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ABSTRACT The attitude dynamics of spacecraft are highly nonlinear, which makes it challenging to design
control algorithms that can handle these nonlinearities. This study presents a novel data-driven synthesis
method for spacecraft attitude control using the LightGBM controller. The LightGBM controller is designed
by using supervised machine learning methodologies. The training and testing datasets for the LightGBM
controller are generated from the input-output data of a closed-loop system of spacecraft attitude dynamics
under an exact feedback linearization-based controller. We show that under some realistic conditions, even
though we can not guarantee asymptotic stability for the closed-loop system under the LightGBM controller,
but we can have a kind of practical stability, i.e., we can have a smaller bounded ball by designing a
LightGBM controller with a smaller bound of error. Furthermore, the simulation results show an additional
interesting phenomenon that the LightGBM controller still produces good closed-loop performance even
though there is uncertainty in satellite parameters and disturbance.

INDEX TERMS Spacecraft attitude control, data-driven control, machine learning, LightGBM, exact
feedback linearization, stability.

I. INTRODUCTION
Spacecraft attitude control is one of the most important
research topics in the practical aerospace industry, which
refers to an essential basis for various advanced aerospace
tasks. The topic of attitude control for spacecraft has attracted
significant attention and has yielded notable achievements in
recent research. Numerous key findings and advancements
have been made in this area, reflecting its significance in
the field of spacecraft control [1], [2], [3]. Therefore, the
development of reliable and efficient attitude control methods
is a crucial research area in the field of spacecraft engineering.
Hence, it has attracted the interest of researchers, leading
to the development of multiple control strategies aimed
at achieving optimal attitude performance. For instance,
Adaptive control [3], [4], model-free prescribed performance
control [5], sliding mode control [6], and PD control [1], [7]
have been proposed for spacecraft attitude control.

Since there are so many disturbances in the spacecraft’s
position, tracking control of the spacecraft’s attitude becomes
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very important. External disturbances, such as solar radiation,
gravitational effects, and atmospheric drag, can affect the
spacecraft’s attitude and introduce uncertainty in the control
system. Moreover, parameter uncertainty, such as variations
in mass, inertia, and aerodynamic coefficients, can further
impact the accuracy of the attitude control. In addition, sensor
errors, such as measurement noise and bias, can degrade the
quality of the feedback signals used in the control system.
Moreover, uncertainty in the system model can significantly
impact the performance and stability of the spacecraft’s atti-
tude control [8]. Managing this uncertainty and disturbance
is crucial to ensure accurate and reliable spacecraft attitude
control, as they can lead to degraded performance, instability,
and even mission failure. Therefore, developing robust and
adaptive control strategies that can handle these uncertainty
and disturbance is of utmost importance in spacecraft attitude
control applications. This problem has been extensively
studied under various scenarios [9], [10].

Many control methods which are usually used for syn-
thesizing spacecraft attitude control have limitations and
disadvantages [11], [12], [13]. LQR (Linear Quadratic
Regulator)/ LQG (Linear Quadratic Gaussian) methods and
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other linear approximation-based methods, for example,
are usually ineffective under large attitude angles while
its nonlinearity effect occurs. Optimal control methods
which use nonlinear attitude dynamics usually require
solving nonlinear differential equations which resulted from
Bellman’s dynamics programming or Pontryagin’s maxi-
mum principle which do not have a closed-form solution.
Other nonlinear design methodology such that Lyapunov’s
physical approach which generates PD stabilizing con-
troller or non-linear adaptive controller have difficulties in
choosing the controller’s parameters that result in good
performance [11].

To overcome the limitations of those traditional control
methods, data-driven control has emerged as a promising
approach in various fields, including spacecraft attitude
control. By utilizing data-driven techniques, controllers
can be designed to adapt to uncertainty and noise in
spacecraft dynamics, allowing for improved performance and
robustness. One of the key advantages of data-driven control
is its ability to leverage large datasets to learn complex
system dynamics and generate control actions based on real-
time data. This allows for more adaptive and flexible control
strategies that can better handle system uncertainty and
noise.

