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ABSTRACT In this paper, a robust decentralized H∞ attack-tolerant observer-based team formation
tracking control scheme is proposed for large-scale quadrotor unmanned aerial vehicle (UAV) systems under
external disturbance, measurement noise, couplings from other neighboring quadrotor UAVs, and malicious
attacks on actuator and sensor of the network control system (NCS) via wireless communication. First,
we constructed a smoothed model of attack signals to describe their behavior. Then, by integrating the
smoothed dynamic model with the system dynamic model of each quadrotor UAV, we can simultaneously
estimate the attack signals and the system state of each quadrotor UAV through a traditional Luenberger
observer for the efficient robust decentralized H∞ attack-tolerant observer-based team formation tracking
control of large-scale quadrotor UAVs. For the design of robust decentralized H∞ attack-tolerant observer-
based team formation tracking control of large-scale quadrotor UAVs, a very difficult independent nonlinear
partial differential observer/controller-coupled Hamilton Jacobi Issac equation (HJIE) must be solved for
the observer and controller design of each quadrotor UAV. Nowadays, there are no analytical and numerical
methods to resolve HJIE. Thus, an HJIE-reinforcement learning-based deep neural network (DNN) is trained
to directly solve the observer/controller-coupled HJIE for robust decentralized H∞ attack-tolerant observer-
based team formation tracking control of each quadrotor UAV. Since the systemmodel of the quadrotor UAV
and HJIE have been adopted for the HJIE-reinforcement Adam learning algorithm DNN training, compared
to the traditional DNN big data-driven training schemes, we save a lot of training data and time to achieve
the robust decentralized H∞ attack-tolerant observer-based team formation tracking control design. As the
Adam algorithm converges, we could show that the proposed HJIE-reinforcement DNN-based decentralized
H∞ attack-tolerant observer-based tracking control scheme can achieve the theoretical result. Finally, the
simulation results are presented with a comparison to verify the effectiveness of the proposed method.

INDEX TERMS Network control system (NCS), attack-tolerant observer-based tracking control, team
formation NCS of large-scale quadrotor UAVs, observer/controller-coupled HJIE, HJIE-reinforcement
learning deep neural network (DNN), H∞ decentralized reference tracking control of large-scale systems.

I. INTRODUCTION
In this generation, along with technological development,
automation systems and the internet of things (IOTs) have
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attracted more attention in a future smart city. The unmanned
aerial vehicle (UAV) has become a hot topic due to its
wide applications such as agriculture, military, rescuing,
humanitarian relief, and wireless communication [1], [3].
To successfully complete the above tasks, a UAV is needed
to track the specified trajectory. Among all types of UAVs,
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quadrotor UAVs have vertical take-off and landing (VTOL)
capabilities [4]. In accordance with this maneuverability,
quadrotor UAVs can follow a wider variety of trajectories
than other types of UAVs. Although quadrotor UAVs have
many appealing advantages in practical applications, the
power consumption of quadrotor UAVs during flight is a key
issue that needs further consideration. Recently, as the need
to implement more complex tasks continues to increase, the
team formation tracking control problem of multi-quadrotor
UAVs is more appealing than the tracking control problem of
a single quadrotor UAV in the future.

Currently, common team formation methods include the
behavior-based control method [5], the leader-follower (L-F)
method [6], and the virtual leader structure (V-S) method [7].
Among the above-mentioned methods, the (V-S) method
is considered to be the most recognized strategy for team
formation tracking control design problems. Since the leader
is virtualized, it avoids the problem of the L-F approach,
where the desired team formation shape cannot bemaintained
once the leader collides during the flight process.

Generally, the control designs of the large-scale team
formation system are divided into two kinds: centralized
control [8] and decentralized control [9]. The centralized
control strategy is that all quadrotor UAV subsystems are
coordinated by a single controller. With an increase in the
number of quadrotor UAV subsystems to a large scale, the
computational complexity of implementing the centralized
formation control strategy will be large and even lead the
formation control design to being infeasible. Hence, the
decentralized V-S formation control strategy is preferred
when considering the formation of large-scale quadrotor
UAVs.

Recently, with the advancement of communication tech-
nology [10], [11], the control signals of physical plants are
not calculated by themselves, but by remote computing units
viawireless network channels from the ground control system
(GCS). In a large-scale quadrotor UAV team formation,
a network control system (NCS) is applied to the formation
tracking control. Specifically, NCS is divided into two
parts: the local side (physical controlled system) and the
remote side (computing unit). When the state information
of the quadrotor UAV team is transmitted to the GCS, GCS
calculates control commands and then sends the control
input back to the quadrotor UAV, which can effectively
reduce power consumption and provide greater flexibility and
maintainability during tasks. Although the network-based
control strategy can optimize the calculation process of
control commands, it also creates some problems that need
to be dealt with. First, as a result of the uncertainty of quality
of service (QoS) in wireless network communication, packet
dropout may occur [12], [16]. When packets are lost from
the transmission, signal information cannot travel over the
wireless network communication channel, so the receiver
will not be able to receive any signal from the sender [14].
Second, if the signal is affected by the network-induced delay,
it cannot be delivered to the receiver on time [16]. According

to the above mention, the entire NCS is delay-dependent,
and the corresponding control problem is tougher than a
delay-free network.

On the flip side, since the rapid development of wireless
network-based communication technology and widespread
applications in recent years, network security has become
a major issue, which has attracted the attention of many
researchers and research institutions. Moreover, hackers may
attack the network control system to interfere with the
transmission of information or even cause the system to
crash. Even though various methods have been proposed to
resist malicious attacks [17], [19], they may still enter the
network through security breaches. These malicious attacks
interfere with the correctness of signals in wireless network
channels, thus disrupting the operation of the entire network
system. Due to the fact that these malicious attacks are
unavailable signals to the designer, the impact of malicious
attacks on NCS is not easily eliminated. To deal with
this problem, an attack-tolerant control strategy has been
developed to compensate for the impact of unavailable
malicious attack signals on the system [20], [21]. This
strategy constructs a specific observer to simultaneously
estimate state variables and malicious attack signals. After
that, through the estimated malicious attack signals, a control
strategy can be implemented to compensate for the impact
of actual malicious attack signals on NCS. Even the causes
of actuator and sensor fault are different from the causes
of actuator and sensor attack signal, their effects on the
control and observer are described by the similar mathematic
equations and are always discussed together by many papers.
Traditionally, to estimate these malicious attack signals,
singular descriptor-based observers have been widely used in
the field of fault estimation (FE) [22], [23]. Nevertheless, the
above descriptor-based observers are difficult to implement in
most practical applications due to complex algebraic equation
constraints. Recently, a novel intermediate observer design
method is proposed to estimate the system states, actuator
faults and sensor faults of nonlinear multi-agent system [24]
and a novel adaptive adjustable dimension observer-based
fault estimation for switched fuzzy system is proposed
in [25].

Except for malicious attacks, in practice, unexpected
external disturbances will inevitably interfere with quadrotor
UAVs, e.g., a wind gust. Additionally, quadrotor UAVs may
suffer unknown coupling effects from other quadrotor UAVs
in the large-scale quadrotor UAV team formation system
such as trailing vortex coupling from other neighboring
quadrotor UAVs. Therefore, in a non-ideal environment, the
formation controller design of the quadrotor UAVs should
consider the external disturbance, measurement noise, and
trailing vortex coupling of other quadrotor UAVs in the
team; otherwise, it may lead to instability or even crashes,
especially for a large-scale quadrotor UAVs team formation
system. Based on the above discussion, the attenuation of
these effects should be further considered in the formation
tracking control scheme to ameliorate the formation tracking
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control performance of the NCS of quadrotor UAVs. Hence,
in this study, we should deal with malicious attack signal
estimation and attack-tolerant tracking control problems for
large-scale team formation quadrotor UAVs NCS under
malicious attack via wireless channel, external disturbance,
and trailing vortex coupling from neighor UAVs.

Over several decades, the robustH∞ observer-based output
feedback control strategies have been adopted and widely
used to address the attenuation problem of these non-ideal
effects [26], [27], [28]. Through the smoothing model [29],
malicious attacks on quadrotor UAV actuators and sensors
through network channels can be effectively described and
embedded into the augmented state of the augmented system
of each quadrotor UAV model and the malicious attack
signal smoothing model to avoid the destruction of the
state estimate of each quadrotor UAV by the malicious
attack signal. Thus, the malicious attack signals and state
variables of each quadrotor UAV can be estimated by the
traditional Luenberger observer. And then, the estimated state
variables and malicious attack signals are adopted for the
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control design of the NCS of large-scale
quadrotor UAVs by compensating for the effect of malicious
attacks. Taking advantage of tracking the desired virtual
leader with a desired team formation shape, the tracking
error and estimation error of each quadrotor UAV system
can be considered independently by the proposed robust
decentralized H∞ attack-tolerant observer-based tracking
control strategy. Therefore, the original robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control problem of the large-scale quadrotor UAV NCS
under malicious attack, external disturbance, measurement
noise, and trailing vortex coupling can be converted into
an independent robust H∞ attack-tolerant observer-based
tracking control design problem for each quadrotor UAV in
the team formation. Furthermore, the robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control design problem of large-scale quadrotor UAVs can
be further converted into the problem of solving an equiva-
lent highly nonlinear partial differential observer/controller-
coupled Hamilton Jacobi Isaacs Equation (HJIE) problem for
robust H∞ attack-tolerant controller and observer design of
each quadrotor UAV in the team formation.

However, observer/controller-coupled HJIE is difficult
to solve analytically and numerically. Therefore, instead
of solving HJIE directly, several interpolation methods
(e.g., the global linearization method [30] and the Takagi-
Sugeno (T-S) fuzzy interpolation method [31]) have been
proposed to interpolate N local linearized systems at
different operations to approximate a nonlinear quadrotor
UAV system. Then, with the adoption of the quadratic
Lyapunov function, observer/controller-coupled HJIE can
be replaced by a set of observer/controller-coupled N 2

Riccati-like Equations (RLEs). By utilizing the Schur’s
complement technique, N 2 Riccati-like inequalities can be
transformed into a set of N 2 observer/controller-coupled

linear matrix inequalities (LMIs), which can be solved by
a two steps procedure (one for observer and another for
controller of each quadrotor UAV) with the assistance of
LMI Toolbox in MATLAB. However, these interpolation
methods need to solve a large number of LMIs, especially for
a highly nonlinear system such as a quadrotor UAV. Further,
we need to calculate H∞ observer-based controller laws for
each quadrotor UAV by interpolating N 2 local linearized
observer-based control laws via N 2 interpolation functions
at every time instant, which makes the design complexity
and computational load dramatically increase. Besides, the
solution of HJIE is based on a quadratic Lyapunov function,
resulting in a more conservative solution for nonlinear
HJIE. Lately, an HJIE-embedded DNN learning approach is
proposed to solve HJIE for robustH∞ stabilization control of
nonlinear time-varying systems by a HJIE-embedded Adam
learning algorithm [32] and the robust H∞ observer-based
reference tracking control design of nonlinear systems under
external disturbance and measurement noise directly through
the observer/control coupled HJIE-embedded DNN-based
learning algorithm [33]. Recently, it is appealing to extend
to the more complicated robust H∞ attack-tolerant observer-
based team formation tracking design of large-scale NCS
under coupling of neighor UAVs and malicious attack signal
through wireless channel for more practical applications in
future 5G and 6G era.

In this paper, an HJIE-reinforcement learning DNN
observer-based control scheme is proposed to achieve
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control of large-scale quadrotor UAV
NCS to ensure that the network-controlled quadrotor UAVs
can progressively approach the desired formation of the
large-scale quadrotor UAVs under the effect of external
disturbance, malicious attack, trailing vortex coupling, and
measurement noise. Instead of conventional interpolation
methods, a DNN-based observer-based control scheme is
trained by HJIE-reinforcement Adam learning algorithm [34]
to solve the nonlinear partial differential observer/controller-
coupled HJIE directly for the robust decentralizedH∞ attack-
tolerant observer-based team formation tracking control law
of each quadrotor UAV under the worst-case effects of exter-
nal disturbance, malicious attack, measurement noise, and
trailing vortex coupling, which are employed for generating
output signals to produce the state signal, state estimation,
estimation error and tracking error to train DNN for observer
gain and control gain of H∞ observer-based formation con-
trol of each quadrotor UAV by HJIE-reinforcement learning-
based Adam learning algorithm in the offline training phase
as shown in Fig.3. This HJIE-reinforcement DNN-based
observer-based control scheme trained based the worse-case
external disturbance, measurement noise and coupling in
the offline training phase will not influence the H∞ attack-
tolerant observer-based control tracking performance of each
UAV because the robust decentralized H∞ attack-tolerant
observer-based team formation control design is based on the
worst-case external disturbances, malicious attacks, coupling
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of neighor UAVs, and measurement noise. In the online
operation phase, external disturbances, malicious attacks,
coupling, and measurement noise are available, as shown in
Fig.2. A simulation example with comparison is provided
to confirm the team formation tracking performance of the
proposed robust decentralized H∞ attack-tolerant observer-
based team formation tracking control scheme of 25 UAVs.

