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ABSTRACT An emerging differential dynamic microscopy technique has been successfully used for
quantitative dynamic investigation of micro-particle suspension, leading to a rheological assessment of
the solution. This technique exploits an optical microscope equipped with a digital camera for the
assessment. However, the accessible measurement ranges at high frequencies are limited by the video frame
rate of the camera, resulting in a limitation in investigating distinguish responses at the high-frequency
region. With advanced deep learning technology, image-synthesizing deep learning-based algorithms can
significantly increase the video frame rate, producing additional in-between frames. As a result, the
rheological responses at the high-frequency region can be obtained. To address this problem, a video frame
interpolation integrated differential dynamic microscopy-based device (DeepDDM platform) was developed.
Our DeepDDM platform interpolates video frames to extend the maximum measuring angular frequency
up to quadruple from 30.1 rad/s to 123.0 rad/s, resulting in a more comprehensive rheological assessment
without hardware modification. Unlike reducing the camera exposure time approach, our approach requires
only a single camera and works without brightness reduction. Furthermore, the device is compact and
portable. It comprises a few main components, and requires only 8 L. sample volumes for the rheological
assessment. Thus, it is easy to relocate to measure biological samples which are often do not retain their
natural properties in a storage allowing for in situ studies of the fluids. In comparison, the obtained responses
agreed with the reference mechanical rheometer, although the employed partially coherent source and
out-of-focus image acquisition bring difficulties to our system.

INDEX TERMS Differential dynamic microscopy, rheology, deep learning, frame interpolation.

I. INTRODUCTION

Rheological characterization is essential for bio-fluid under-
standing, design, and development. This is because bio-fluids
are often complex as they may consist of many intrinsic
micro-structures [1]. These micro-structures influence the
materials’ flow behavior, which can be investigated using
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rheology [1], [2], [3]. For example, the natural physical
behavior of human saliva is primarily composed of water
exhibiting more than 99.0% and several minor components
such as glycoproteins and enzymes [4], [5], [6]. According
to many studies, the whole human saliva behaves like a
shear thinning fluid [7], [8], [9] with regardless of the
collection method [10]. This lubricious nature of saliva is a
crucial behavior promoting speech and swallowing of a food
bolus [8]. It also maintains oral health protecting the mucosa
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from bacterial attack, fungal growth, and demineralization
of teeth [8], [11], [12], [13]. In human blood plasma,
water also primarily accounts for more than 90.0% while
the rest are a mixture of proteins, coagulants, electrolytes,
and immunoglobulins [14]. Although plasma and saliva
are composed of a considerable amount of water with
more than 90% of its content, plasma behaves as opposed
to saliva. It is considered as a Newtonian fluid whose
viscosity does not depend on an applied shear [15], [16].
Therefore, rheological characterization of the materials is
essential for understanding the material behavior to precisely
control their properties for delivering a specified mechanical
response.

In a conventional approach, a mechanical rheometer usu-
ally examines a fluid’s rheological properties. For example,
a stress-controlled rheometer imposes constant torque using
rotating cylinders, cones, or plates to determine the rheo-
logical responses of the test fluid. However, this approach
requires milliliter sample volumes for a measurement to
obtain a reliable result [17]. Unfortunately, some emerging
biological fluids are hard to synthesize or impossible
to obtain in large quantities [2], [18], [19]. Thus, the
rheological characterization of these fluids is considerably
expensive. In addition, many soft materials exhibit a weak
modulus [2], [20] leading to an inconsistency resulting
in this approach as deviations in rotational symmetry and
overfill/underfill samples allow surface tension to produce
torque at a low shear rate [21].

Investigating the light scattering phenomenon from a
material is a promising approach for many applications
ranging from research to industry. For example, light
scattering was used to monitor product development and
quality control in the pharmaceutical industry [22], [23].
In biomedical applications, a light scattering technique
successfully determined the enzyme activity in an enzyme
assay [24], [25], [26]. Light scattering can also be used as
a tool to design new polymeric material with a tiny sample
volume requirement [27]. Among light scattering approaches,
dynamic light scattering (DLS) is one of the most widely
used light scattering techniques [2] as it is a powerful, fast,
and non-invasive analytical tool for the characterization of
macromolecules and nanoparticles in a solution [28], [29].