In recent years, the use of machine learning has shown
promise in enhancing spacecraft attitude control through
data-driven techniques. The application of machine learning
algorithms for addressing spacecraft attitude problems has
been extensively explored in previous researches [14], [15].
Many studies have used machine learning,i.e. neural net-
works, to handle spacecraft attitude control. A study has
used neural networks to predict spacecraft movements and
control them [16]. This research intends not only to produce
nonlinear control but also to make it adaptive. Another recent
study used a neural network to handle space-craft attitude
control and showed that this method is more fuel-efficient
than a sliding mode control approach [17]. On the other
hand, we’ve observed that LightGBM has gained popularity
among many researchers in the machine learning field as
having amazing trainability and learning capabilities. The
LightGBM model is introduced by Microsoft and became
open source in 2017, its operation speed is much faster than
XGBoost, and it takes up less memory than XGBoost and has
higher accuracy [18]. LightGBM is preferred if higher predic-
tive accuracy is required while comparing the dimensionality
reduction effect between the Light GBM and XGBoost [19].
Comparison in using multiple machine learning models also
shows that LightGBM produces higher prediction accuracy
with much easier hyper-parameter optimization and a simpler
architecture than neural networks [20]. We hope for better
performance of the closed loop dynamics also due to the
higher accuracy of the LightGBM controller.

In this study, we propose the use of LightGBM in
synthesizing a data-driven spacecraft attitude control. The
data used to train LightGBM was generated using the exact
feedback linearization approach. The LightGBM algorithm

is well-suited for this task due to its ability to handle large
datasets and high-dimensional features.

Further, spacecraft attitude control poses significant chal-
lenges due to uncertainty and noise in the system. This
paper presents a novel methodology for designing data-driven
control systems for spacecraft attitude control, leveraging the
LightGBM algorithm. The proposed approach aims to syn-
thesize a robust and reliable spacecraft attitude control system
which also effective although there are some uncertainty
and disturbance. Inspired by recent advancements in data-
driven control, the proposed methodology contributes to the
field of spacecraft attitude control by providing an innovative
approach that enhances the robustness and reliability of the
control system. It will be shown in the following sections
that our proposed method produces stable closed-loop system
performance despite uncertainty and disturbance, and the
simulation results show the good transient response of
closed-loop systems in the presence of such uncertainty and
disturbance.

The proposed data-driven control system is expected to
perform well based only on feedback from the measured
spacecraft attitude data during its mission. The major
contributions of this study are listed below:

• We have proposed a supervised learning algorithm
utilizing the LightGBM algorithm for spacecraft attitude
control, which is based on a decision-tree algorithm.
This approach eliminates the reliance on model-based
controllers and instead employs data-driven techniques
to overcome some of the limitations of traditional
control methods.

• The proposed LightGBM controller learns from space-
craft attitude control data generated using a feedback
linearization approach. The learning process covers
various conditions and varying data sizes, allowing for
robust and scalable control performance.

• The proposed LightGBM controller undergoes valida-
tion through extensive testing using a wide range of test
scenarios and simulations with uncertainty and noise.
This ensures its robustness, effectiveness, and reliability
in handling different operational scenarios and system
dynamics.

• We propose a practical stability concept for the data-
driven LightGBM controller. The stability of the
controller is analyzed in detail to ensure its robustness
and reliability in spacecraft attitude control.
This research is organized as follows. In the next section,
the spacecraft attitude dynamic model is given. Further,
section III presents a brief review of feedback lineariza-
tion and introduces the proposed LightGBM controller,
ends with a stability analysis of the proposed LightGBM
controller. Numerical simulations and conclusions are
presented in Sections IV and V, respectively.