The main contributions of this study are summarized as
follows:

(I) A novel smoothed dynamic model is employed to
model malicious attack signals that are not available for the
NCS. Thence, the malicious attack signals are embedded
via smooth dynamic model in large-scale UAV NCS so that
the malicious attack signals and state variables of quadrotor
UAVs can be estimated via a traditional Luenberger observer
simultaneously to compensate for the effect to achieve the
attack-tolerant control. The worst-case effects of external
disturbance, malicious attacks, measurement noise, and cou-
plings from other quadrotor UAVs on the state estimation and
formation tracking control strategy of each quadrotor UAV
are minimized to achieve robust decentralized H∞ attack-
tolerant observer-based team formation network tracking
control of large-scale quadrotor UAVs. By argumenting each
UAV NCS system in the team with smoothed dynamic
model, reference tracking error dynamic, and estimation error
dynamic so that the decentralized attack-tolerant observer-
based team formation control design becomes a robust
stabilization control problem to significantly simplify the
design procedure.

(II) An observer/controller-coupled HJIE is developed for
each quadrotor UAV to accomplish the robust decentralized
H∞ attack-tolerant observer-based team formation track-
ing control design of large-scale quadrotor UAVs, which
becomes how to solve an independent observer/controller-
coupled HJIE for the decentralized H∞ attack-tolerant
observer-based reference tracking control of each UAV in the
team formation.

(III) An HJIE-reinforcement DNN scheme is proposed
to solve the observer/controller-coupled HJIE directly for
the robust decentralized H∞ attack-tolerant observer-based
team formation tracking control design of the large-scale
quadrotor UAV NCS to simplify the design complexity.
Moreover, the proposed HJIE-reinforcement-based DNN
learning scheme can reduce a lot of training data and training
time compared to conventional big data-driven learning
approaches to enlarge the domain of application for DNN via
the HJIE-reinforcement learning scheme.

The structure of this paper is described below. The
large-scale quadrotor UAV team formation network control
system, smoothed models that are used to describe malicious
attack signals, and problem formulation are introduced in
Section II. In Section III, a robust decentralized H∞ attack-
tolerant observer-based team formation tracking control
strategy is provided. HJIE-reinforcement DNN-based decen-
tralized H∞ attack-tolerant observer-based team formation
tracking control design of large-scale quadrotor UAV NCS in
Section IV. In this section, we also propose a reinforcement

learning-based Adam algorithm to train the DNN control
scheme. A simulation example with comparison is given in
Section V. The conclusion is drawn in Section VI.
Notation: M > 0(M ≥ 0): The positive definite symmetric

(semi-definite symmetric) matrix M ,respectively; MT : The
transpose of the matrix M ; Ia: The identity matrix with
dimension a × a;Rn: the set of n-tuple real vectors; Rn×m:
The set of all real n × m matrices; ∥.∥2: The Euclidean
norm; £2[0,∞): A set of real stochastic functions x(t) ∈ Rn

with finite energy, that is, E
{∫
∞

0 xT (t)x(t)dt
}
< ∞; E{·} :

The expectation operator; diag(A1, . . .An): A block diagonal
matrix with the main diagonal A1, . . .An.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
A. SYSTEM MODEL OF QUADROTOR UAV IN
LARGE-SCALE TEAM FORMATION
In this subsection, we consider the position and attitude of
the quadrotor UAV simultaneously in the dynamic model.
The position of the quadrotor UAV w.r.t. inertial frame is
described by Cartesian coordinates (x, y, z) of its mass center,
and the attitude of the quadrotor UAV in the body frame
is described by three rotation Euler angles (φ, θ, ψ) on the
body of the quadrotor UAV, which represent the roll angle
(−π2 < φ < π

2 ), the pitch angle (−π2 < θ < π
2 ), and the

yaw angle (−π < ψ < π) related to the orientation of the
quadrotor UAV, respectively, as shown in Fig.1.

For a large-scale quadrotor UAV team formation system,
it is indicated as a set S = {S1, S2, . . . , SN }, consisting
of single quadrotor UAV subsystems Si, i = 1, . . .N .
In practice, each single quadrotor UAV suffers not only
from external disturbances but also from the effect of
interconnected couplings by non-ideal communications or
aerodynamics from other nearby quadrotor UAVs. Taking
these effects into consideration, the ith team formation
quadrotor UAV subsystem can be formulated as follows:

Si :
·

Xi(t) = Fi(Xi(t))+ Gi(Xi(t))Ui(t)+ Di(Xi(t))vi(t)

+

∑
j∈Ni

Fij(Xi(t))Xj(t − τij(t))

Yi(t) = Ci(Xi(t))+ ni(t), for i, j = 1, . . . ,N ; i ̸= j (1)

where Xi(t) = [x i1(t), x
i
2(t), y

i
1(t), y

i
2(t), z

i
1(t), z

i
2(t), φ

i
1(t),

φi2(t), θ
i
1(t), θ

i
2(t), ψ

i
1(t), ψ

i
2(t)]

T is the state vector of the
system, x i1(t), y

i
1(t), z

i
1(t) ∈ R are the positions of the ith

quadrotor UAV, x i2(t), y
i
2(t), z

i
2(t) ∈ R are the velocities

of the ith quadrotor UAV, φi1(t), θ
i
1(t), ψ

i
1(t) ∈ R are the

attitudes of the i th quadrotor UAV, and φi2(t), θ
i
2(t), ψ

i
2(t) ∈

R are the angular velocities of the ith quadrotor UAV.
Ui(t) = [F i(t), τ iφ(t), τ

i
θ (t), τ

i
ψ (t)]

T is the control input
of the ith quadrotor UAV in the formation team, F i(t) ∈
R is the total thrust acting on the ith quadrotor UAV,
the rotational forces τ iφ(t), τ

i
θ (t), τ

i
ψ (t) ∈ R are gener-

ated by four rotors of the ith quadrotor UAV, vi(t) =
[vix(t), v

i
y(t), v

i
z(t), v

i
φ(t), v

i
θ (t), v

i
ψ (t)]

T is the external distur-
bance of the ith quadrotor UAV. Yi(t) is the measurement
output of the ith quadrotor UAV. ni(t) is the measurement
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noise. Ci(Xi(t)) is the nonlinear output matrix. N denotes the
number of quadrotor UAVs in the team. The system matrices
of the ith quadrotor UAV in (1) are given as:

Fi(Xi(t)) =



x i2(t),

−
K i
x
mi
x i2(t),

yi2(t),

−
K i
y

mi
yi2(t),

zi2(t),

−
K i
z

mi
zi2(t)− g,
φi2(t),

J iy−J
i
z

J ix
θ i1(t)ψ

i
1(t)−

K i
φ

J ix
φi2(t),

θ i2(t),
J iz−J

i
x

J ix
φi1(t)ψ

i
1(t)−

K i
θ

J iy
θ i2(t),

ψ i
2(t),

J ix−J
i
y

Jz φi1(t)θ
i
1(t)−

K i
ψ

J iz
ψ i
2(t)



Gi(Xi(t)) =



0 0 0 0
(cosφi1(t) sin θ

i
1(t) cosψ

i
1(t)

+ sinφi1(t) sinψ
i
1(t))

1
mi

0 0 0

0 0 0 0
(cosφi1(t) sin θ

i
1(t) sinψ

i
1(t)

− sinφi1(t) sinψ
i
1(t))

1
mi

0 0 0

0 0 0 0
1
mi

cosφi1(t) cos θ
i
1(t) 0 0 0

0 0 0 0
0 1

J ix
0 0

0 0 0 0
0 0 1

J iy
0

0 0 0 0
0 0 0 1

J iz



Di(Xi(t)) =



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1


where Fi(Xi(t)) is the system function matrix of the
ith quadrotor UAV. g is the gravitational acceleration,
J ix , J

i
y, J

i
z are the moments of inertia of the ith quadrotor

UAV, K i
x ,K

i
y,K

i
z,K

i
φ,K

i
θ ,K

i
ψ represent aerodynamic damp-

ing coefficient of the ith quadrotor UAV, mi is the total mass
of the ith quadrotor UAV. Gi(Xi(t)) ∈ R12×4 is the input
matrix of the ith quadrotor UAV. Di(Xi(t)) is the influence
matrix of the external disturbance. Fij(Xi(t)) ∈ R12×12 is
the coupling matrix between the ith quadrotor UAV to the

FIGURE 1. Structure of the i th quadrotor UAV in the large-scale UAV
formation team under the inertial frame and body frame.

jth quadrotor UAV. Xj(t − τij(t)) ∈ R12 is the coupling
term from the jth quadrotor UAV to the ith quadrotor UAV
with a time-varying delay τij(t).Ni denotes the neighboring
quadrotor UAVs coupling with the ith quadrotor UAV.

B. A LARGE-SCALE QUADROTOR UAV TEAM FORMATION
NETWORK CONTROL SYSTEM
Under the structure of the network control system (NCS) of
large-scale quadrotor UAV team formation as shown in Fig.2,
each quadrotor UAV is controlled through an observer-based
controller on the remote side. Through the sensor, output
measurement data Yi(t) of the ith quadrotor UAV is sampled
and transmitted to the observer on the remote side. Then,
the control signals are computed at each observer-based
controller on the remote side and transmitted via a wireless
network channel to the zero-order holder (ZOH),which is set
on the quadrotor UAV at the local side as shown in Fig.2 at
every sampling period. Once the sampled data with control
commands arrives at the ZOH of the quadrotor UAV, the ZOH
will convert the sampled data into continuous control signals
and transmits them to the actuator to control the quadrotor
UAV. The control commands are stored in ZOH and kept until
new control signals are received to update.

For NCS, when signals are transmitted through thewireless
network channels, some hackers may attack NCS, which
can even make NCS unstable. Hence, we need to take
these malicious attacks into consideration in the NCS of
the large-scale quadrotor UAV team formation system via
a wireless network. In Fig.2, two malicious attack signals
γ ia(t) and γ

i
s (t) will interfere with the performance of both

the reference tracking and the state estimation of the NCS
of the large-scale quadrotor UAV team formation system
via wireless network channels, respectively. In this case,
the sensor and actuator would receive erroneous information
from the wireless network channel, and their corruption
could lead to the entire team formation system of large-scale
quadrotor UAVs being out of control. That is, the two
malicious attack signals γ ia(t) and γ

i
s (t) can be equivalently

referred to as the sensor attack signal and the actuator attack
signal in each quadrotor UAV NCS of team formation of
large-scale quadrotor UAVs. Then, the ith quadrotor UAV
NCS in (1) under actuator attack and sensor attack via the
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FIGURE 2. The structure of robust decentralized DNN-based H∞ attack-tolerant observer-based team formation NCS of
large-scale quadrotor UAVs. In the offline training phase, we need the stochastic augmented model of each quadrotor
UAV to produce Yi (t) with the worst-case external disturbance ˜̄v∗

i (t) and worst-case coupling ˜̄X∗

−i (t − τ−i ), and then

augmented Luenberger observer and estimation error model are employed to produce ˆ̄Xi (t) and X̃i (t) to obtain
X̄i (t) =

ˆ̄Xi (t) + X̃i (t) and to get formation tracking error ēi (t) = X̄i (t) − r̄i (t). Then, ēi (t) and X̃i (t) are transmitted into

DNN to train DNN by HJIE-reinforcement learning to output
∂V (X̃i (t),ēi (t),t)

∂[X̃ T
i (t) ēT

i (t) t ]T
to produce H∞ tracking control U∗

i (t) and

observer gain L∗

i ( ˆ̄Xi (t)) until HJIE-reinforcement learning converge as shown in Fig.3. In the online operation phase, the
output Yi (t) can be obtained from the real quadrotor UAV.

wireless network channel should be modified as follows:
·

Xi(t) = Fi(Xi(t))+ Gi(Xi(t))(Ui(t)+ γ ia(t))+ Di(Xi(t))vi(t)

+

∑
j∈Ni

Fij(Xi(t))Xj(t − τij(t))