In a typical configuration, a DLS instrument measures
the temporal fluctuations of the scattered light due to
the hydrodynamic motions of particles in the solution.
By analyzing these fluctuations, the translational diffusion
coefficient of the particles can be determined. Despite particle
characterization, the generalized Stokes-Einstein relation
(GSER) development allows for rheological assessment of a
solution using the standard DLS instrument [2], [30], [31] as
it relates the motion of the particles to infer the viscoelastic
modulus assessment of the solution.

Unlike the DLS, differential dynamic microscopy (DDM)
is an emerging approach to performing light scattering
experiments. The DDM is based on using a standard optical
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microscope to retrieve particle dynamic information that is
equivalent to a DLS [32]. In the DDM experiment, a time
series of images is acquired by the microscope camera [32].
Fourier analysis of the difference between images in the
series is calculated and separated by a given lag time t,
resulting in intensity fluctuations to decay as a function
of wavevector g. This result allows for characterizing the
dynamics of the employed particles in a fluid of interest.
DDM offers many advantages over DLS [33]. For instance,
it is a simple configuration and can measure the region of
interest. It is also invariant to undesirable static stray-light
contributions caused by dust and scratches in its optical path.
However, the DLS is sensitive to them, particularly at low
scattering angles [34], [35].

The DDM uses the passive microrheology principle,
in which the motion of embedded tracer particles is monitored
and recorded. For example, a DDM device was realized
as a tool for the rheological characterization of sucrose
and worm-like micelle solutions, including polyacrylamide
gels [36]. By retrieving the mean square displacement
(Ar?(1)) of employed gold nanoparticles in such samples.
The viscoelastic modulus (G*(w)) can be obtained using the
GSER [30], [31] as G*() = 5 20, where KpT
is Boltzmann constant, 7 represents temperature, a is the
radius of the particle,F is the Fourier operator, and w is the
angular frequency. The modulus is a of viscoelastic material
describing how viscous and elastic the material is.

High frequency rheometry are defined as measurement in
the frequency range beyond that accessible by conventional
rotational rheometry (f > 100 Hz) [37], [38] which is limited
by mechanical limitations and inertial effects in the gap
loading limit [38]. Nevertheless, investigating materials in a
high-frequency region reveals rheological properties that dif-
fer from those in a low-frequency region [39]. In an entangled
solution of wormlike micelles, exploring the high-frequency
region is expected to unveil the mesh size of the micelles
network [40]. High-frequency rheology also provides an
advantage for investigating surface properties [41]. Thus, the
high-frequency extension allows for a more comprehensive
rheological characterization benefiting a particular bio-fluid
design [42] and study.

Nevertheless, the accessible frequency ranges of the DDM
are limited by the acquisition frame rate of the employed
digital video camera [32]. The highest accessible frequency
can be determined by the inverse of the maximum acquisition
frame rate of the camera [43], [44]. As a result, investigating
the dynamics faster than the camera acquisition frame rate
is impossible. An extension to the DDM was proposed to
address this limitation [43]. This device illuminated the
sample with pulses of blue and red light-emitting diodes and
recorded the image. Subsequently, the blue and red image
channels of the image were decomposed from a single RGB
image, allowing for the investigation of dynamical changes
with a much smaller time scale than the exposure time of the
image. Although the result agrees with those obtained using
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a typical DDM setup, this approach produced more variation.
In cross-correlation DDM [44], a dual-camera microscope
was used for quantifying the fast dynamics of a nematic liquid
crystal. Cross-correlation analysis of images acquired by two
randomly triggered cameras. However, time synchronization
between the external triggers and their associated cameras
must be accurate enough to reduce memory consumption
resulting in real-time processing [44].