II. MATHEMATICAL MODEL OF SPACECRAFT ATTITUDE
The spacecraft model studied here is a small spacecraft
with three reaction wheels. There are two common ways
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TABLE 1. Notation and abbreviations in this research.

to describe the spacecraft attitude of a rigid body, Euler
angle and quaternion, which can inter transformed. The rep-
resentation of spacecraft attitude is mathematically expressed
by kinematic equations relating the angular position with
the angular velocity, and dynamic equations describing
the evolution of angular velocity or, equivalently, angular
momentum. Following Dwyer [21], [22], [23], [24], the
spacecraft attitude control can be represented by a sixth-order
nonlinear system which can be written as follows:

ζ̇ = Z (ζ )ω

H ω̇ = [p×]ω + τ (1)

where ω is the 3 × 1 angular velocity vector resolved along
the principal axes in a body-fixed frame with respect to the
orbit frame, ζ is the Gibbs vector of the Cayley-Rodrigues
attitude parameters [24], [25], [26], defined as follows:

ζ = tan
(

φ

2

)
q (2)

describing the result of a virtual rotation by φ radians about
a 3 × 1 virtual unit axes vector q (Euler axes), with the same
components q1, q2, and q3 along either the preselected inertial
reference axes or the body axes, so that qT q = 1; τ denotes
the 3 × 1 torques generated to drive the reaction wheels;
H stands the 3 × 3 positive definite inertia matrix of the
spacecraft; p symbolizes the 3×1 angular momentum vector
of the spacecraft relative to the inertial axes.

Furthermore, Z (ζ ) is the 3 × 3 fully invertible kine-
matical Jacobian matrix for the Cayley-Rodrigues parame-
ters [12], [25], [27], defined by:

Z (ζ ) =
1
2
(I + ζ ζ T + [ζ×]) (3)

where I is the 3×3 identity matrix. This definition is valid for
−π < φ < π Using this description, the momentum p can be

represented as a function of ζ defined by this formula [12]:

p(ζ ) = M (ζ )p0 (4)

where p0 denotes the total angular momentum, and the matrix
M (ζ ) shows the coordinate transformation from the inertial
frame to the body frame [12], expressed by:

M (ζ ) = 2(I + ζ T ζ )−1(I + ζ ζ T − [ζ×]) − I (5)

with [ζ×] is the 3× 3 skew symmetric matrix operator given
by the following representation [25], [27]:

[ζ×] =

 0 ζ3 −ζ2
−ζ3 0 ζ1
ζ2 −ζ1 0

 (6)

Note that M−1(ζ ) = MT (ζ ) = M (−ζ ).

III. CONTROLLER SYNTHESIS
A. CONSTRUCTION OF FEEDBACK LINEARIZATION
CONTROLLER
Consider the model of the spacecraft attitude represented by
(1), and as options for the state variables in the feedback
linearization, the vector components ζ and ζ̇ are selected.
Since the matrix H is invertible, our objective is to show that
by choosing ζ and ζ̇ as state variables, and by differentiating
the expression of ζ̇ the dynamics of a flexible spacecraft in
(1) can be represented by the following equation [12].

We choose the torque applied to the system in the form of:

τ = HZ−1(ζ )
(
−f (ζ, ζ̇ )

)
+ v (7)

which is obtained based on (1) as follows:

ζ̈ = Ż (ζ )ω + Z (ζ )ω̇ (8)

ζ̈ = Ż (ζ )ω + Z (ζ )H−1
(
[p×]ω + τ

)
(9)

ζ̈ = Ż (ζ )ω + Z (ζ )H−1[p×]ω + Z (ζ )H−1τ (10)

ζ̈ = Ż (ζ )Z−1(ζ )ζ̇ + Z (ζ )H−1[p×]Z−1(ζ )ζ̇+

Z (ζ )H−1τ (11)

ζ̈ = f (ζ, ζ̇ ) + Z (ζ )H−1τ (12)

where f : R6 → R3 which has the form of

f (ζ, ζ̇ ) = Ż (ζ )Z−1(ζ )ζ̇

+ Z (ζ )H−1[p×]Z−1(ζ )ζ̇ (13)

If we choose the control law in the form of (7), where v is
the new control input, we will have the new system dynamics
as follows

ζ̈ = v (14)