Yi(t) = Ci(Xi(t))+ ni(t)+ Dis(Xi(t))γ
i
s (t),

for i, j = 1, . . . ,N ; i ̸= j (2)

where γ ia(t) denotes the actuator attack signal, γ is (t) denotes
the sensor attack signal and Dis(Xi(t)) denotes the effect
matrix of sensor attack signal γ is (t).
Assumption 1: Before the start of state estimation and

team formation tracking control process of quadrotor UAVs,
the system state Xi(t), actuator attack signal γ ia(t), sensor
attack signal γ is (t) and external disturbance vi(t) of the
ith quadrotor UAV in nonlinear NCS of team formation of
quadrotor UAVs are assumed to be zero, i.e., Xi(t) = 0,
γ ia(t) = 0, γ is (t) = 0 and vi(t) = 0, ∀t < 0, for i = 1, . . . ,N.
As the actuator attack γ ia(t) and the sensor attack γ is (t)

are not available, they cannot be estimated directly by the
traditional Luenberger observer. In order to estimate attack
signals γ ia(t) and γ

i
s (t), the novel dynamic smoothed models

of the attack signals γ ia(t) and γ
i
s (t) in [29] are employed

for avoiding their corruption on state estimation and tracking
control of quadrotor UAVs. By the novel dynamic smoothed
models of the attack signals γ ia(t) and γ

i
s (t), the state of the

system and the attack signals can be estimated by the tradi-
tional Luenberger observer simultaneously. Similar to [29],
the dynamic smoothedmodel is proposed formalicious attack
signals γ ia(t) and γ

i
s (t). Initially, by the right derivative of

the actuator attack signal
·

γ ia(t) = lim
τ→0

γ ia(t+τ )−γ
i
a(t)

τ
,we can

construct the following approximations:

·

γ ia(t) =
1
τ
(γ ia(t + τ )− γ

i
a(t))+ ϵ

i
1,a(t),

·

γ ia(t − τ ) =
1
τ
(γ ia(t)− γ

i
a(t − τ ))+ ϵ

i
2,a(t),

...
·

γ ia(t − kτ ) =
1
τ
(γ ia(t − (k − 1)τ )− γ ia(t − kτ ))+ ϵ

i
k,a(t)

(3)

where ϵi1,a(t), ϵ
i
2,a(t), . . . , ϵ

i
k,a(t) denote the derivative

approximation errors of γ̇ ia(t), γ̇
i
a(t − τ ), . . . γ̇ ia(t − kτ ),
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respectively, and τ > 0 denotes a small time interval and
k ∈ N denotes the number of delay samples. Moreover, the
future attack signal γ ia(t+τ ) could be extrapolated as follows:

γ ia(t + τ ) =
k∑

n=0

anγ ia(t − nτ )+ δ
i
a(t), (4)

where {an}kn=0 are extrapolation coefficients such as the
Lagrange extrapolation approach [35] or other extrapolation

approaches with
k∑

n=0
an = 1, δia(t) is the extrapolation error of

γ ia(t+τ ). By combing (3) and (4), the smoothed model of the
actuator attack signal γ ia(t) can be constructed as

·

0ia(t) = Aγa0
i
a(t)+ ϵ

i
a(t) (5)

where 0ia(t) = [γ ia
T (t), γ ia

T (t − τ ), . . . , γ ia
T (t −

kτ )]T , ϵia(t) = [(ϵi1,a(t)+ δ
i
a(t)/τ )

T , ϵi2,a
T
(t), . . . , ϵik,a

T
(t)]T

denotes the derivative approximation error and

Aγa =



_
a0
τ
Ina

a1
τ
Ina

a2
τ
Ina . . . ak

τ
Ina

1
τ
Ina −

1
τ
Ina . . . 0

0 1
τ
Ina −

1
τ
Ina . . . 0

. . .

. . .

. . .

0 . . . 0 1
τ
Ina −

1
τ
Ina


,

with
_
a0 = −1 + a0. Similar to the above procedure, the

smoothed model of the sensor attack signal γ is (t) can be
constructed as

·

0is(t) = Aγs0
i
s(t)+ ϵ

i
s(t) (6)

where0is(t) = [γ is
T (t), γ is

T (t−τ ), . . . , γ is
T (t−kτ )]T , ϵis(t) =

[(ϵi1,s(t)+ δ
i
s(t)/τ )

T , ϵi2,s
T
(t), . . . , ϵik,s

T
(t)]T , and

Aγ s =



_
b0
τ
Ina

b1
τ
Ina

b2
τ
Ina . . . bk

τ
Ina

1
τ
Ina −

1
τ
Ina . . . 0

0 1
τ
Ina −

1
τ
Ina . . . 0

. . .

. . .

. . .

0 . . . 0 1
τ
Ina −

1
τ
Ina


,

with
_
b0 = −1 + b0 and bi, i = 0, . . . , k are the

extrapolation coefficient with
k∑
i=0
bi = 1. Then, to estimate

Xi(t), γ ia(t), γ
i
s (t) simultaneously, we can augment these

states as X̄i(t) = [XTi (t) 0
iT
a (t) 0iTs (t)]T , and the correspond-

ing ith augmented quadrotor UAV NCS is given as follows:
·

X̄i(t) = F̄i(X̄i(t))+ Ḡi(X̄i(t))Ui(t)+ D̄i(X̄i(t))v̄i(t)

+

∑
j∈Ni

F̄ij(X̄i(t))X̄j(t − τij(t))

Yi(t) = C̄i(X̄i(t))+ ni(t),

for i, j = 1, . . . ,N ; i ̸= j (7)

where

F̄i(X̄i(t)) =

Fi(Xi(t))+ Ḡi(X̄i(t))Sa0ia(t)
Aiγ a0

i
a(t)

Aiγ s0
i
s(t)

 ,
Sa = [Ina, 0, . . . , 0],

Ḡi(X̄i(t)) =

Gi(Xi(t))
0
0

 ,
D̄i(X̄i(t)) =

Di(Xi(t)) 0 0
0 I 0
0 0 I

 ,
v̄i(t) =

 vi(t)
ϵia(t)
ϵis(t)

 , F̄ij(X̄i(t)) =
Fij(Xi(t)) 0 0

0 I 0
0 0 I

 ,
X̄j(t − τij(t)) =

[
XTj (t − τij(t)), 0, 0

]T
,

C̄i(X̄i(t)) = Ci(Xi(t))+ DisSs0
i
s(t), Ss = [Ins, 0, . . . , 0].

In the ith augmented quadrotor UAV NCS of the team
formation of large-scale quadrotor UAVs in (7), the attack
signals γ ia(t) and γ

i
s (t) are embedded in the augmented state

X̄i(t) so that their corruption on state estimation and control
can be avoided by the decentralized H∞ attack-tolerant
observer-based team formation tracking control strategy in
the sequel. Generally, it is not easy to ensure the observability
of the ith augmented nonlinear quadrotor UAV system in (7).
To facilitate observer design in the sequel, the assumption is
made as follows.
Assumption 2: Each augmented quadrotor UAV NCS in

(7) is observable.
According to [39], if we denote the augmented vector

Zi(t) =
[
Y Ti (t), Ẏ

T
i (t), · · · ,Y

(n)T (t)
]
and the corresponding

Hessian matrix Hi(X i(t)) =
∂2Zi(t)
∂2X i(t)

, then the ith augmented
quadrotor UAV NCS in (7) is observerable at the equilibrium
point X̄i(t) = 0, if there exist a constant ε > 0 and a constant
matrix T such that the absolute values of the leading principle
minors 11(X̄i(t)), · · · ,1i(X̄i(t)), · · · ,1n(X̄i(t)) satisfy with
the following conditions:

11(X̄i(t)) ≥ ε, · · ·1i(X̄i(t)) ≥ ε, · · ·1n(X̄i(t)) ≥ ε,∀X̄i(t)

where n is the dimension of X̄i(t) and the principle minor
1i(X̄i(t)) is the determinant of matrix by deleting the last n−i
columns and rows of Hessian matrix T Hi(X̄i(t)).
Then, under the above observerable assumption of each

augmented quadrotor UAV NCS in (7), the Luenberger
observer-based control law for each augmented quadrotor
UAV NCS in (7) is proposed as

˙̂
X̄i(t) = F̄i( ˆ̄Xi(t))+ Ḡi( ˆ̄Xi(t))Ui(t)

+ Li( ˆ̄Xi(t))
(
Yi(t)− Ŷi(t)

)
Ŷi(t) = C̄i( ˆ̄Xi(t)) (8)
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where ˆ̄Xi(t) is the estimated state of the ith augmented
quadrotor UAV NCS in (7), Ŷi(t) denotes the estimated
measurement output and Li( ˆ̄Xi(t)) is the nonlinear observer
gain.

In a practical application, we would like to control
the state Xi(t) of the ith quadrotor UAV to follow a
specified reference ri(t) to achieve some tasks, where
[r1(t), . . . , ri(t), . . . , rN (t)]T is specified as the desired
time-varying formation shape of N quadrotor UAVs by the
designer. Then, the reference tracking error dynamic of the ith
quadrotor UAV in the team formation is indicated as follows:

˙̄ei(t) = ˙̄Xi(t)− ˙̄ri(t)

= Fe,i(ēi(t), t)+ Ge,i(ēi(t), t)Ui(t)+ De,i(ēi(t), t)

× v̄i(t)+
∑
j∈Ni

Fe,ij(ēi(t), t)X̄j(t − τij(t)) (9)

where r̄i(t) = [ rTi (t) 0 0 ]T ,Fe,i(ēi(t), t) = F̄i(ēi(t) +

r̄i(t))−
·

r̄i(t),Ge,i(ēi(t), t) = Ḡi(ēi(t)+ r̄i(t)),De,i(ēi(t), t) =
D̄i(ēi(t)+ r̄i(t)),
Fe,ij(ēi(t), t) = F̄ij(ēi(t)+ r̄i(t))

C. PROBLEM FORMULATION
In practical applications under some situations, certain

tasks need to be achieved by multi-quadrotor UAVs.
Thence, the formation tracking control problem of quadrotor
UAVs should be solved. In this paper, we employed a
virtual leader-based team formation structure to address the
large-scale quadrotor UAVs team formation tracking control
design problem. In order to construct the desired time-varying
formation shape [r1(t), . . . , ri(t), . . . , rN (t)]T of large-scale
quadrotor UAVs, each quadrotor UAV should move a specific
formation offset ri(t) from the virtual leader, respectively,
and then the ith quadrotor UAV will follow the trajectory
of the virtual leader and move the formation offset ri(t) to
maintain the desired formation shape. Hence, the problem
of team formation tracking control for large-scale quadrotor
UAVs can be converted into N decentralized observer-based
reference tracking control problems for each quadrotor UAV.
In practice, malicious attacks may appear in the network
formation control system. Then, we employed the decentral-
ized nonlinear Luenberger observer in (8) to estimate each
quadrotor UAV’s state Xi(t) as well as malicious attacks
γ ia(t) and γ is (t) on the actuator and sensor, respectively.
If malicious attack signals on the actuator and sensor of
each quadrotor UAV can be effectively estimated, their
effects on the quadrotor UAV NCS can be reduced or even
eliminated by the compensation of observer-based reference
tracking control. On the other hand, intending to make each
quadrotor UAV track the desired trajectory ri(t) efficiently,
an attack-tolerant observer-based tracking controller Ui(t) =
Ki( ˆ̄Xi(t), ēi(t)) is needed based on ˆ̄Xi(t) and ēi(t). Since
the external disturbance, coupling effects from neighboring
quadrotor UAVs, and measurement noise during the team
flight process are unavoidable, too. The robust decentralized
H∞ attack-tolerant observer-based team formation tracking

control strategy of large-scale quadrotor UAVs NCS is
proposed to effectively minimize these undesired effects on
the observer-based reference tracking control performance of
each quadrotor UAV in the team formation system:

min
Ki( ˆ̄Xi(t), ēi(t)),

Li( ˆ̄Xi(t))

max
v̄i(t),
ni(t),

X̄j(t−τij(t))
∈£2[0,tf ]

E{
∫ tf
0 [(X̄i(t)− ˆ̄Xi(t))TQ1,i(X̄i(t)

−
ˆ̄Xi(t))+ēTi (t)Q2,iēi(t)

+UT
i (t)RiUi(t)−V (X̃i(0),ēi(0),0)]dt}

E{
∫ tf
0 [v̄Ti (t)v̄i(t)+n

T
i (t)ni(t)

+

∑
j∈Nj

X̄Tj (t−τij(t))X̄j(t−τij(t))]dt}

≤ ρ2i , for i = 1, . . . ,N (10)

where tf denotes the terminal time; Q1,i ≥ 0,
Q2,i ≥ 0 and Ri = RTi ≥ 0 are the weighting matrices
to trade-off between the estimation error, team formation
tracking error and control input. ρi denotes the prescribed
attenuation level; V (X̄i(0) − ˆ̄Xi(0), ēi(0), 0) represents the
effect of nonzero initial condition of the augmented system
in (7) to be extracted from the decentralized H∞ attack-
tolerant observer-based team formation tracking performance
in (10). The physical meaning of the robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control strategy is how to attenuate the worst-case effect
of external disturbance, measurement noise, and couplings
from other quadrotor UAVs on the state estimation error of
observer, team formation tracking error and control efforts
below a prescribed level ρ2i by specifying the observer-based

control gain Ki( ˆ̄Xi(t), ē(t)) and observer gain Li( ˆ̄Xi(t)) for
each quadrotor UAV from themean energy perspective. Since
the effect of all possible finite energy external disturbances,
interconnected couplings from neighboring quadrotor UAVs,
and measurement noise are minimized, the decentralized
observer and controller of each quadrotor UAV will be
achieved from the mean energy perspective, which will be
confirmed in the sequel.