To achieve a compact DDM platform that can instantly
measure rheological properties at the sample collection site
yet with a more comprehensive rheological characterization
compared to the standard DDM, we proposed DeepDDM,
a compact platform of a video frame interpolation integrated
DDM-based device to address this problem using a Convolu-
tional Neural Network (CNN) interpolation [45], [46]. Unlike
reducing camera exposure time, our approach interpolated
in-between frames to increase the recorded video’s frame
rate without reducing the brightness resulting in access of
rheological properties at higher angular frequency. We also
demonstrated a rheological assessment of fluid of interests
that can be accessed at a frequency beyond the camera frame
rate. We showed our device produced a more comprehensive
assessment of fluid properties of interest, surpassing the
capabilities of the standard DDM method, all without the
need for an external trigger.

This paper was organized as follows. In Section II, material
and methods used for rheological analysis were provided.
Experimental results of the reference materials and artificial
saliva were also demonstrated and presented in Section
1. Discussions and conclusion of the main findings were
provided in Section IV and V, respectively.

Il. MATERIAL AND METHODS

In this section, sample preparation and the method used for
measuring the rheological properties of the samples were pro-
vided. For our device, the measurements were performed at a
controlled room temperature of 25°C. In measurement, a tiny
amount of tracer particle solution was added to a test sample
to probe their motions. Then, approximately 8.0 uL of the
mixture was pipetted and dispensed in a microchamber with
a nail varnish seal on its edges to prevent sample evaporation.
Following this, the device recorded a series of images of
a sample. Then, video frame interpolation algorithms were
applied to the recorded images synthesizing new in-between
images of the series. Subsequently, a mechanical rheometer
(ARES G2, TA Instruments Inc.) was used as a reference in
validation.

A. SAMPLES PREPARATION

A simple validation of the measured rheological properties of
our device was carried out by measuring well-characterized
fluids, i.e., water and glycerol-water mixtures. These sam-
ples were prepared and measured using our device and
verified by the rheometer and the published data [47]. For
an artificial saliva sample, the rheometer was used for
verification.
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TABLE 1. Chemicals used for preparing an artificial saliva.

Chemicals® Amount(g)
Methl-p-hydroxybenzoate 2.00
Sodium carboxymethyl cellulose 10.00
MgCL.6H,O 0.06
CaCl, 0.13
K,HPOy4 0.80
KyHy POy 0.33
KCL 0.63

1) TRACER PARTICLES SOLUTION

An initial concentration of 1.0 um polystyrene microparticles
(07310-15, Polysciences Inc.) was diluted in deionized water
ten times and kept in an Eppendorf tube, and it was gently
shaken before use.

2) DEIONIZED WATER

A deionized water sample was prepared by adding a 1.0 uL
of the tracer particles solution to 200.0 L of deionized water.
However, approximately 8 L was pipetted and dispensed in
a microchamber for measurement.

3) GLYCEROL-WATER MIXTURES

Aqueous-glycerol mixtures were prepared by dissolving
glycerol into deionized water at percentages by weight (%wt)
of 20, 40, and 60. Then, a small amount of the tracer solution
was added to these mixtures at a mixing ratio of 1:200 prior
to measurement.

4) ARTIFICIAL SALIVA

An artificial saliva used in this research was prepared
according to the Table 1. These organic and inorganic
chemicals were weighted using a four-figure balance, mixed,
and gradually added a total of 1000 mL of deinoized water.
The artificial saliva solution were adjusted its PH values to
6.75 form adding a small amount of KOH (Sigma-Aldrich,
St. Louis, Missouri, USA).

B. BULK RHEOMETRY

A mechanical rheometer (ARES G2, TA Instruments Inc.)
in a 50 mm parallel plate geometry was used as a reference
rheological measurement. The gap size between the plates
was set at 0.5 mm. During a measurement, a solvent trap was
always used to prevent sample evaporation. Approximately
1 mL of sample was used for determining its rheological
responses, with the sample temperature being controlled
at 25°C.

C. A COMPACT DIFFERENTIAL DYNAMIC
MICROSCOPY-BASED DEVICE

In the compact differential dynamic microscopy, a monochro-
matic light-emitting diode (LED) was coupled with an optical
fiber end in our light illumination, while the other end was
coupled with a collimator creating a parallel light. Following
this, the light travels through a sample accommodated in a
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sample container. An objective lens enlarged the light, then
recorded at 30 fps by the imaging sensor of the device at a
controlled room temperature of 25°C. In measurement, our
device collected a time series of 4,000 images and cropped
these images to the predefined size of 800 x 800 pixels from
their centers. Color-to-grey image transformation was applied
to the images prior to the DDM analysis. The schematic and
our device assembly are shown in Fig. 1.