If we choose the new state variable as follows

x = (ζ, ζ̇ )T =

(
ζ

ζ̇

)
=



ζ1
ζ2
ζ3
ζ̇1
ζ̇2
ζ̇3

 (15)
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then, we have

ẋ = Ax + Bv (16)

where

A =

(
03×3 I3×3
03×3 03×3

)
,B =

(
03×3
I3×3

)
(17)

Therefore, it is clear that (7) is the feedback Linearization
controller of (1). Then, we can choose the control law in the
new coordinate v in the form of:

v = Kx (18)

by using standard linear control design methodology as LQR
or pole placement. Under this control law (18) in the new
coordinate system, we will have the control law in the old
coordinate system as (7), which is a nonlinear feedback
control law.

In this paper, without loss of generality, we use the pole
placement techniques. We choose the control law (18) which
satisfies:

vi = −ϑ2
n,iζi − 2ξiϑnζ̇i (19)

where ϑn,i denotes ith natural frequency, ξi denotes ith
damping ratio and i = 1, 2, 3.

B. CONSTRUCTION OF LightGBM CONTROLLER
LightGBM regressor is a powerful gradient boosting tree
(GBT) regressor that has the ability to synthesize data-driven
controllers based on a large amount of spacecraft attitude
data. LightGBM has the advantage of being highly scalable
and able to handle large amounts of data efficiently. This
makes it a valuable tool for spacecraft attitude control, where
large amounts of data must be processed in real-time to make
decisions. Overall, the use of LightGBM in spacecraft attitude
control has the potential to improve the performance and
accuracy of the system.

The input and output data used to train the LightGBM
regressor are generated by the closed-loop system without
uncertainty and disturbance. The system is controlled by
using the exact feedback linearization control law. The
training dataset consists of various initial conditions of the
system. This is done in order to obtain a reliable training
dataset for the LightGBM regressor. The same dataset is
also used as a testing dataset to evaluate the performance
of the trained LightGBM regressor. In other words, the
LightGBM regressor is trained using a simulation of the exact
feedback linearization control law and then tested on the
same simulation to compare its performance with the exact
feedback linearization method as a baseline. By using this
approach, it is possible to evaluate the effectiveness of the
LightGBM regressor in handling uncertainty and disturbance
that are present in the actual spacecraft attitude control
system.

In LightGBM, the input features are represented by a
vector of input variables denoted as ζ and ζ̇ , and the output
variable is labeled as τ , which is the torque in this case, that

is based on the exact controller. This notation is exactly the
same as defined before. The relationship between the input
and output variables is modeled using some probabilistic
distribution. The goal is to find a function τM (ζ, ζ̇ ) that
maps the input features to the output variable with minimal
error. This is formalized by introducing some loss function
L(τ, f (ζ, ζ̇ ) and minimizing it in expectation:

τM = argmin
f

E(ζ,ζ̇ ),τ [L(τ, f (ζ, ζ̇ ))] (20)

Themodel is designed to handle high-dimensional data and
can perform feature selection and dimensionality reduction.
It works by dividing the data into small subsets and
then building a tree-based model on each subset. The
model then combines the results of all the trees to make
the final prediction. The algorithm also uses a technique
called histogram-based gradient boosting, which reduces the
computational cost and memory usage.

Overall, the LightGBM controller provides a powerful
tool for spacecraft attitude control as it can handle high-
dimensional data and produce accurate predictions with the
help of a combination of loss functions, gradient boosting,
and evaluation metrics.

Algorithm 1 LightGBM Algorithm
1: Define the damping ratio ξi and natural frequency ϑi.
2: Construct the exact feedback linearization controller.

τ = HZ−1(ζ )
(
−f (ζ, ζ̇ )

)
+ v

where v is defined as follows:

vi = −ϑ2
n,iζi − 2ξiϑnζ̇i, i = 1, 2, 3

3: Prepare dataset generated by the closed-loop system of
a system without uncertainty and disturbance which is
controlled by using exact feedback linearization control
law

4: Split data into training and testing sets (80 : 20).
5: Initialize the LightGBM Regressor model.
6: Perform model training using training data.
7: Evaluate the model’s performance by employing R-

squared (R2) and Root Mean Square Error (RMSE) as
the evaluation metrics.