III. DECENTRALIZED H∞ ATTACK-TOLERANT
OBSERVER-BASED TEAM FORMATION TRACKING
CONTROL OF LARGE-SCALE QUADROTOR UAV NCS

In this section, the decentralized H∞ attack-tolerant
observer-based team formation tracking control design of
quadrotor UAV NCS is investigated. First, we formulate the
state estimation error as X̃i(t) = X̄i(t) − ˆ̄Xi(t) and the
corresponding estimation error dynamic equation is derived
as follows:
·

X̃i(t) = F̃i(X̃i(t))+ G̃i(X̃i(t))Ui(t)− Li( ˆ̄Xi(t))C̃i(X̃i(t))

+

∑
j∈Ni

F̄ij(X̄i(t))X̄j(t − τij(t))

+

[
D̄i(X̄i(t)) − Li( ˆ̄Xi(t))

]
˜̄vi(t) (11)

where

F̃i(X̃i(t)) = F̄i(X̄i(t))− F̄i( ˆ̄Xi(t)), G̃i(X̃i(t)) = Ḡi(X̄i(t))

− Ḡi( ˆ̄Xi(t)), C̃i(X̃i(t)) = C̄i(X̄i(t))− C̄i( ˆ̄Xi(t)),
˜̄vi(t) = [v̄Ti (t) n

T
i (t)]

T
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Moreover, we can augment the state estimation error X̃i(t)
in (11) and team formation tracking error ēi(t) in (9), then the
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control strategy for large-scale quadrotor
UAV NCS can be rewritten as the following Nash minmax
game problem,

min
Ki( ˆ̄Xi(t),ēi(t))

Li( ˆ̄Xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{
∫ tf
0 [ ˜̄XTi (t)Q̄i

˜̄Xi(t)

+UT
i (t)RiUi(t)−V (

˜̄Xi(0),ēi(0),0)]dt}

E{
∫ tf
0 [ ˜̄vTi (t) ˜̄vi(t)

+
˜̄XT
−i(t−τ−i(t))

˜̄X−i(t−τ−i(t))]dt}

≤ ρ2i , for i = 1, . . . ,N (12)

where ˜̄Xi(t) =
[
X̃Ti (t) ē

T
i (t)

]T
, Q̄i = diag{Q1,i,Q2,i},

˜̄X−i(t − τ−i(t)) =
[
· · · X̄Tj (t − τij(t)) · · ·

]T
, j ∈ Ni

Thus, the robust decentralized H∞ attack-tolerant
observer-based team formation tracking control strategy for
large-scale quadrotor UAVs NCS in (10) is turned into the
robust decentralized H∞ stabilization strategy in (12) of the
following augmented time-varying error system of quadrotor
UAV team formation NCS

·

˜̄X i(t) =

[
F̃i(X̃i(t))− Li( ˆ̄Xi(t))C̃i(X̃i(t))

Fe,i(ēi(t), t)

]

+

[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]
Ui(t)

+

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]
˜̄vi(t)

+

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
˜̄X−i(t − τ−i(t)) (13)

where

F−i(X̄i(t)) =
[
· · · F̄ij(X̄i(t)) · · ·

]
,

Fe,−i(ēi(t), t) =
[
· · ·Fe,ij(ēi(t), t) · · ·

]
After the above operation, the complicated robust decen-

tralized H∞ attack-tolerant observer-based team formation
control design problem in (10) is converted into how to solve
min-max decentralized H∞ stabilization design problem in
(12) for the nonlinear coupled augmented system in (13) to
simplify the design procedure.

Nevertheless, it is still difficult to directly solve the
min-max game problem of the fractional payoff problem
function in (12). Since ˜̄vi(t) and ˜̄X−i(t − τ−i(t)) seek to max-
imize the payoff function, while other players Ki( ˆ̄Xi(t), ēi(t))
and Li( ˆ̄Xi(t)) seek to minimize the payoff function. Since the
players ˜̄vi(t) and ˜̄X−i(t − τ−i(t)) in the denominator ˜̄vi(t)are
independent of other players Ki( ˆ̄Xi(t), ēi(t)) and Li( ˆ̄Xi(t)).
We employed the indirect two-step method [25] in the
following to solve the min-max Nash game problem in (12).
Thus, the min-max H∞ game problem in (12) is equivalent
to the following nonzero sum Nash min-max quadratic game

problem [25], [28]

min
Ki( ˆ̄Xi(t),ēi(t))

Li( ˆ̄Xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{
∫ tf

0

˜̄XTi (t)Q̄i
˜̄Xi(t)

+ UT
i (t)RiUi(t)− ρ

2
i ( ˜̄v

T
i (t) ˜̄vi(t)+

˜̄XT−i(t − τ−i(t))

×
˜̄X−i(t − τ−i(t)))dt} ≤ E{V ( ˜̄Xi(0), ēi(0), 0)},

for i = 1, . . . ,N (14)

Then, the constrained min-max Nash quadratic game
problem in (14) could be solved by a two-step method as
follows. (i) At first, we solve the Nash min-max quadratic
game problem as follows:

Ji = min
Ki( ˆ̄Xi(t),ēi(t))

Li( ˆ̄Xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{
∫ tf

0

˜̄XTi (t)Q̄i
˜̄Xi(t)

+ UT
i (t)RiUi(t)− ρ

2
i ( ˜̄v

T
i (t) ˜̄vi(t)+

˜̄XT−i(t − τ−i(t))

×
˜̄X−i(t − τ−i(t)))dt},

for i = 1, . . . ,N (15)

(ii) In the second step, Ji ≤ E{V ( ˜̄Xi(0), ēi(0), 0)} needs to
be guaranteed.

According to the above two-step method, the following
theorem can solve the robust decentralized H∞ attack-
tolerant observer-based team formation tracking control
strategy in (12).
Theorem 1: (a) Given a prescribed attenuation level ρi

the robust decentralized H∞ attack-tolerant observer-based
team formation tracking control strategy for large-scale
quadrotor UAV NCS in (12) can be solved by the fol-
lowing H∞ control U∗i (t), observer gain L∗i (

ˆ̄Xi(t)) and
the worst-case external disturbances ˜̄v∗i (t), interconnected

coupling effects ˜̄X∗
−i(t − τ−i(t)):

˜̄v∗i (t) =
1

2ρ2i

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T ) (16)

U∗i (t) = K∗i (
ˆ̄Xi(t), ēi(t))

= −
1
2R
−1
i

[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T ) (17)

˜̄X∗−i(t − τ−i(t)) =
1

2ρ2i

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T ) (18)

L∗i (
ˆ̄Xi(t)) =

1
2

∂V (X̃i(t),ēi(t),t)
∂X̃i(t)∥∥∥∥ ∂V (X̃i(t),ēi(t),t)∂X̃i(t)

∥∥∥∥2
C̃T
i (X̃i(t)),

for i = 1, . . . ,N (19)
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FIGURE 3. The flow chart of the offline training phase for the robust decentralized DNN-based H∞ attack-tolerant
observer-based team formation tracking control scheme of the large-scale quadrotor UAV NCS via HJIE-reinforcement
learning algorithm in the remote side as shown in Fig.2. The detailed HJIE-reinforcement learning-based DNN architecture of
robust H∞ control in given in Fig.3.

where the Lyapunov function V (X̃i(t), ēi(t), t) ≥ 0 with
V (0, 0, t) = 0 is the solution of the observer/controller-
coupled HJIEi as follows:

HJIEi =
∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Fi(X̃i(t), ēi(t), t)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Di(X̃i(t), ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

× F̄−i( ˜̄Xi(t))(
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

−
1

16ρ2i

˜CT
i (X̃i(t))C̃i(X̃i(t)) = 0 (20)

where

∂V (X̃i(t), ēi(t), t)

∂[X̃Ti (t) ē
T
i (t) ]

T
=

 ∂V (X̃i(t),ēi(t),t)
∂X̃Ti (t)

∂V (X̃i(t),ēi(t),t)
∂ ēTi (t)

 ,

˜̄Gi(X̃i(t), ēi(t), t) =
[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]
,

˜̄Fi(X̃i(t), ēi(t), t) =
[
F̃i(X̃i(t))

Fe,i(ēi(t), t)

]
,

˜̄Di(X̃i(t), ēi(t), t)

=

[
D̄i(X̄i(t))D̄Ti (X̄i(t)) D̄i(X̄i(t))DTe,i(ēi(t), t)

De,i(ēi(t), t)D̄Ti (X̄i(t)) De,i(ēi(t), t)D
T
e,i(ēi(t), t)

]
,

F̄−i(X̃i(t), ēi(t), t)

=

[
F̄−i(X̄i(t))F̄T−i(X̄i(t)) F̄−i(X̄i(t))FTe,−i(ēi(t), t)

Fe,−i(ēi(t), t)F̄T−i(X̄i(t)) Fe,−i(ēi(t), t)F
T
e,−i(ēi(t), t)

]
(b) In each quadrotor UAV NCS, if external disturbances

v̄i(t) ∈ £2[0,∞), measurement noise ni(t) ∈ £2[0,∞) and
couplings ˜̄X−i(t − τij(t)) ∈ £2[0,∞), then the proposed
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control strategy of the ith quadrotor
UAV network subsystem will achieve the asymptotical
mean square team formation tracking and estimation ability,
i.e., E{UT

i (t)Ui(t)} → 0, E{X̃Ti (t)X̃i(t)} → 0 and
E{ēTi (t)ēi(t)} → 0 as t →∞.

Proof: Please refer to Appendix A. □
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FIGURE 4. HJIE-reinforcement learning-based DNN architecture of robust

H∞ control of Fig.3 with input X̃i (t) and ēi (t) to output
∂V (X̃i (t),ēi (t),t)

∂[X̃ T
i (t) ēT

i (t) ]T

and
∂V (X̃i (t),ēi (t),t)

∂t to solve HJIEi in (20) after the training by Adam
learning algorithm in (25)-(28) according to the error εi (θ i

p(t)) of HJIEi .

Remark 1: In the conventional H∞ observer-based con-
trol problems, the H∞ observer design and the H∞ controller
design are always separated based on their corresponding

strategies [28], [38], i.e., min
Li( ˆ̄Xi(t))

max
˜̄vi(t)

∈£2[0,tf ]

E{
∫ tf
0 X̃Ti (t)Q1,iX̃i(t)dt}

E{
∫ tf
0
˜̄vTi (t) ˜̄vi(t)dt}

and

min
Ki( ˆ̄Xi(t),ēi(t))

max
˜̄vi(t)

∈£2[0,tf ]

E{
∫ tf
0 ēTi (t)Q2,iēi(t)+UT

i (t)RiUi(t)]dt}

E{
∫ tf
0
˜̄vTi (t) ˜̄vi(t)dt}

, respec-

tively. In this situation, two coupled HJIEs are needed to be
solved, which will be more complicated than HJIEi in (20).
Remark 2: (i) From HJIEi = 0, i = 1, . . . ,N in (20), it is

seen that each HJIEi = 0 can be solved without the informa-
tion of other quadrotor UAVs, i.e., the robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control is achieved for each quadrotor UAV by the proposed
method in Theorem 1. (ii) Since Xj

(
t − τij

)
in (7) and (9) is the

coupling from the jth neigboring UAV in the team, based on
the robust decentralized H∞ attack-tolerant observer-based
team formation tracking control strategy in (10)(12), these
effects of couplings [X̃−i(t − τi− i(t)) = [· · ·X

T
j (t − τij) · · · ]

of neighboring UAVs in (12) are considered by the worst
[̂̄X∗−i(t− τi(t))] in (18), which is independent on τij but on the
system characteristic of the ith UAV as shown in Theorem 1.
Therefore, it does not exist constraint/assumptions on the
coupling time delay τij.