In the differential dynamic algorithm (DDA), dynamic
scattering patterns can be recovered from the analysis of
ensemble dynamics of complex fluids [32]. This can be
done by determining intensity alteration between two images
separated by a lag time 7. The Fourier transform of the
difference image Al(g, t) was calculated, then, computed its
Fourier power spectrum as S(g, t) = (|Al(gq, r)|2), where
S(g, ) being image structure function, g is a wavevector, and
T represents a lag time. The image structure function can be
modelled as follows: [32], [36], [48], [49].

S(g, ) = A(@)(1 — f(g, t)) + B(q), where the ampli-
tude A(g) is related to the scattering properties of the
particles and the optical transfer function of the imaging
optics [32], [36], [48], [49], B(q) is a noise term, and f is the
normalized intermediate structuring function.

As aforementioned, the mean square displacement
((Ar% (7)) of employed tracer particles can infer the
rheological properties of a test fluid. This measure indicates
how much the particles move over a given time interval.
Having tracer particles employed, this statistical motion can
be related to the normalized intermediate structuring function

. {ark@) , )
fwithf = e 4 and can be obtained by (Ar<(t)) =

Lin (1 - 2220 [36], (50,

Once ((Arz(r))) is obtained, the viscoelastic modulus
G*(w) can be estimated by the GSER [30], [31], [36], [51].
Then, the complex viscosity is obtained from the mod-
ulus. However, the modulus of the complex viscosity is
used as a measure for estimating steady-shear viscosity
according to the empirical Cox-Merz relationship [50] as
In* (@)oo = 77()7);}—> 0-

D. OUR DeepDDM PLATFORM

Our DeepDDM platform consisted of the previously men-
tioned compact DDM (see, Sec.II-C), the DDA, and a video
frame interpolation algorithm. The DeepDDM collects a
series of images separated by a lag time t. Then, a video
frame interpolation interpolates in-between images of the
image series resulting in a new image series of n+(n-1)
images, where n is the total number of images in the original
series. However, the total recording time of these additional
synthesized images is unchanged by this procedure, causing
a double in the original frame rate. The DDA is applied
to the new image series and the original image series
yielding two image structure functions. Then, these two
structure functions are merged by scaling their time scales
to be matched according to the procedure detailed in the
literature [52]. To investigate the rheological property of
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a fluid of interest, the mean square displacement of the
embedded micro-particles is obtained from the merged
structure function, as previously mentioned. Once the mean
square displacement is obtained, the visco-elastic modulus
(G*(w)) of the fluid can be determined using the GSER.
To obtain the complex viscosity (n*(w)) of the fluid, the
visco-elastic modulus is calculated using n(w) = G*(w)/iw,
where i being an imaginary number, and w is the frequency
of deformation. The overall workflow of our DeepDDM can
be summarized as shown in Fig. 2.

1) VIDEO FRAME INTERPOLATION

Hardware systems are subject to inherent limitations due to
the nature of their constituent parts and components. Our
proposed DDM device also reached the constraint of the
image sensor, which limited the frame rate; therefore, the
measurement range of the device is limited by the camera
limitation. To extend the measurement range of the device so
that it can measure a higher shear rate, we choose to increase
the frame rate algorithmically.

In this work, we boost the number of frame rates
using a frame interpolation algorithm. The goal of frame
interpolation is synthesizing intermediate images between
pairs of input images. As our DDM aims to observe
particle motion, consecutive frames are considered near
duplicates. We pick a Convolutional Neural Network (CNN)
based interpolation algorithm based over conventional optical
flow-based interpolation algorithms [45], [46] due to the
latter needed accurate optical flow estimation, which is
challenging to obtain. We use the trained Frame Interpolation
for Large Motion network [53] to do image interpolation as
the network generalizes well on both small and large motions.