8: Utilize the trained model to acquire torque values based
on pre-defined input data.

τM (x) = τM (ζ, ζ̇ )

9: Return τM .

C. STABILITY ANALYSIS FOR LightGBM CONTROLLER
The LightGBM controller is basically a statistical machine
learning algorithm. We note that the statistical learning
process is performed in the training stage. When we apply
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FIGURE 1. LightGBM diagram.

the result of the training as the spacecraft attitude controller,
it is not statistical anymore. Therefore, we will use stability
analysis for a deterministic dynamical system to analyze
the stability (property) of spacecraft attitude closed loop
dynamics under the LightGBM controller.

The controller resulting from the LightGBM machine
learning algorithm can be chosen very close enough with the
exact controller τ (x) = τ (ζ, ζ̇ ). This can be easily understood
from the discussion in the previous section. Let the controller
result from LightGBM machine learning as:

τM (x) = τM (ζ, ζ̇ ) (21)

and let,

e(x) def
= τM (x) − τ (x) (22)

expresses the LightGBM controller error.
The closed-loop dynamics of the spacecraft attitude control

under the LightGBM controller will be in the form of:

ẋ = Ax + Bv+ Bz(ζ )H−1e(x) (23)

where A and B are given by (17) and v is given by (18). we can
then write (23) as follows:

ẋ(t) = (A+ BK )x(t) + δ(x(t)) (24)

where

δ(x(t)) = Bz(ζ )H−1e(x) (25)

Assumption 1: Let a positive constant M exist such as
∥δ(t)∥ < M. We can choose the parameter design of the
LightGBM such that M is small enough.

Proposition There exists a positive numberN such that the
closed loop solution of (23) has the following properties:

lim
t→∞

∥x(t)∥ < N . (26)

Proof: It is obvious by the fact that (A + BK ) is a
strictly stable matrix. Moreover, by observing the linearity
of (24), as long as we choose τM (x) which gives smaller
M , then, we can have smaller N. Thus, even though we
can not guarantee asymptotic stability for the closed-loop

system under the LightGBM controller, we can have a kind
of practical stability ‘‘ball of boundedness’’ by designing a
LightGBM controller with a smaller bound of error.
Further, we assume that there is uncertainty in spacecraft
inertia of the form

H∗
= H + 1H (27)

where 1H is the uncertainty and disturbance in the torque of
the form

τ ∗
= τ + τd (t) (28)

where τd (t) is the disturbance. Next, we will show that the
closed-loop systemwill have a total stability property.We use
(20), (7), (18) as the control law. It is not difficult to show
that the dynamics of the closed-loop system in the presence
of LightGBM controller error (22), uncertainty in the inertia
(27), and disturbance in the torque (28) will have the form

ẋ = ACL x + 1g(x(t), t), where ACL = A+ BK (29)

where 1g : R6
× R+

→ R6 expresses the effect
of LightGBM controller regressor error, uncertainty, and
disturbance, and ACL is a strictly stable matrix.

Following [11], we can see (29) as a system ẋ = ACL x with
perturbation term 1g(x, t). Here, following [11], we will use
the total stability concept.
Definition 1: [Total stability [11], Definition 4.13, Page

149]The equilibrium point x = 0 for the unperturbed system
is said to be totally stable if, for every ε ≥ 0, two numbers
β1 and β2 exist such that ∥x(t0)∥ < β1 and ∥1g(x, t)∥ <

β2 imply that every solution x(t) of the perturbed system
satisfies the condition ∥x(t)∥ < ε.
Further, we will restate an important result from [11] as

Theorem 1.
Theorem 1 (Theorem 4.14 [11], Page 150) If the

equilibrium point x = 0 of the unperturbed system ẋ = ACL x
is uniformly asymptotically stable, then it is totally stable.