IV. ROBUST DECENTRALIZED H∞ ATTACK-TOLERANT
OBSERVER-BASED TEAM FORMATION TRACKING
CONTROL DESIGN OF LARGE-SCALE QUADROTOR UAV
NCS BASED ON HJIE-REINFORCEMENT DNN
For large-scale UAV NCS under external disturbance, mali-
cious attacks, coupling effects and output measurement noise
in (2), the robust decentralized H∞ attack-tolerant observer-
based team formation tracking control strategy in (12) is used
to minimize the worst-case effect of all possible external
disturbances v̄i(t) ∈ £2[0,∞), coupling effect ˜̄X−i(t −
τ−i(t)) ∈ £2[0,∞) and measurement noise ni(t) ∈ £2[0,∞)

on estimation error X̃i(t), tracking error ēi(t) and control input
Ui(t). From Theorem 1, in order to complete the decentral-
ized H∞ attack-tolerant observer-based formation tracking
control design for each quadrotor UAV of large-scale UAV
NCS, we have to solve the ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) ]

T and ∂V (X̃i(t),ēi(t),t)
∂t

from the complicated time-varying partial differential HJIEi
in (20) to obtain the optimal control gain K∗i (

ˆ̄Xi(t), ēi(t))

in (17), observer gain L∗i (
ˆ̄Xi(t)) in (19), and the worst-case

external disturbances v̄∗i (t), measurement noise n∗i (t) in

(16), and interconnected coupling effects ˜̄X∗
−i(t − τ−i(t))

in (18) for each quadrotor UAV in the team formation.
In this study, in order to solve HJIEi in (20) directly and
more efficiently for the decentralized H∞ attack-tolerant
observer-based team formation tracking control strategy of
each quadrotor UAV, an HJIE-reinforcement learning DNN
method is adopted to approach the theoretical solution
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) ]

T and ∂V (X̃i(t),ēi(t),t)
∂t in (20). The reason is that it

is very hard to calculate ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) ]

T and ∂V (X̃i(t),ēi(t),t)
∂t in

(20) for K∗i (
ˆ̄Xi(t), ēi(t)), L∗i (

ˆ̄Xi(t)), v̄∗i (t), n
∗
i (t), and

˜̄X∗
−i(t −

τ−i(t)) in (16)-(19) in the real-time decentralized H∞ attack-
tolerant observer-based team formation control process even
if the Lyapunov function V (X̃i(t), ēi(t), t) of HJIEi in (20) is
solved [27].

To simplify the design, we denote

∂V (X̃i(t), ēi(t), t)

∂[X̃Ti (t) ē
T
i (t) t]

T
=


∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
∂V (X̃i(t),ēi(t),t)

∂t

 (21)

Then, according to HJIEi = 0 in (20) and (21) can be
reformulated as

HJIEi = ˜̄XTi (t)Q̄i
˜̄Xi(t)− 1

4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

×

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
+

1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

×

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄Fi(X̃i(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )−
1

16ρ2i
C̃T
i (X̃i(t))C̃i(X̃i(t))

= 0, for i = 1, . . . ,N (22)

Thus, in this study, we employ an HJIE-reinforcement
learning-based DNN scheme to approach the partial differ-
ential ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T to obtain control input K∗i (
ˆ̄Xi(t), ēi(t)),
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observer gain L∗i (
ˆ̄Xi(t)), and the worst-case external distur-

bances v̄∗i (t), coupling effects ˜̄X∗
−i(t − τ−i(t)), measurement

noise n∗i (t). The training process of the deep learning
approach of HJIE-reinforcement is separated into an offline
training phase and an online operation phase. In the offline
training period as shown in Fig.3, since the actual state,
external disturbance,measurement noise, coupling effect, and
malicious attack signals are unavailable, we substitute the
worst-case v̄∗i (t), n

∗
i (t), and

˜̄X∗
−i(t − τ−i(t)) for the actual

v̄i(t), ni(t), and ˜̄X−i(t − τ−i(t)). This does not have any
effect on the decentralizedH∞ attack-tolerant observer-based
team formation tracking control strategy in (10) because this
strategy is designed based on the worst-case v̄∗i (t), n

∗
i (t), and

˜̄X∗
−i(t−τ−i(t)). Then, the Luenberger observer is proposed to

produce ˆ̄X i(t), and use the augmented state estimation error
model in (11) to produce the estimation error X̃i(t) to calculate
X̄i(t). Therefore, we can also obtain the tracking error ēi(t) by
X̄i(t) minus r̄i(t). After that, ˆ̄X i(t) and ēi(t) are employed as
inputs of DNN to produce ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε at the output of

DNN. Then, the output ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε of DNNwill be sent

back to calculate the value of HJIEi as follows:

HJIEi,ε = ˜̄XTi (t)Q̄i
˜̄Xi(t)− 1

4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε + ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
+

1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

[
˜̄Fi(X̃i(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε −
1

16ρ2i
C̃T
i (X̃i(t))C̃i(X̃i(t))

= εi(θ ip(t)), for i = 1, . . . ,N (23)

Next, εi(θ ip(t)) is sent back to train the DNN weighting
parameters until εi(θ ip(t)) converges to zero or below a small
threshold. Therefore, the output of the HJIE-reinforcement
DNN is expected to approximate ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T after the

offline training phase. Furthermore, the output of DNN
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε is taken to calculate (U∗i (t))ε, (L
∗
i (
ˆ̄Xi(t)))ε,

( ˜̄v∗i (t))ε, and ( ˜̄X∗
−i(t − τ−i(t)))ε as follows:

( ˜̄v∗i (t))ε =
1

2ρ2i

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )ε

(U∗i (t))ε = K∗i (
ˆ̄Xi(t), ēi(t))

= −
1
2R
−1
i

[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )ε

( ˜̄X∗−i(t − τ−i(t)))ε =
1

2ρ2i

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )ε

(L∗i (
ˆ̄Xi(t)))ε =

1
2

(
∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)ε∥∥∥∥( ∂V (X̃i(t),ēi(t),t)∂X̃i(t)
)ε

∥∥∥∥2
C̃T
i (X̃i(t)),

for i = 1, . . . ,N (24)

Then the H∞ control input, observer gain, and worst-case
disturbance are sent to our quadrotor UAV system in (7)
to generate the training data for the next training step.
Consequently, repeat the aboveDNN learning procedure until
εi(θ ip(t)) → 0 and ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε in (23) approach the

theoretical solution ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T ) in (22), then the offline

training is over, and we can switch the offline training phase
to the online operation phase.

In the online operation phase, as shown in Fig.2, the
observer can receive the output Yi(t) from each quadrotor
UAV on the local side with authentic external disturbance,
malicious attacks, coupling effects, measurement noise, and
U∗i (t). Hence, we do not need the worst-case v̄

∗
i (t), n

∗
i (t), and

˜̄X∗
−i(t − τ−i(t)) to produce Yi(t) from the stochastic model

of the ith quadrotor UAV. The other procedure to output
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T ) by DNN to produce control Ki( ˆ̄Xi(t), ēi(t))

and observer gain Li( ˆ̄Xi(t)) is in a similar way as the
offline training phase. In general, we don’t have to train
DNN by the reinforcement learning scheme again as in the
online operation phase. Nevertheless, in some situations,
if εi(θ ip(t)) > κ for a specified little value κ , we can start the
reinforcement learning-based Adam algorithm to continue
training without affecting the online operation process.

The DNN architecture of HJIE-reinforcement learning in
the robust decentralized H∞ attack-tolerant observer-based
team formation tracking control scheme is composed of an
input layer, multiple hidden layers, an output layer, and HJIE-
reinforcement learning, as shown in Fig.4. In hidden layers,
we adopted LeakyReLU instead of ReLU as an activation
function to avoid the dead neuron problem. If the input to
a ReLU neuron is negative, the output will be zero, which
means those neurons may never get updated. It can also avoid
the gradient-vanishing problem that other activation functions
such as hyperbolic tangent or sigmoid functions may have.
The LeakyReLU function is formulated as follows:

l(X (t)) =
{
µ1X (t), ifX (t) > 0
µ2X (t), ifX (t) ≤ 0

where µ1 and µ2 are some constants with µ1, µ2 ∈ (0,1].
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As shown in the offline training phase in Fig.3 at the remote
side, the error εi(θ ip(t)) of HJIE-reinforcement learning will
be sent back to update the weighting parameters of DNN
through Adam learning algorithm [34], [36],

θ ip(t) = θ
i
p−1(t)−

ι√
ν̂ip(t)+ζ

m̂ip(t), p = 1, . . . ,P (25)

m̂ip(t) =
mip(t)

1−αp1
, ν̂ip(t) =

νip(t)

1−αp2
(26)

mip(t) = α1m
i
p−1(t)+ (1− α1)▽i

p(t)

νip(t) = α2ν
i
p−1(t)+ (1− α2)▽i

p
2
(t) (27)

▽i
p(t) =

∂
∂θ ip(t)

√√√√√ 1
B

B∑
p=1

ε2i (θ
i
p(t))

=
∂

∂θ ip(t)

√√√√√ 1
B

B∑
p=1

HJIE2
i,ε (28)

where θ ip(t) represents the vector of DNN parameters in
the hidden layers at time t, ι represents the learning rate
of the learning algorithm, and P represents the number of
training steps at time t. ζ denotes a small number to prevent
a zero denominator. ν̂ip(t) and m̂ip(t) denote bias-corrected
estimators defined as (26). ▽i

p(t) is the gradient, that is,
the vector of the derivative of the root mean square error
εi(θ ip(t)) of HJIEi in (23) w.r.t. θ ip(t) in time step p at time
t. B is the batch size of the input data. α1, α2 ∈ [0, 1] in
(27) denotes the degree of influence of the previous impact
on the current direction. The designer specifies these two
parameters to prevent DNN parameters from being captured
by local minima [34], [36]. Moreover, if the current gradient
▽i
p(t) direction is the same as the accumulated gradient, then

the gradient will conduct a larger update. Conversely, it will
conduct a smaller update. αp1 and αp2 are the p-th power of
α1 and α2, respectively.mip(t) and ν

i
p(t) in (27) are the moving

average of the gradient and the squared gradient of ▽i
p(t) at

time t, respectivly. The HJIE-reinforcement learning-based
Adam algorithm combines the advantages of momentum and
RMSProp [36] and is an adaptive gradient descent algorithm.
This method is easy to use and does not require a lot of
memory. Overall, it is a robust optimizer and suitable for
non-convex optimization problems in the field of Machine
Learning and Deep Learning [37].
Remark 3: If the time steps and the number of hidden

neurons are large enough, then the Adam learning algorithm
is employed for updating the weighted parameter vector θ ip(t)
of DNN can converge to a globally optimal θ i∗p (t)with a linear
convergence rate as p→∞ in (25)-(28). It has been proven
in [34].

The flow chart of the offline training phase for the
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control scheme of large-scale quadrotor
UAV NCS via HJIE-reinforcement Adam learning algorithm
(25)-(28) is described as follows: The worst-caseU∗i (t), ˜̄v

∗
i (t),

and ˜̄X∗
−i(t − τ−i(t)) are fed back to the model of the ith

quadrotor UAV in the team formation to produce Yi(t). Then
Yi(t) is inputted to the augmented Luenberger observer in
(8) to produce ˆ̄Xi(t) with observer gain L∗i (

ˆ̄Xi(t)). Further

U∗i (t), ˜̄v
∗
i (t), L

∗
i (
ˆ̄Xi(t)), and ˜̄X∗−i(t − τij(t)) are also inputted

to the estimation error system in (11) to produce X̃i(t).
After that, we can acquire X̄i(t) = ˆ̄Xi(t) + X̃i(t) to get
the tracking error by ēi(t) = X̄i(t) − r̄i(t). Eventually, the
estimation error X̃i(t) and reference tracking error ēi(t) are
both inputted to DNN to output ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T to solve the

HJIEi (Please see Fig.4 in detail). The error εi(θ ip(t)) of HJIEi
will be back-propagated to train DNN byHJIE-reinforcement
Adam learning algorithm (25)-(28). In the online operation
phase, ˜̄v∗i (t) and ˜̄X∗

−i(t − τ−i(t)) are replaced by the real

external disturbance ˜̄vi(t) and coupling ˜̄X−i(t − τ−i(t)) of
the real ith quadrotor UAV. The remote side only needs
to receive Yi(t) from the ith quadrotor UAV on the local
side and sent U∗i (t) to the ith quadrotor UAV as shown in
Fig.2. In general, the reinforcement learning-based Adam
algorithm is stopped during the online operation phase.
However, when

∣∣∣εi(θ ip(t))∣∣∣ > κ for prescribed small κ ,
the reinforcement learning-based Adam algorithm can be
performed to enhance DNN performance without effect on
the observer and tracking controller in the online operation
phase.

When the error εi(θ ip(t)) approaches to zero using the HJIE-
reinforcement-based Adam learning algorithm in (25)-(28),
it can be proven that the output ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε in (23) of

DNN can approach ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T ) of HJIEi in (22) using

the following theorem.
Theorem 2: If εi(θ ip(t)) → 0 in (23) by HJIE-

reinforcement learning-based Adam algorithm in (25)-(28),
then ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε will approach to ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T in

(20), i.e.,the proposed HJIE-reinforcement learning DNN
decentralized H∞ attack-tolerant observer-based team for-
mation tracking control scheme via Adam learning algorithm
(25)-(28) will approach to the theoretical decentralized
H∞ attack-tolerant observer-based team formation tracking
control design (16)-(19) of large-scale quadrotor UAV NCS
in Theorem 1.