FILM uses the bi-directional motion estimation module
that works independently of the scale based on a multi-scale
feature extractor that shares weights across the scales. The
approach relies on the intuition that large motion at finer
scales is similar to small motion at coarser scales. The
network is composed of three stages: the scale-agnostic
feature extraction stage, the flow estimation stage, and the
fusion stage. The feature extraction stage uses scale agnostic
feature pyramid extraction. The flow estimation stage then
uses a feature from the first stage to compute a bi-directional
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FIGURE 2. Overall workflow of our DeepDDM device.

motion at each pyramid level. Finally, the fusion stage used
UNet-like decoder to synthesize the interpolated frame from
the scale agnostic feature maps and the bi-directional motions
from different pyramid levels.

We increase the frame rate of the particle moving video
from the DDM by synthesizing interpolated images for
multiple generations. Each generation doubles the angular
frequency of the device. We use two consecutive frames of
the current generation, raw images from the image sensor
are considered as generation 0, and the input generates the
interpolated frame between the two. Generation G composed
of frames from generation G-1 and the interpolated frames.
We synthesize the interpolated frames between all frames
from the current generation, which makes n + (n — 1)
frames for the generation G where n is the number of
frames of generation G-1. We experimented with the frame
interpolation with four generations, as shown in Fig 3.

For the trained FILM network used in the DDM, we used
the original implementation from the author, which is based
on the TensorFlow library. The network was pre-trained on
the Vimeo90K dataset [54]. After the fourth generation, all
frames are processed with the DDA.

Ill. EXPERIMENTAL RESULTS

A. VALIDATION OF THE COMPACT DIFFERENTIAL
DYNAMIC MICROSCOPY

Validation of the compact DDM is essential to ensure
that our DeepDDM produces a reliable result because
the DeepDDM was developed based on compact DDM
with an additional video frame interpolation algorithm.
The validation measured how much viscosity measurement
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deviated from the published value, including the measure-
ment obtained from a commercial mechanical rheometer
(ARES G2, TA Instruments Inc.). In this experiment, well-
defined fluids, such as deionized water and glycerol-water
mixtures, were investigated and compared to the published
data and the reference mechanical rheometer.

1) DEIONIZED WATER

To measure the rheological properties, a volume of the
tracer solution was added to the water at a mixing ratio
of 1:200. A sample volume of approximately 8.0 uL was
dispensed in a microchamber and placed in the sample holder
of our device. Then, 4,000 images were collected from the
device. The DDA analyzed these images to retrieve the mean
square displacement of the employed tracer particles. The
GSER was applied to the mean square displacement yielding
loss and storage moduli of the water. Accordingly, the
modulus of the complex viscosity of the water was calculated
from the obtained loss and storage moduli shown in
Fig. 4.

From Fig. 4, the modulus of complex viscosity of the water
was three-fold replicated to obtain the mean and standard
deviation of the measurement. Then, the obtained modulus
was averaged across all angular frequencies to compare with
the reference value [47]. In analogy to the reference value, the
averaged value was at 0.92 &= 0.03 mPa- s with the percentage
absolute error of 1.0%.

2) GLYCEROL-WATER MIXTURES
The varying viscosity of a measuring fluid allows for
determining the accessible viscosity ranges of the developed
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FIGURE 4. The modulus of complex viscosity of deionized water obtained
using our device at a controlled room temperature of 25°C with a solid
line indicates the dynamic viscosity of the water taken from a

reference [47].

device. In this measurement, the initial concentration of a
glycerol solution was used as a solute since it has a very
high viscosity of up to 945.0 mPa-s [47]. From this reason,
the experiment was carried out to obtain the viscosity of the
prepared glycerol-water mixtures, then, compared with the
rheometer and reference value from a literature [47] as shown
in Fig. 5.