We are in a position to state the main theorem which
guarantees the total stability property of the spacecraft
attitude origin point x = 0 under uncertainty and disturbance.
Theorem 2 The origin point x = 0 of (29) is totally stable.
Proof: Note that, the origin point x = 0 of (29) is the

equilibrium point of the unperturbed system

ẋ = ACL x (30)

The unperturbed system (30) is a time-invariant system or
an autonomous system. Therefore, since ACL is a strictly
stable matrix, the equilibrium point x = 0 of (30) will
be asymptotically stable. Further, because (30) is time-
invariant or autonomous, asymptotic stability will be identical
with uniform asymptotic stability. Further, the total stability
property of the origin point x = 0 of (29) follows directly as
a direct implication of Theorem 1.
Theorem 2 guarantees that the closed-loop system of
spacecraft attitude dynamics under the LightGBM controller
is totally stable despite uncertainty in inertia and torque
disturbance.
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FIGURE 2. LightGBM controller block diagram.

IV. SIMULATION AND DISCUSSION
Digital simulations were performed using Python program-
ming language (version 3.11) to compare the performance
of the three controllers. In order to show the performance of
the proposed controller, a large initial maneuvering deviation
is given, i.e., the rotation angle of 132.3436◦ with the
deviation axis (2, 1, 1)T . The parameter values utilized for the
simulation of the spacecraft’s attitude are:

p0 =

 5
5

−5

 (kg.m2.s−1) (31)

H =

87.212 −0.224 −0.224
−0.224 86.067 −0.224
−0.224 −0.224 114.562

 (kg.m2) (32)

For this example, we choose the same damping ratio ξi =

0.707, and the natural frequency ϑi is chosen as follows:

ϑ1 = 0.2 rad .s−1

ϑ2 = 0.25 rad .s−1

ϑ3 = 0.3 rad .s−1 (33)

A. SYNTHESIZING LightGBM CONTROLLER: TRAINING
AND TESTING
The synthesis of the LightGBM controller is presented in
this section. The LightGBM training and testing dataset is
generated from a closed-loop system without disturbance
controlled by an exact feedback linearization controller. The
controller’s performancewas evaluated based on the accuracy
of the prediction of the spacecraft attitude control system,
with evaluationmetrics such as R-squared, RMSE, andMAE.
The trained model was then used to predict the attitude
response of the spacecraft under various operating conditions.
The simulation results showed that the LightGBM controller
provided accurate predictions with a high degree of precision.
all of themodel training, testing, and simulations were carried
out using Python v3.11 and Python package LightGBM
v3.2.1.

TABLE 2. Evaluation Metric for various sample size (without uncertainty
and disturbance).

The dataset was generated based on 32,768 combinations
of initial conditions (32 for each ζ , and 1 for all ζ̇ ),
and 1001 timesteps, which yield 32,800,768 data points,
or data size. LightGBM training and simulations were carried
out with various data sizes to show the importance of
data size in LightGBM training, ranging from 1,000 to
32,800,768 in data size. The smaller datasets were generated
with fewer combinations of initial conditions, as well as
timesteps. For each model, LightGBM training was done
taking hyperparameters tuned as follows: (’max depth’:
6, ’learning rate’: 0.1, ’num tree’: 100), while the other
hyperparameters are left at their default values.

In evaluating the performance of the LightGBM controller,
various evaluation metrics such as R-squared, root mean
squared error (RMSE), and mean absolute error (MAE) were
utilized. These metrics were used to measure the accuracy of
the predicted values compared to the actual values. R-squared
is a statistical measure that indicates how well the predicted
valuesmatch the actual values. RMSE is the square root of the
mean of the squared differences between predicted and actual
values. MAE is the mean of the absolute differences between
predicted and actual values. A higher R-squared value and
lower RMSE and MAE values indicate higher accuracy and
a better fit of the data-driven controller to the actual data.