Proof: Please refer to Appendix B. □
Remark 4: (i) In Theorem 2, we can obtain the output

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T by training DNN with the Adam learning

algorithm of HJIE-reinforcement to calculate the H∞ control
U∗i (t) and H∞ observer gain L∗i (

ˆ̃Xi(t)) if the error εi(θ ip(t))
of HJIEε,i in (23) approaches to zero in the offline training
phase, as shown in Fig.3. Nevertheless, for the practical
design, if

∣∣∣ε(θ ip(t))∣∣∣ ≤ κ for a little prescribed κ , we will
stop the reinforcement learning-based Adam algorithm
in the offline training phase and switch to the online
operation phase. (ii) The existing neural network-based
reference tracking control results always need to update their
weightings parameters at very time instant [40], i.e., the
conventional adaptive neural network control schemes need
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a recursine algorithm to update their parameters to achieve
a desired reference tracking performance. However, after
the off-line training by deep Adam learning in (25)-(28),
the proposed DNN-based H∞ attack-tolerant observer-
based team formation network tracking control can achieve
the desired reference tracking control without training
again.
Remark 5: Yi(t) can be obtained through the actual

quadrotor UAV system in (2) with real vi(t), coupling effect
Xj(t − τij(t)) and malicious attacks by the decentralized
H∞ attack-tolerant observer-based team formation tracking
control U∗i (t) in the online operation phase as shown in Fig.2.
We take X̃i(t) and ēi(t) as input in a well-trained DNN to
obtain ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T to calculate U∗i (t) and L∗i (
ˆ̄Xi(t)) for

the robust decentralized H∞ attack-tolerant observer-based
team formation tracking control of the large-scale quadrotor
UAV NCS. However, the weighting parameter θ ip(t) of the
DNN can still be updated by the HJIE-reinforced Adam
learning algorithm in (25)-(28) if

∣∣∣ε(θ ip(t))∣∣∣ > κ during the
online operation phase, without any impact on the HJIE-
reinforcement learning-based DNN observer-based team
formation tracking control scheme of large-scale quadrotor
UAV NCS.

The state information is transmitted through the wireless
network channel in the form of data packets in practical
applications. Therefore, the quadrotor UAV formationNCS in
(2) can be reformulated by the nonlinear sampled-data system
as follows:

Si :
Xi(t+h)−Xi(t)

h = Fi(Xi(t))+ Gi(Xi(t))(Ui(t)

+ γ ia(t))+ Di(Xi(t))vi(t)

+

∑
j∈Ni

Fij(Xi(t))Xj(t − τij(t))

Yi(t) = Ci(Xi(t))+ ni(t)+ Dis(t)γ
i
s (t) (29)

where h is the sampling time. Or we can rewrite (29) as
follows:

Si : Xi(t + h) = (Xi(t)+ hFi(Xi(t)))+ hGi(Xi(t))(Ui(t)

+ γ ia(t))+ hDi(Xi(t))vi(t)

+ h
∑
j∈Ni

Fij(Xi(t))Xj(t − τij(t))

Yi(t) = Ci(Xi(t))+ ni(t)+ Dis(t)γ
i
s (t) (30)

From smoothed models of actuator malicious attacks in (5)
and the sensor malicious attacks in (6), the augmented system
(7) can be reformulated as follows:

X̄i(t + h) = (X̄i(t)+ hF̄i(X̄i(t)))+ hḠi(X̄i(t))Ui(t)

+ hD̄i(X̄i(t))v̄i(t)

+ h
∑
j∈Ni

F̄ij(X̄i(t))X̄j(t − τij(t))

Yi(t) = C̄i(X̄i(t))+ ni(t) (31)

In this case, the observer dynamic model in (8) is
reformulated as

ˆ̄Xi(t + h) = ( ˆ̄Xi(t)+ hF̄i( ˆ̄Xi(t))+ hḠi( ˆ̄Xi(t))Ui(t)

+ hLi( ˆ̄Xi(t))
(
Yi(t)− Ŷi(t)

)
Ŷi(t) = C̄i( ˆ̄Xi(t)) (32)

Correspondingly, the tracking error dynamic equation in
(9) and the state estimation error dynamic equation in (11)
are reformulated as follows:

ēi(t + h) = (e(t)+ hFe,i(ēi(t), t))+ hGe,i(ēi(t), t)Ui(t)

+ hDe,i(ēi(t), t)v̄i(t)

+ h
∑
j∈Ni

Fe,ij(ēi(t), t)X̄j(t − τij(t)) (33)

and

X̃i(t + h) = (X̃i(t)+ hF̃i(X̃i(t)))+ hG̃i(X̃i(t))Ui(t)

− hLi( ˆ̄Xi(t))C̃i(X̃i(t))

+ h
∑
j∈Ni

F̄ij(X̄i(t))X̄j(t − τij(t))

+ h
[
D̄i(X̄i(t)) − Li( ˆ̄Xi(t))

]
˜̄vi(t) (34)

respectively.
The above sampled-data quadrotor UAV systems will

be employed for the simulation of the reinforcement
learning-based DNN robust decentralizedH∞ attack-tolerant
observer-based team formation tracking of large-scale
quadrotor UAVs network control strategy in the following
section. Before the simulation example is given to illustrate
the design procedure and to confirm the performance of
proposed method, the pseudo-code of the proposed algorithm
is provided for better understand of the proposed method.

V. SIMULATION RESULTS
In order to validate the effectiveness of the proposed

reinforcement learning-based DNN robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control of large-scale quadrotor UAV NCS under external
disturbances, malicious attacks, measurement noises, and
couplings, a simulation example of a team formation NCS
of 25 quadrotor UAVs under external disturbances, malicious
attack, measurement noises, and couplings is provided in this
section. The parameters of the ith quadrotor UAV in NCS are
given as [33]

m = 2 (kg), g = 9.8 (m/s2), Jx = Jy = Jz = 0.1(Ns2/rad),

Kx = Ky = Kz = 0.01(Ns/m),

Kφ = Kθ = Kψ = 0.01 (Ns/m).

The weighting matrices are set as Q1,i = 0.02diag {I20},
Q2,i = 0.01diag {I20} and R = 10−4I4 in the robust decen-
tralized H∞ attack-tolerant observer-based team formation
tracking control strategy in (10).
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Algorithm 1 HJIE-Embedded DNN-Based H∞ Observer-
Based Decentralized Team Formation Reference Tracking
Control of Each UAV
Input: t, Q̄i,Ri, ρi, κ,P
1: Yi(t)←Measure the output of the i-th UAV by sensors.
2: ˆ̄Xi(t) ← Estimate the augmented states of the i-th UAV

using Luenberger H∞ observer in Eq.(3).
3: ˜̄Xi(t) ← Compute the estimation error by estimation

error dynamic system with Yi(t) and ˆ̄Xi(t) in Eq.(11).
4: X̄i(t), ēi(t)← Compute the states and the tracking errors

of the i-th UAV with ˆ̄Xi(t), ˜̄Xi(t), r̄i(t), ˙̄ri(t).
5: ˜̄XTi (t)Q̄i

˜̄Xi(t), ˜̄Gi(X̃i(t), ēi(t), t), ˜̄Fi(X̃i(t), ēi(t), t),
˜̄Di(X̃i(t), ēi(t), t), C̄i(X̃i(t)) ← Compute the parameters
which will be imported to HJIEi,ϵ in Eq.(23).

6: ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t),ē

T
i (t),t]

T ) ← Obtain the partial differential of a

Lyapunov function using DNN with the inputs, X̃i(t) and
ēi(t).

7: HJIEi,ϵ ← Calculate HJIEi,ϵ using Eq.(23) with
˜̄XTi (t)Q̄i

˜̄Xi(t), ˜̄Gi(X̃i(t), ēi(t), t), ˜̄Fi(X̃i(t), ēi(t), t),
˜̄Di(X̃i(t), ēi(t), t), C̄i(X̃i(t)) and ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t),ē
T
i (t),t]

T )

8: if HJIEi,ϵ −0>κ then
9: while p ≤ P do
10: Train the DNN using Adam optimizer in Eq.(25)

-Eq.(28) by taking X̃i(t) and ēi(t) as inputs once,
and then calculate HJIEi,ϵ using its outputs.

11: if HJIEi,ϵ −0 ≤ κ then
12: break
13: end if
14: end while
15: end if
16: (U∗i (t))ϵ, (L

∗
i (
ˆ̄Xi(t)))ϵ ← Compute the control gain and

the observer gain in Eq.(24).
17: Send (U∗i (t))ϵ to the controller.

18: Send (L∗i (
ˆ̄Xi(t)))ϵ to the observer and the estimation error

dynamic system.
19: ( ˜̄v∗i (t))i,ϵ, (

˜̄X∗
−i(t − τ−i(t)))ϵ ← Compute the disturbance

and the coupling of the worst-case in Eq.(24).
20: Send ( ˜̄v∗i (t))i,ϵ, (

˜̄X∗
−i(t − τ−i(t)))ϵ to the estimation error

dynamic system.

Remark 6: In general, the poor state estimation will
deteriorate the observer-based tracking performance. Con-
sequently, the weighting on the state estimation error should
be more significant than the weighting on the tracking error.
Therefore Q1,i is double of Qi,2. Further, in order to achieve a
better reference team formation tracking performance, more
control effort is needed for each UAV, therefore, a more
weighting R is needed.

The sampling time h is set as 0.01s and the terminal time tf
is 30s. The quadrotor UAVNCSmay suffer interference from
external disturbances in the system plant and measurement
noise in the measurement output. Therefore, the external

TABLE 1. The reference ri (t) of 25 quadrotor UAVs.

disturbances are given in the following:

vi(t) = 0.1[sin(0.5t), sin(0.5t), cos(0.5t),

cos(0.5t), sin(0.5t), sin(0.5t)]T

and the measurement noise n(t) .= N (0, 0.1I20). Since there
are only four control inputs in Ui(t) for each quadrotor UAV
in (1), the desired position and the yaw angle for the reference
input ri(t) of each quadrotor UAV are given in Table 1.
Furthermore, the attitude of the quadrotor UAV depends

on its corresponding position information. Therefore, the
reference attitudes of φi and θi are given as follows:

φi = sin−1
(

m
F(t)

(ẍi sinψi − ÿi cosψi)
)
,

θi = tan−1
(

1
z̈i + g

(ẍi cosψi + ÿi sinψi)
)

where ẍi, ÿi, z̈i are the double derivative of xi, yi, zi represent-
ing acceleration, respectively.

From the perspective of the network, the observation of
the position will be affected by the sensor attack γ is (t) via
the wireless network channel. On the other hand, the actuator
attack signal γ ia(t) will be transmitted to the actuator with
control signals to destroy the tracking control of the quadrotor
UAV. To construct the smoothed model in (5) and (6) for
the estimation of the actuator attack signal γ ia(t) and the
sensor attack signal γ is (t) as shown in Fig.5, the extrapolation
coefficients are specified, respectively, as follows:

a1 = 0.9, a2 = 0.06, a3 = 0.03, a4 = 0.01
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b1 = 0.96, b2 = 0.02, b3 = 0.01, b4 = 0.01

Due to a large-scale team of quadrotor UAVs among
25-quadrotor-UAV NCS, some interconnected coupling
effects will occur, such as trailing vortex couplings of
neighboring quadrotor UAVs. The strength of the trailing
vortex couplings is given below to affect the shape of the
quadrotor UAV:

Fij(Xi(t))Xj(t − τij(t))

= [0, 0.01x i2(t)x
j
2(t), 0, 0, 0,

0.01zi2(t)z
j
2(t), 0, 0, 0, 0, 0, 0]

T , j ∈ Ni

where Ni denotes the neighboring quadrotor UAVs of the ith
quadrotor UAV.

According to Theorem 1, to achieve the decentralized
H∞ attack-tolerant observer-based team formation tracking
control for 25 quadrotor UAVs must solve the following
25 independent HJIEi to obtain the decentralized H∞ team
formation controlU∗i (t) in (17) and observer gain L

∗
i (
ˆ̄Xi(t)) in

(19) to track the desired reference path and attenuate the effect
of unknown external disturbance, malicious attacks, coupling
from neighboring quadrotor UAV and measurement noise.

HJIEi =
∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Fi(X̃i(t), ēi(t), t)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Di(X̃i(t), ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

× F̄−i( ˜̄Xi(t))(
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

−
1

16ρ2i

˜CT
i (X̃i(t))C̃i(X̃i(t)) = 0, i = 1, 2, . . . , 25.

(35)

It is nearly impossible to solve ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T analytically or

numerically for U∗i (t) in (17) and L∗i (
ˆ̄Xi(t)) in (19) directly,

since HJIEi in (35) is a highly nonlinear time-varying partial
differential equation. Thus, the HJIE-reinforcement DNN-
based observer-based tracking control scheme in Fig.2 is
proposed to be derived from quadrotor UAV sample data
systems in (29)-(34) with sampling time h = 0.01 in Fig.3 is
adopted to solve ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T for U∗i (t), ˜̄v
∗
i (t) and

˜̄X∗
−i(t −

τ−i(t)) to accomplish the robust decentralized H∞ observer-
based team formation control design of 25 quadrotor UAVs.
In the flow chart in Fig.3, the HJIE-reinforcement DNN is
trained offline via the Adam learning algorithm in (25)-(28)
by the approximation error HJIEi,ε = εi(θ ip(t)) in (23).In
this case, the robust decentralizedH∞ control input (U∗i (t))ε,

observer gain (L∗i (
ˆ̄Xi(t)))ε, worst-case effects (v̄∗i (t))ε and

FIGURE 5. (a) The square actuator attack signal on each quadrotor UAV in
the team formation. (b)the cosine-type sensor attack signal on each
quadrotor UAV in the team formation.