According to Fig. 5, the obtained viscosity measurements
using our device agreed with the reference viscosity from the
literature [47]. The average absolute error of 20%wt, 40%wt,
and 60%wt glycerol-water mixtures at 25°C were 2.27%,
1.80%, and 27.97% from the compact DDM, and 31.59%,
30.99%, and 2.87% from the reference rheometer. However,
the measured viscosity at the angular frequency above 10.0
s~ showed an unreliable result as it decreased upon an
increase in the angular frequency. Unlike the result obtained
using the rheometer, the obtained viscosity was inconsistent
when compared with the reference values [47], particularly
the glycerol content below 40%wt.

B. VALIDATION OF THE DeepDDM PLATFORM
The DeepDDM interpolates the image intensities by syn-
thesizing in-between images of an original image series,
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FIGURE 5. Modulus of the complex viscosities as a function of angular
frequency (hollow symbols) obtained using our device, and
shear-dependent viscosity (solid symbols) obtained by a rheometer (ARES
G2, TA Instruments Inc.) of glycerol-water mixtures at the glycerol mass
composition of 20%, 40%, and 60% at 25°C. The dashed lines were the
measurement obtained from the literature [47].

producing different in-between motions of the embedded
tracer particles in a measuring fluid. As a result, these
additional images increase the frame rate of the original
image series as its overall recording time is unchanged.
However, validation is necessary for determining the rhe-
ological measurement accuracy of this approach compared
with the rheometer measurement. In addition, this experi-
ment is also aimed at discovering how many synthesized
in-between images still yielded a reliable result. This can
be done by repeating the procedure of the video frame
interpolation algorithm to the previously synthesized image
series. Then, the DDA was applied to the image series
from no to the n in-between interpolations as shown in
Fig. 6.

In this experiment, the 4,000 image series of the pre-
pared artificial saliva was acquired by the DeepDDM at
approximately 30.0 frames per second. In-between images
were synthesized from the information of two adjacency
images, producing a new image series from the FILM video
interpolation. Then, the DDM analyzed the new image series
to obtain the image structuring function. Following this, the
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FIGURE 6. DeepDDM in-between image interpolation scheme.

average mean square displacement of the embedded tracer
particles was determined as aforementioned. Accordingly,
the Generalized Strokes-Einstein relation was applied to
the mean square displacement yielding the corresponding
viscoelastic modulus. The complex viscosity of the artificial
saliva was determined from this modulus. The modulus of the
obtained complex viscosity was used regarding the Cox-Merz
relationship to compare with the shear viscosity obtained
from the reference rheometer. However, this procedure was
repeated with the previously interpolated image series up to
generation four.

1) DEIONIZED WATER

Deionized water is a well-characterized fluid and usually used
as a reference. In this experiment, viscosity of a deionized
water was characterized using our DeepDDM with the video
frame interpolation up to three generations and compared to
those obtained from the published data at 0.89 mPa - s [47] as
illustrated in Fig. 7.

From Fig. 7, the mean and standard deviation of the modu-
lus of complex viscosity of deionized water measured at 25°C
from 20-folded replications. The video frame interpolation
generation 1 to 3 showed the mean and standard deviation
of the viscosity were at 0.94+ 0.01, 0.95+ 0.02, and 0.93+
0.15 mPa - s. When compared the measured viscosity to the
reference, the average absolute error of the viscosity obtained
from video frame interpolation of generation 1, 2, and 3 were
6.25%,7.48%, and 9.16%, respectively. This might be caused
by error propagation from each generation as the higher video
frame generation generates new images based-on previous
video frame generation. All things considered, the error was
raised by the increment of the video frame interpolation
generation. Although the error obtained from the video frame
generation 1 shown the best accurate viscosity estimation, the
angular frequency can be extended only two folded. Instead,
the video frame interpolation of generation 2 yielded almost
quadruple of the frequency while the viscosity estimation
was in good agreement compared to the reference with less
than 10% error. In additional, this error can be mitigated by
implementing a temperature control of the sample for future
improvements. From these reasons, we selected the video
frame interpolation of generation 2 to artificial saliva on the
next subsection.
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FIGURE 7. Modulus of complex viscosity of deionized water as a function
of angular frequency measured at 25°C using our DeepDDM device of
20-folded replications. Figure 7(a), 7(b), and 7(c) represented the viscosity
from video frame interpolation of generation 1, 2, and 3 respectively. The
horizontal black solid lines indicated the viscosity of water obtained

from [47].