The analysis of the experimental results reveals interesting
trends in the R-squared values with varying data sizes.
It is observed that as the data size increases, the R-squared
value, which measures the goodness of fit of the LightGBM
controller, improves significantly. This signifies that a larger
dataset allows for better accuracy and predictive performance
of the controller. Starting from 10,000 data size, a notable
enhancement is observed in the R-squared value, surpassing
the threshold of 0.90. This indicates that the model explains
more than 90% of the variance in the spacecraft attitude
control data. This high R-squared value suggests that the
LightGBM algorithm is effective in capturing the underlying
patterns in the data and predicting spacecraft attitudes with a
high degree of accuracy.
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FIGURE 3. Evaluation metrics for various sample size.

On the other hand, the Root Mean Squared Error (RMSE)
andMaximumAbsolute Error (MAE) values tend to decrease
as the sample size increases. This observation suggests that
the performance of the model may increase slightly with
larger sample sizes, as indicated by the smaller difference in
train-test performance. However, it is important to note that
the increase in RMSE and MAE values may still be within
acceptable bounds, depending on the specific application and
tolerance for errors. From Section III-C, it is proven that we
can generate a smaller M, which is equivalent to MAE, with
increasing data size.

Overall, the high R-squared value and the trends observed
in RMSE and MAE values indicate promising results for
our proposed LightGBM algorithm for spacecraft attitude
control. However, further analysis and validation are war-
ranted to fully understand the model’s performance and
potential limitations and to ensure its suitability for real-
world applications.

These results suggest that the LightGBM controller is
capable of accurately predicting the torque output based
on the input variables with a high degree of confidence,
as evidenced by the high R-squared values and low RMSE
values. The model became more capable as the data size
increased. These results demonstrate the effectiveness of
the LightGBM controller in predicting the behavior of the
spacecraft attitude control system.

TABLE 3. Maximum overshoot and settling time for various sample size.

FIGURE 4. LightGBM controller block diagram with uncertainty 1H and
disturbance τd .

B. SIMULATION OF LightGBM CONTROLLER
The simulation using the LightGBM controller shows that the
closed-loop system is stable as we have shown in the previous
section. The simulation was conducted with different data
sizes, ranging from 1 thousand to 32 Million data points.
In addition to that, we also evaluate the transient property
of the closed-loop dynamics in this simulation. Evaluation
metrics use two parameters for the transient property. First,
maximum overshoot which is defined as the percentage of the
largest overshoot value with respect to the initial condition of
the respective attitude, namely

maximum overshoot = max
i=1,2,3

|ζi,peak |

|ζi(0)|
× 100% (34)
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FIGURE 5. Spacecraft attitude system using LightGBM Controller without and with uncertainty 1H and disturbance τd .

where |ζi,peak | is the maximum absolute value sof the i-th
attitude.
Second, we use 2% settling time for another evaluationmetric
for transient performance, ts, which defined as follows

ts = max
i=1,2,3

ts,i (35)

where ts,i is 2% settling time for attitude i, i.e. if for all t ≥ ts,i
imply |ζi(t)| ≤ 2%|ζi(0)|.
The analysis of the simulation results with various data

sizes, ranging from 1,000 to 32 million, reveals interesting
trends in the maximum overshoot and settling time with
varying data sizes, as shown in Table 3. It is observed that
as the data size increases, the performance of the LightGBM
controller improves in terms of maximum overshoot and
settling time. This indicates that a larger dataset allows for
better learning and generalization of the controller.

Specifically, At a data size of 10,000, there is a noticeable
improvement in both maximum overshoot and settling time
as the dataset grows larger. The controller adapts more

effectively to the system dynamics and achieves better control
performance.

However, after reaching a data size of 10,000, the perfor-
mance improvement becomes less significant. The overshoot
values consistently fall within the range of 4.727 to 6.238%,
and the settling time values range from 26.6 to 29.0 seconds.
The controller has already learned the underlying patterns and
dynamics of the spacecraft attitude system from the available
data. As a result, increasing the data size further does not lead
to a significant reduction in maximum overshoot and settling
time.