FIGURE 6. (a) The square actuator attack signal and its estimation of
each quadrotor UAV.(b)the cosine-type sensor attack signal and its
estimation of each quadrotor UAV.

( ˜̄X∗
−i(t − τ−i(t)))ε can be obtained, and they are sent to the

quadrotor UAV system in (7) to generate the next state for the
next training epoch.

In the simulation example, the HJIE-reinforcement DNN
architecture in Fig.4 contains an input layer with input X̃i(t),
ēi(t), four hidden layers, an output layer, and a feedback
HJIE layer for reinforcement learning. Each hidden layer
is sequentially with 256, 128, 32 and 12 neurons. The
parameters of the Adam learning algorithm in (25)-(28) are
specified as α1 = 0.9, α2 = 0.999, ζ = 10−7, and
ι = 10−3. The training steps are specified as P = 30 and
batch size B is 800. In the offline training phase as shown in
Fig.4, we randomly select a set of training inputs, which are
20000 initial tracking errors ēi(0) and estimation errors X̃i(0)
around the origin X (0).

The simulation results are shown in Figs.7-12. Since the
effect of actuator attack signals is more like the actuator fault
and the square actuator fault has been widely considered
in simulations, consequently the square wave in Fig.5
is considered as attack signal on actuator. On the other
hand, sensor always suffer from high frequency attack
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FIGURE 7. The flight trajectories of NCS team formation of 25 quadrotor
UAVs using the proposed HJIE-reinforcement DNN-based H∞

attack-tolerant observer-based team formation tracking control scheme
are given based on the flight/hardware-in-the loop results.

FIGURE 8. The position/velocity trajectories of 25 quadrotor UAVs using
the proposed robust decentralized H∞ attack-tolerant observer-based
team formation control strategy via HJIE-reinforcement learning-based
DNN approach.

signals, therefore high frequency sinusoidal signal in Fig.5
is considered as sensor attack signal in the simulation. The
malicious attack signals γ ia(t) and γ

i
s (t) on the ith quadrotor

UAV and their estimation are shown in Fig.6. It can be
shown in Fig.7 that the team of 25 quadrotor UAVs is
capable of tracking a spiral trajectory formation along the
virtual leader reference trajectory ri(t). In Figs.8-9, the
trajectories of the large-scale quadrotor UAV NCS can track
the reference trajectories by the HJIE-reinforcement DNN-
based decentralized H∞ attack-tolerant observer-based team
formation tracking control approach. The control inputs of the
1st quadrotor UAV are shown in Fig.10. Additionally, using
the estimation of malicious attack signals, the total thrust

FIGURE 9. The angular/angular velocity trajectories of 25 quadrotor UAVs
using the proposed robust decentralized H∞ attack-tolerant
observer-based team formation control strategy via HJIE-reinforcement
learning-based DNN approach.

FIGURE 10. The control inputs of the 1st quadrotor UAV using the
proposed robust decentralized H∞ attack-tolerant observer-based team
formation control strategy via HJIE-reinforcement learning-based DNN
approach.

F i(t) which automatically changes its control amplitude to
compensate for malicious attacks on the NCS actuator of the
1st quadrotor UAV is shown in Fig.10. On the other hand,
since output measurement Yi(t) of the ith quadrotor UAV
is transmitted to the observer on the remote side directly
via the wireless network channel, it will be affected by the
sensor attack signal γ is (t). Then, the sensor attack signal
γ is (t) will affect the observer state X̃i(t) which in turn affects
Ui(t). In Figs.11-12, the estimation error of 1st quadrotor
UAV quickly approaches to zero, which means that accurate
estimation can be efficiently achieved by the proposed
HJIE-reinforcement DNN-based decentralized H∞ attack-
tolerant observer-based tracking control approach under
external disturbance, malicious attacks, coupling effects,
and measurement noise. Robust decentralized H∞ team
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FIGURE 11. Estimation errors of the position/velocity of the 1st
quadrotor UAV using the proposed robust decentralized H∞

attack-tolerant observer-based team formation control strategy via
HJIE-reinforcement learning-based DNN approach.

FIGURE 12. Estimation errors of the attitude/angular velocity of the 1st
quadrotor UAV using the proposed robust decentralized H∞

attack-tolerant observer-based team formation control strategy via
HJIE-reinforcement learning-based DNN approach.

formation tracking control of the large-scale UAV network
system by the T-S fuzzy controller in [9] is carried out for
performance comparison with the proposed method and the
results are also shown in Fig.13. However, the T-S fuzzy
method needs to interpolate 128 local linearizedUAV systems
to approximate a nonlinear UAV system. In order to improve
the formation tracking performance, the number of fuzzy
rules must be increased. For a highly nonlinear system such
as a quadrotor UAV, a large number of 128× 128 locally
linearized observer-based controllers need to be interpolated
by fuzzy bases and need to be computed at every time instant
for the observer-based control signal, which will increase
the computational complexity dramatically. Furthermore,

FIGURE 13. The flight trajectories of NCS formation of 25 quadrotor UAVs
by the decentralized H∞ T-S fuzzy team formation tracking control
scheme in [9] are given based on the flight/hardware-in-the loop results.

the T-S fuzzy interpolation solution of the HJIE is based
on a quadratic Lyapunov function, resulting in a more
conservative solution of the nonlinear HJIE. The average
attenuation level of the 25-quadrotor-UAV ρ ≈ 2.3112 by
the decentralized H∞ fuzzy team formation control in [9] is
poor than the proposed method which is calculated as ρ ≈ 2.

VI. CONCLUSION
In this paper, an HJIE-reinforcement learning-based DNN
robust decentralized H∞ attack-tolerant observer-based team
formation tracking control strategy is proposed to deal with a
large-scale quadrotor UAV NCS under external disturbance,
measurement noise, malicious attack, and coupling effect.
First, a dynamic model of the position and attitude of
the quadrotor UAV NCS under malicious attack, external
disturbance, measurement noise, and coupling has been
constructed. Then, with the aid of the virtual leader team
formation structure, the large-scale quadrotor UAV team
formation tracking control problem can be reformulated as
the decentralized H∞ attack-tolerant observer-based team
formation tracking control design problem of large-scale
quadrotor UAVs. To estimate the state variables of the system
and the malicious attack signals on the sensors and actuators
in the large-scale quadrotor UAVNCS, these malicious attack
signals are augmented with each UAVNCS through a smooth
dynamicmodel to simplify the estimation of the attack signals
and state of the system. Through the smooth dynamic model
embedded in the system model of the quadrotor UAV NCS,
we can avoid its corruption and efficiently estimate the
augmented system state by a traditional nonlinear Lunberger
observer. Furthermore, by the proposed robust decentralized
H∞ attack-tolerant observer-based team formation tracking
control strategy, the decentralized observer-based controller
of each UAV can effectively attenuate the worst-case effect of
external disturbance, measurement noise, malicious attacks,
and couplings from other UAVs on the state estimation and
reference team formation control of large-scale quadrotor
UAVs NCS to achieve robust H∞ state estimation perfor-
mance and reference tracking performance of each quadrotor
UAV in the team formation. To address the difficulties
in solving the HJIEi of each quadrotor UAV for robust
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decentralizedH∞ attack-tolerant observer-based team forma-
tion tracking control, an HJIE-reinforcement learning DNN
observer-based control scheme has been proposed in Fig.3.
Using the output ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T of DNN, H∞ control input,

the worst-case augmented external disturbance, and coupling
are sent back to the ith quadrotor UAV model to produce
the next system output to start a new training period without
affecting H∞ team formation tracking performance. Then,
a DNN based on HJIE-reinforcement learning is used as a
dynamic model-based learning scheme with great potential
to solve nonlinear partial differential HJIEi for complicated
decentralizedH∞ attack-tolerant observer-based team forma-
tion tracking control design problems of large-scale quadrotor
UAVs. We have also proven that if the reinforcement
learning-based DNN Adam algorithm makes the HJIEi error
εi(θ ip(t)) approach to zero, the proposed HJIE-reinforcement
learning-based DNN robust decentralizedH∞ attack-tolerant
observer-based team formation tracking control scheme can
approach to the theoretical robust decentralized H∞ attack-
tolerant observer-based team formation tracking control
performance of large-scale quadrotor UAVs. Eventually,
the simulation example of decentralized H∞ attack-tolerant
observer-based team formation tracking control of 25 quadro-
tor UAVs NCS is also given to validate the effectiveness of
the proposed method with comparison. The flight/hardware-
in-loop results are very important to further demonstrate the
practical effectiveness of the proposed method and will be the
future work of my lab.

APPENDIX A
PROOF OF THEOREM 1
(a) Through the two-step procedure of the indirect method,
we should first solve the Nash min-max quadratic game prob-
lem in (15) in step (i) to guarantee Ji ≤ E{V (X̃i(0), ēi(0), 0)}
in step (ii). Thus, Theorem 1 can be proved as follows:

From (15), we can obtain

Ji = min
Ki( ˆ̄Xi(t),ēi(t)),

Li( ˆ̄xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{−V (X̃i(tf ), ēi(tf ), tf )

+ V (X̃i(0), ēi(0), 0)+
∫ tf

0
( ˜̄XTi (t)Q̄i

˜̄Xi(t)

+ Ui(t)RiUi(t)− ρ2i (
˜̄XT−i(t − τ−i(t))

˜̄X−i(t − τ−i(t)))

+ ˜̄vi(t) ˜̄vi(t))+ d
dtV (X̃i(t), ēi(t), t))dt},

for i = 1, . . . ,N (36)

By chain rule from the nonlinear augmented time-varying
system in (13), we have

dV (X̃i(t), ēi(t), t))
dt

=
∂V (X̃i(t), ēi(t), t)

∂t

+ (
∂V (X̃i(t), ēi(t), t)

∂[X̃Ti (t) ē
T
i (t)]

T
)T

× (

[
F̃i(X̃i(t))− Li( ˆ̄Xi(t))C̃i(X̃i(t))

Fe,i(ēi(t), t)

]

+

[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]
Ui(t)

+

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]
˜̄vTi (t)

+

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
˜̄X−i(t − τ−i(t))),

for i = 1, . . . ,N (37)

Substituting (37) and ˜̄Gi(X̃i(t), ēi(t), t) =
[
G̃i(X̃i(t))

Ge,i(ēi(t), t)

]
into

(36), we have

Ji = min
Ki( ˆ̄Xi(t),ēi(t)),

Li( ˆ̄xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{−V (X̃i(tf ), ēi(tf ), tf )

+ V (X̃i(0), ēi(0), 0)+
∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t

+
˜̄XTi (t)Q̄i

˜̄Xi(t)+ Ui(t)RiUi(t)+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

×

[
F̃i(X̃i(t))− Li(X̂i(t))(C̃i(X̃i(t)))

Fe,i(ēi(t), t)

]
+ ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)Ui(t)

+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]

× ˜̄vi(t)+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
×
˜̄X−i(t − τ−i(t)− ρ2i ˜̄v

T
i (t) ˜̄vi(t)

− ρ2i
˜̄X−i(t − τ−i(t) ˜̄X−i(t − τ−i(t))dt},

for i = 1, . . . ,N (38)

By the completing square method, we get

Ji = min
Ki( ˆ̄Xi(t),ēi(t)),

Li( ˆ̄xi(t))

max
˜̄vi(t),

˜̄X−i(t−τ−i(t))
∈£2[0,tf ]

E{−V (X̃i(tf ), ēi(tf ), tf )

+ V (X̃i(0), ēi(0), 0)+
∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t

+
˜̄XTi (t)Q̄i

˜̄Xi(t)− 1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

×
˜̄Gi(X̃i(t), ēi(t), t)R

−1
i
˜̄GTi (X̃i(t), ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )+ ( 12
˜̄GTi (X̃i(t), ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )+ RiUi(t))
TR−1i

× ( 12
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ RiUi(t))+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

×

[
F̃i(X̃i(t))− Li( ˆ̄Xi(t))(C̃i(X̃i(t)))

Fe,i(ēi(t), t)

]
+

1
4ρ2i
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× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]

×

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

−
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
×

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )− ( 1
2ρ2i

×

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

− ρi ˜̄vi(t))T × ( 1
2ρ2i

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )− ρi ˜̄vi(t))

− ( 1
2ρ2i

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

− ρi
˜̄X−i(t − τ−i))T ( 1

2ρ2i

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t)]