2) ARTIFICIAL SALIVA

In this section, the experiment was carried out by measuring
the initial concentration of the artificial saliva using the
DeepDDM compared to the reference bulk rheometry.

a: BULK MEASUREMENT

An approximately 1.0 mL sample of the prepared artificial
saliva was used to determine its viscosity using the reference
rheometer. However, the temperature of the sample was
controlled at 25°C before a measurement started. The
steady-shear viscosity and torque of three-fold replication are
shown in Fig. 8.

From Fig. 8, the steady-shear experiment of the artificial
saliva showed unreliable viscosity measurement below the
shear rate of 2.7 s~' due to inconsistency of the torque.
Thus, viscosity from the shear rate of 2.7 s~! was used for
comparison.
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FIGURE 9. Modulus of the complex viscosity as a function of angular
frequency (Hollow symbols) obtained using our DeepDDM device, and
shear-dependent viscosity (Solid symbol) obtained using a rheometer
(ARES G2, TA Instruments Inc.) of artificial saliva at 25°C. The solid
symbols show the average modulus of the complex viscosity from
generation zero to generation four. The error bars represent the standard
deviation of the measurement from three-folded replication.

b: OUR DeepDDM RESULTS

In a measurement, approximately 8.0 uL of the artificial
saliva was used for determining the modulus of complex
viscosity in a controlled room temperature at 25°C. Our
DeepDDM was carried out up to generation four in this
experiment to estimate the complex viscosity of the artificial
saliva. The measurement was three-fold replicated as shown
in Fig. 9.

From Fig. 9, the result of one and two in-between frame
interpolations agreed with the result obtained using the
reference rheometer. In addition, the angular frequency of
the original measurement from 30.1 rad/s was extended to a
maximum of 63.5 and 123.0 rad/s in one and two in-between
frame interpolations, respectively. In the angular frequency
below 0.3 rad/s, the DeepDDM was also able to extend
the measurement down to 0.04 rad/s. However, this angular
frequency range was not validated due to the unreliable
result in the frequency range obtained by the reference
rheometer.

Nevertheless, the measured viscosity failed to achieve a
valid result beyond three in-between image interpolations
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FIGURE 10. Modulus of the complex viscosity of an artificial saliva
measured at 25°C. The solid black star represented the viscosity obtained
from our DeepDDM device. The red circles showed the viscosity obtained
by our compact DDM-based device. The upward green triangles
illustrated the shear-dependent viscosity of the saliva obtained from the
reference rheometer.

in the series (Generation 3). However, the one in-between
image interpolation (Generation 2) produced the average
absolute error at 5.45% when compared with the reference
rheometer. In analogous to experiment with deionized water,
the video frame interpolation of generation 2 achieved
more comprehensive angular frequency than those obtained
from generation one with acceptable error. Thus, the two
in-between image interpolation was selected for our Deep-
DDM video frame interpolation. When compared with no
in-between image (generation 0), our DeepDMM of the video
frame generation 2 also yielded better accuracy with 7.85%
compared to 13.47%.

To determine average absolute error of the measurements,
these overlapped data were linearly interpolated to obtain
identical frequencies (in x-axis). Following this, the interpo-
lated data were compared against the viscosity obtained by
the rheometer, resulting in the absolute error of 13.47% and
7.85% for the compact DDM and DeepDDM respectively.
Therefore, the DeepDDM result extended the frequency
ranges resulting in a more comprehensive frequency range of
the measurement as illustrated in Fig. 10.

