are not discernible from the per-
spective of a network, they do not add useful information to
the dataset.

V. CONCLUSION
This review has presented a data communications-inspired
Image Formation Framework to explore how adverse weather
conditions affect camera images collected for use in an
autonomous vehicle application. In particular, the effect of
rain on cameras is examined. The framework segments the
problem space, and the changes that occur under rain con-
ditions in each section of the framework are reviewed. The
subsequent effect of using rain-degraded data as input for
subsequent data processing is also reviewed. A focus was
placed on object detection with the related areas of synthetic
rain generation and rain removal included. Finally, this study
reviews publicly available datasets suitable for automotive
applications.

Generally, across all aspects explored using the Image
Formation Framework, there is a lack of research that charac-
terizes the effects of rain. This lack of research is especially
evident in the areas concerning the ISP and the image sensor.
The subsequent effects on processing algorithms, such as
object detection, are also underexplored. The current state of
open-source datasets with respect to comprehensive coverage
of adverse weather conditions is relatively limited. While
many datasets contain a high level of diversity, in terms of
weather conditions, a lack of detailed labeling and other
metadata limits the potential of this data. Without gathering
more detailed weather labels at source when collecting data,
fully understanding the impact of rain is not possible. Another
cause for concern lies in the fact that uncommon edge cases
are likely to be among themost difficult challenges of adverse
weather to overcome. Identifying the conditions that lead to
edge cases, where the failure of an autonomous vehicle is
most common, requires significantly more detailed metadata.

In summary, rain impacts a wide variety of aspects of
an autonomous vehicle environment. Many of these aspects
remain under-explored, and further research is required.
In order to conduct this research, datasets with high levels
of diversity and detailed labeling will be required.
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