T )− ρi
˜̄X−i(t − τ−i)))dt},

for i = 1, . . . ,N (39)

In (39) the optimal U∗i (t) = K∗i (
ˆ̄Xi(t), ēi(t)) in (17), the

worst-case ˜̄v∗i (t) in (16) and ˜̄X∗
−i(t − τ−i(t)) in (18) make

the square terms involved in (39) become zero to achieve
min

Ui(t)=Ki( ˆ̄Xi(t),ēi(t))
max

˜̄vi(t), ˜̄X−i(t−τ−i(t))
. Then we can get

Ji = min
Li( ˆ̄xi(t))

E{−V (X̃i(tf ), ēi(tf ), tf )+ V (X̃i(0), ēi(0), 0)

+

∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
F̃i(X̃i(t))− Li( ˆ̄Xi(t))C̃i(X̃i(t))

Fe,i(ēi(t), t)

]

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]

×

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[[X̃Ti (t) ē

T
i (t)]

T )

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[[X̃Ti (t) ē

T
i (t)]

T )
T

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
×

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )dt},

for i = 1, . . . ,N (40)

By the fact

∂V (X̃i(t), ēi(t), t)

∂[X̃Ti (t) ē
T
i (t)]

T
=

 ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

 (41)

we get

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t),ē

T
i (t)]

T )
T

[
F̃i(X̃i(t))− Li( ˆ̄Xi(t))C̃i(X̃i(t))

Fe,i(ēi(t), t)

]
= ( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T (F̃i(X̃i(t))− Li( ˆ̄Xi(t))C̃i(X̃i(t)))

+ ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)TFe,i(ēi(t), t),

for i = 1, . . . ,N (42)

and

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]

×

[
D̄i(X̄i(t)) −Li( ˆ̄Xi(t))

De,i(ēi(t), t) 0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

=

[
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T ( ∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)T

]
×

[
D̄i(X̄i(t))D̄Ti (X̄i(t))+Li(

ˆ̄Xi(t))LTi (
ˆ̄Xi(t)) D̄i(X̄i(t))DTe,i(ēi(t),t)

De,i(ēi(t),t)D̄Ti (X̄i(t)) De,i(ēi(t),t)DTe,i(ēi(t),t)

]

×

 ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

 = ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× (D̄i(X̄i(t))D̄Ti (X̄i(t))+ Li(
ˆ̄Xi(t))LTi (

ˆ̄Xi(t)))

× ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× D̄i(Xi(t))De,i(ēi(t), t)T (
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)De,i(ēi(t), t)D̄Ti (X̄i(t))

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× De,i(ēi(t), t)De,i(ēi(t), t)T (
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
),

for i = 1, . . . ,N (43)

and

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]
×

[
F̄−i(X̄i(t))

Fe,−i(ēi(t), t)

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

=

[
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T ( ∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)T

]
×

[
F̄−i(X̄i(t))F̄T−i(X̄i(t)) F̄−i(X̄i(t))FTe,−i(ēi(t), t)

Fe,−i(ēi(t), t)F̄T−i(X̄i(t)) Fe,−i(ēi(t), t)F
T
e,−i(ēi(t), t)

]

×

 ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

 = ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× F̄−i(X̄i(t))F̄T−i(X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)

+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T F̄−i(X̄i(t))
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× FTe,−i(ēi(t), t)(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)TFe,−i(ēi(t), t)F̄T−i(X̄i(t))

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× Fe,−i(ēi(t), t)FTe,−i(ēi(t), t)(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
),

for i = 1, . . . ,N (44)

Substituting (41),(42),(43),and(44) into (40), we can get

Ji = min
Li( ˆ̄xi(t))

E{−V (X̃i(tf ), ēi(tf ), tf )+ V (X̃i(0), ēi(0), 0)

+

∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T (F̃i(X̃i(t))− Li( ˆ̄Xi(t))

× C̃i(X̃i(t))+ ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)TFe,i(ēi(t), t)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T (D̄iX̄i(t)D̄Ti (X̄i(t))

+ Li( ˆ̄Xi(t))LTi
ˆ̄Xi(t))(

∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T D̄i(X̄i(t))DTe,i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× De,i(ēi(t), t)D̄Ti X̄i(t)(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)TDe,i(ēi(t), t)DTe,i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× F̄−i(X̄i(t))F̄T−i(X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T F̄−i(X̄i(t))FTe,−i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× Fe,−i(ēi(t), t)F̄T−i(X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)TFe,−i(ēi(t), t)

× FTe,−i(ēi(t), t)(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)dt}

= min
Li( ˆ̄xi(t))

E{−V (X̃i(tf ), ēi(tf ), tf )+ V (X̃i(0), ēi(0), 0)

+

∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)

T
)T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)

T
)

+ ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T F̃i(X̃i(t))

+ ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)TFe,i(ēi(t), t)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T D̄i(X̄i(t))D̄Ti (X̄i(t))

× ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T D̄i(X̄i(t))DTe,i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× De,i(ēi(t), t)D̄Ti (X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)TDe,i(ēi(t), t)DTe,i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× F̄−i(X̄i(t))F̄T−i(X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)T F̄−i(X̄i(t))FTe,−i(ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂ ēi(t)

)+ 1
4ρ2i

( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)T

× Fe,−i(ēi(t), t)F̄T−i(X̄i(t))(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)

∂X̃i(t)
)TFe,−i(ēi(t), t)

× FTe,−i(ēi(t), t)(
∂V (X̃i(t),ēi(t),t)

∂ ēi(t)
)+ 1

4ρ2i
(LTi (
ˆ̄Xi(t))

× ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)− 1
2 C̃i(X̃i(t))

T )(LTi (
ˆ̄Xi(t))

× ( ∂V (X̃i(t),ēi(t),t)
∂X̃i(t)

)− 1
2 C̃i(X̃i(t)))

−
1

16ρ2i

˜CT
i (X̃i(t))C̃i(X̃i(t)))dt},

for i = 1, . . . ,N (45)

We can obtain the optimal observer gain L∗i (
ˆ̄Xi(t)) as (19)

from (45). After optimal U∗i (t) in (17), L∗i (
ˆ̄Xi(t)) in (19),

worst-case ˜̄v∗i (t) in (16) and ˜̄X∗
−i(t − τ−i(t)) in (18) are

obtained and proof step (i) is completed. Then, Ji in (45),
it can be rewritten as follows:

Ji = E{−V (X̃i(tf ), ēi(tf ), tf )+ V (X̃i(0), ēi(0), 0)

+

∫ tf

0
( ∂V (X̃i(t),ēi(t),t)

∂t +
˜̄XTi (t)Q̄i

˜̄Xi(t)

−
1
4 (
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Gi(X̃i(t), ēi(t), t)R

−1
i

×
˜̄GTi (X̃i(t), ēi(t), t)(

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

+ ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Fi(X̃i(t), ēi(t), t)

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T ˜̄Di(X̃i(t), ēi(t), t)

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )
T

× F̄−i( ˜̄Xi(t))(
∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t)]

T )

−
1

16ρ2i

˜CT
i (X̃i(t))C̃i(X̃i(t)))dt},

for i = 1, . . . ,N (46)
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By HJIEi in (20) and (46), we get

Ji = E{−V (X̃i(tf ), ēi(tf ), tf )+ V (X̃i(0), ēi(0), 0)},

for i = 1, . . . ,N (47)

where V (X̃i(t), ēi(t), tf ) ≥ 0, then

Ji ≤ E{V (X̃i(0), ēi(0), 0)}, for i = 1, . . . ,N (48)

i.e., the second step in (ii) is also guaranteed.
(b) If ˜̄vi(t) ∈ £2[0,∞) and ˜̄X−i(t − τ−i(t)) ∈ £2[0,∞) and

V (X̃i(0), ēi(0), 0) <∞, from the definition of Ji in (15), then
(48) becomes

E{
∫ tf

0
( ˜̄XTi (t)Q̄i

˜̄Xi(t))+ UT
i (t)Ri(t)Ui(t)}

≤ E{V (X̃i(0), ēi(0), 0)+ ρ2i

∫ tf

0
( ˜̄vTi (t) ˜̄vi(t)

+
˜̄XT−i(t − τ−i(t)))

˜̄XT−i(t − τ−i(t)))dt},

for i = 1, . . . ,N (49)

Since ρ2i E{
∫ tf
0 ( ˜̄vTi (t) ˜̄vi(t)+

˜̄XT
−i(t−τ−i(t)))

˜̄XT
−i(t−τ−i(t)))dt}

is finite, from (49), it is seen that E{UT
i (t)Ui(t)},

E{X̃Ti (t))X̃i(t)} andE{ē
T
i (t)ēi(t)} approach to zero as tf →∞

in the mean square error sense. This proof is finished.

APPENDIX B
PROOF OF THEOREM 2
First, we suppose

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε

= ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )+4i(X̃i(t), ēi(t), t),

for i = 1, . . . ,N (50)

where 4i(X̃i(t), ēi(t), t) is the error function between
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε and ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T ).

By the fact that HJIEε,i = εi(θ ip(t)) andHJIEi = 0, εi(θ ip(t))
can be rewritten as follows:

εi(θ ip(t)) = HJIEi,ε − HJIEi

= (( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε − ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )
T )

×

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
−

1
4 (

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε +
1
4 (

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε

−
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T
ε

×

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )ε

−
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T ),

for i = 1, . . . ,N (51)

By (50), we get

εi(θ ip(t)) = 4
T
i (X̃i(t), ēi(t), t)

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]

−
1
44

T
i (X̃i(t), ēi(t), t)

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

−
1
4 (

∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
4i(X̃i(t), ēi(t), t)

−
1
44

T
i (X̃i(t), ēi(t), t)

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
4i(X̃i(t), ēi(t), t)

+
1

4ρ2i
4T
i (X̃i(t), ēi(t), t)

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

×

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
4i(X̃i(t), ēi(t), t)

+
1

4ρ2i
4T
i (X̃i(t), ēi(t), t)

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
×4i(X̃i(t), ēi(t), t)+ 1

4ρ2i
4T
i (X̃i(t), ēi(t), t)

×

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

+
1

4ρ2i
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
×4i(X̃i(t), ēi(t), t)+ 1

4ρ2i
4T
i (X̃i(t), ēi(t), t)

×

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
4i(X̃i(t), ēi(t), t),
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for i = 1, . . . ,N (52)

By the symmetric property, we have following equations:

4T
i (X̃i(t), ēi(t), t)

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

= ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
4i(X̃i(t), ēi(t), t),

for i = 1, . . . ,N (53)

4T
i (X̃i(t), ēi(t), t)

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )

= ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
4i(X̃i(t), ēi(t), t),

for i = 1, . . . ,N (54)

and

4T
i (X̃i(t), ēi(t), t)

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
× ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )

= ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )
T

[
˜̄F−i( ˜̄Xi(t), ēi(t), t) 0

0 0

]
4i(X̃i(t), ēi(t), t),

for i = 1, . . . ,N (55)

By (53), (54), and (55), then (52) becomes

εi(θ ip(t)) = 4
T
i (X̃i(t), ēi(t), t){

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]

−
1
2

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )−
1
4

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
4i(X̃i(t), ēi(t), t)+ 1

2ρ2i

×

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

+
1

4ρ2i

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]
4i(X̃i(t), ēi(t), t)

+
1

2ρ2i

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

+
1

4ρ2i

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
4i(X̃i(t), ēi(t), t)},

for i = 1, . . . ,N (56)

If εi(θ ip(t))→ 0 in (23), then (56)→ 0, too. Clearly, the term[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
−

1
2

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

×

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T
( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )

−
1
4

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]
R−1i

[
˜̄Gi(X̃i(t), ēi(t), t)

0

]T

×4i(X̃i(t), ēi(t), t)+ 1
2ρ2i

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )+
1

4ρ2i

[
˜̄Di(X̃i(t), ēi(t), t) 0

0 0

]

×4i(X̃i(t), ēi(t), t)+ 1
2ρ2i

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]

× ( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T )+
1

4ρ2i

[
˜̄Fi(X̃i(t), ēi(t), t)

1

]
×4i(X̃i(t), ēi(t), t)

in {.} of (56) is not equal to zero for all X̃i(t) and ēi(t).
If (56) is→ 0,4i(X̃i(t), ēi(t), t) must approach to zero. In this
situation, from (50), it is deduced that ( ∂V (X̃i(t),ēi(t),t)

∂[X̃Ti (t) ē
T
i (t) t]

T )ε →

( ∂V (X̃i(t),ēi(t),t)
∂[X̃Ti (t) ē

T
i (t) t]

T ). According to Theorem 1, the HJIE-

reinforcement DNN-based robust decentralized H∞ attack-
tolerant observer-based tracking control scheme in Fig. 3 can
approach to the theoretical robust decentralized H∞ attack-
tolerant observer-based team formation tracking control
design. The proof is complete.
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