IV. DISCUSSIONS
We initially validated our compact differential dynamic
microscopy-based device without the video frame interpo-
lation algorithm considered as generation 0. Rheological
measurements were carried out with two well-studied
materials: deionized water and glycerol-water solutions.
The viscosity obtained by the device was compared to the
reference rheometer, including the published data [47].
According to the result, our compact DDM device can
measure the fluid’s viscosity below 3.2 mPa-s, corresponding
to 40%wt glycerol in water at 25 °C. On the contrary,
the rheometer yielded a more reliable result at a higher
viscosity of 60%wt glycerol in water at 25°C with the
average absolute error of 2.87%. This is due to the fact
that our device relied on passive micro-rheology in which
there is no external force applied. Thus, measuring the
motion of the employed tracer particles in a high-viscosity
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fluid is quite challenging as this technique relies only
on thermal motion, which can be difficult to generate
sufficient deformation. However, this issue could be tackled
by employing smaller tracer particles. Thus the particles
more easily redistribute themselves according to the Stokes-
Einstein relation. Nevertheless, the image resolution must
be high so that the small employed particles are within the
system’s resolving power and become detectable. In contrast
to our device, the rheometer can apply an external force to
the probe for measuring a fluid’s response, leading to a more
reliable rheological characterization of a higher viscous fluid.
Although the rheometer can measure much higher viscous
fluid, it requires accurate mechanical motion control of the
probe. The mechanical motion control is also quite limited
to move the probe in micro-scale distance. For this reason,
the rheometer may not obtain valid micro-scale rheological
responses [55], particularly in a weak modulus fluid such as
water at low shear rate.

In our DeepDDM device, the video interpolation at gen-
eration 2 was used for interpolating two in-between images,
resulting in a quadruple of the measuring angular frequency
in good agreement with the references. However, we also
found that the different information in the interpolated data
considerably fluctuated as an increment of interpolation
generation. As a result, the average absolute error increased
with the interpolation generation. This might be caused by
error propagation from each generation. We could solve
the problem by modifying the frame interpolation model
to produce more in-between frames in one iteration instead
of one image per iteration. Additionally, we can fine-tune
the frame interpolation model, particularly for the particle
movement images. Furthermore, our device measurement
could be improved by additional temperature control of the
sample. This is due to the fact that our device relies on thermal
energy for measurement.

V. CONCLUSION

In this work, a compact deep-learning platform (DeepDDM)
was developed for obtaining the micro-rheological of the
fluid of interest. A quantitative rheological assessment of
micro-volume fluid was carried out using this platform by
exploiting the emerging technique of differential dynamic
microscopy (DDM). The platform has two main compo-
nents: a compact DDM-based device and a deep learning
algorithm for in-between video frame interpolation. The
device consisted of a few critical components fitted in a
small 3D-printed housing, resulting in a compact and portable
platform. Thus, the device can be performed at a local sample
collection site, particularly for biological fluids, whose
natural properties are usually changed over time [56]. For the
measurement using our DeepDDM platform, a test fluid is
filled with a tiny amount of tracer particles in an in-house
micro-chamber accommodating approximately 8 uL of the
fluid. As the particles undergo Brownian motion, the device
records the tracer movement to a computer. The video frame
interpolation based on a deep-learning algorithm was applied
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to the recorded data, producing a total of n-1 in-between
images, where n is the total of the original image. These
interpolated images, including the original images, were
combined and referred to as a new image data set. Following
this, the new image and the original data set were analyzed
by the DDA yielding two image structuring functions. Then,
these structure functions were merged according to the
reference [52]. After which, a mean square displacement
of such particles was obtained from the merged function.
Then, the generalized Stokes-Einstein relation (GSER) was
applied to retrieve the fluid’s visco-elastic modulus. At this
point, the complex viscosity of the fluid was obtained from
this modulus. To compare with steady-shear viscosity, the
modulus of the viscosity was calculated and plotted against
the shear viscosity, referred to as the empirical Cox-Merz
relationship. According to the experiment, the complex vis-
cosity modulus obtained from our DeepDDM agreed with the
steady-shear viscosity obtained using the reference rheometer
up to two in-between frame interpolations. In comparison
with no frame interpolation, the maximum accessible angular
frequency range was extended from approximately 30.1 rad/s
up to 123.0 rad/s. The result rheological responses of our
DeepDDM were also in good agreement with a reference
rheometer(ARES G2, TA Instrument) in a parallel plate setup
with the average absolute error of the viscosity measurement
were less than 10%. Thus our DeepDDM platform can
produce a more comprehensive accessible angular frequency
range than without in-between video frame interpolation
applied.
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