This analysis highlights the diminishing effects of increas-
ing the data size beyond a certain threshold, in terms of
maximum overshoot and settling time. Therefore, it is crucial
to strike a balance between the amount of data collected and
the desired control performance.

These results highlight the importance of having an
adequate amount of data for training and validating the
controller. However, it is also important to consider the trade-
offs between data size and computational resources, as larger
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data sizes may require more computational power and
storage. Further analysis could also explore the optimal data
size for achieving the best performance in terms of overshoot,
settling time, and other relevant metrics, as well as investigate
the potential impact of data quality, data preprocessing
techniques, and other factors on the controller’s performance.

C. SIMULATION OF LightGBM CONTROLLER WITH
UNCERTAINTY AND DISTURBANCE
The ability of the LightGBM controller to handle dis-
turbance and increased inertia is crucial in real-world
applications where spacecraft may encounter uncertainty
and disturbance. The robustness of the controller’s perfor-
mance, as demonstrated by its ability to maintain effective
control even in the presence of uncertainty and distur-
bance, underscores its reliability and suitability for practical
implementation in spacecraft attitude control systems. The
spacecraft attitude system using LightGBM controller with
uncertainty and disturbance is presented in Fig. 4, and is
defined in section III-C.

This section investigates the robustness of the proposed
LightGBM Controller approach. In order to show controller
robustness, the simulation of the LightGBM controller is
carried out under conditions of a 50% increase in inertia,
with the torque disturbance simulated using white noise by
a normal Gaussian distribution with a mean value of zero and
a standard deviation of 10%, using a data size of 32,800,768
data points. The simulation result is presented in Fig. 5.

The result reveals that the controller is capable of
handling uncertainty and noise effectively, exhibiting robust
performance. 50% increase in inertia and 10% Gaussian
white noise result in slower settling time and higher overshoot
by 24.3%, and 22.2%, respectively, as compared to spacecraft
attitudes without uncertainty and disturbance. Even though,
it is evident from Fig. 5 that the system with uncertainty
and disturbance still achieves stability. The analysis results
provide valuable insights into the controller’s performance
and its resilience to perturbance, validating its effectiveness in
mitigating the adverse effects of uncertainty and disturbance.
Further investigations could be conducted to explore the
controller’s performance under different types and levels
of uncertainty and disturbance, as well as evaluate its
performance in comparison to other control methods in
similar conditions.

Overall, the findings highlight the promising potential
of the LightGBM controller as a data-driven approach for
spacecraft attitude control in the presence of perturbances
such as inertial uncertainty and torque disturbance.

V. CONCLUSION
Based on the points discussed in our paper, we can conclude
that our proposed data-driven LightGBM controller for
spacecraft attitude control offers a promising approach
that overcomes the limitations of traditional model-based
controllers. The synthesis process from spacecraft attitude
control data using feedback linearization allows for robust

and scalable control performance. The extensive validation
through diverse test scenarios and simulations confirm the
effectiveness and reliability of the proposed LightGBM
controller in handling different operational scenarios and
system dynamics. Moreover, the practical stability concept
and total stability concept proposed ensures the robustness
and reliability of the data-driven LightGBM controller
despite the existence of uncertainty in spacecraft inertia and
disturbance in spacecraft attitude control.

Furthermore, the results obtained from using the proposed
LightGBM controller with 32,800,678 data points demon-
strate its effectiveness in handling challenging conditions
of uncertainty and disturbance. The controller shows robust
performance, indicating its capability to handle uncertainty
and disturbance in spacecraft attitude control applications.

To elaborate further, the results suggest that utilizing a
data-driven approach like LightGBM can provide a more
flexible and adaptable control strategy for spacecraft attitude
control compared to traditional methods. The ability to
effectively handle uncertainty and disturbance in the system
can improve the spacecraft’s performance and reliability.
Additionally, the use of a large amount of data in training
the controller can enhance its performance, as it can capture
a wider range of scenarios and variations in the system.
Future research is to explore the impact of hyperparameter
tuning and optimization techniques on the performance of
the controller. This can further improve the controller’s
performance and robustness.
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