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ABSTRACT Deep learning (DL) techniques can significantly improve successive interference cancellation
(SIC) performance for the non-orthogonal multiple access (NOMA) system. The NOMA-orthogonal fre-
quency division multiplexing (OFDM) system is considered in this paper to develop a hybrid deep neural
network (HyDNN) model for multiuser uplink channel estimation (CE) and signal detection (SD). The
proposed HyDNN uses a combination of a bi-directional long short-term memory (BiLSTM) network and a
one-dimensional convolutional neural network (1D-CNN) to optimize errors in the system. The extraction of
input signal characteristics from OFDM is carried out using the 1D-CNN model and fed into the time series
BiLSTMnetwork to infer the signal at the receiver terminal. The HyDNNmodel learns through the simulated
channel data during offline training. To optimize the loss during learning the model the Adam optimizer is
utilized. After successful training, the transmitted symbols in the online deployment are instantly recovered
with optimal prediction rates by using the proposed HyDNN model. In comparison to the traditional CE
and SD method for the NOMA scheme and other existing DL models, the proposed technique demonstrates
satisfactory performance enhancements. In addition, the simulation outcomes show robustness with different
training parameters such as minibatch sizes and learning rates.

INDEX TERMS 1D-CNN, BiLSTM, symbol error performance, uplink NOMA, OFDM, multiuser signal
detection (SD).

I. INTRODUCTION
The non-orthogonal multiple access (NOMA) scheme has
been acknowledged as an effective method for improving
spectral efficacy and system performance [1], [2], [3], [4].
The power domain and code domain are two subtypes of
NOMA. According to the separation among base stations
(BSs) and all users (Us) in the NOMA, the power domain
might receive low or high transmission power allocations.
By allowing the simultaneous sharing of subcarriers between
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Us with perfect channel conditions and those with imperfect
channel conditions, NOMAmaximizes the usage of available
bandwidth. As NOMA systems combine signals from multi-
ple Us, inter-user interference must be canceled to decode the
signal reliably at the receiver terminal. The state-of-the-art
multiuser detection is performed at the detectors of NOMA
systems by successive interference cancellation (SIC) with
the variations in power domain among Us [5]. Information
from various Us is decoded successively in decreasing order
of signal power during the SIC operation depending on
the channel state information (CSI) [6]. It is challenging to
acquire CSI in NOMA due to interference from pilot symbols
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used for channel estimation (CE). It may drastically reduce
the accuracy of conventional CE procedures, including max-
imum likelihood (ML), least squares (LS), and minimum
mean square errors (MMSE).

To overcome the limitations of the above methods, deep
learning (DL) has attracted with great contributions to the
field of wireless communications [7] such as CE [8], signal
detection (SD) [9], constellation design [10], and modulation
recognition [11]. Furthermore, DL applications also have
been investigated in 6G system [12], [13] like mmWave [14],
reconfigurable reflecting surfaces (RIS) [15] UAV commu-
nications [16], respectively. The authors in [17] developed
a unique codebook-based architecture for RIS-assisted com-
munications that successfully overcomes the issues of high
implementation complexity and significant pilot overhead.

Due to NOMA potential as a future wireless network tech-
nology and the aforementioned uses of DL solutions, current
research on DL based SD in NOMA-involved systems has
gained attention [18], [19], [20]. Using a deep neural net-
work (DNN), a system for estimation of channel parameters
of orthogonal frequency-division multiplexing (OFDM) and
detecting signals were given in [21]. The authors demon-
strated a notable improvement of the performance in terms
of symbol-error rate (SER) analysis. In [22], a study on sig-
nal detection employing the NOMA technique is presented,
which employed DNN based fully-connected model. A simi-
lar neural network structure was previously proposed in [21].

By utilizing effective parallel computing techniques, the
convolutional neural network (CNN) is able to extract better
fundamental properties underlying the channel matrix from
the vast amount of data and offers the ability to estimate
the channel more precisely with less complexity [23]. This
study, utilized 1 dimensional (1D)-CNN model due to the
following advantageous reasons over 2D-CNN [24]: (1) A
1D-CNN has much less time complexity than a 2D-CNN
under comparable circumstances (same design, network, and
hyperparameters), (2) the training hardware demand of 2D-
CNN is special configuration (such as cloud computing and
GPU) whereas 1D-CNN training can possible quite quick
using any CPU structure over a conventional computer, (3)
Compact 1D-CNNs are highly suited for real-time and cost-
effective implementation because of their low computing
requirements, particularly on mobile or handheld gadgets.
A CNN technique was proposed in [25] for NOMA system to
instantly decode input from numerous Us in a cluster without
the usage of conventional signal processing. In [26], the
authors proposed 2D-CNN long short-term memory (LSTM)
based CE for the NOMA-OFDM system where the proposed
technique is applied for the downlink NOMA scenarios and
for CNN model flatten layers was used for output vectors.
The proposed study achieved a marginal performance than
others methods. To solve the imperfect CSI and Us section
problems, in [27], authors proposed a CNN-LSTM based
downlink NOMA system. The proposed system analyzed the
outage probability with a focus on imperfect and perfect CSI.

A feed-forward NN extension known as a recurrent (RNN)
may accept input sequences of different lengths. RNNs have
the ability to remember the memory of past events and use
this data to forecast future values [28]. A form of RNN
called LSTM is built with a unique gating mechanism control
for accessing memory cells [29]. In [30] authors proposed
a three-stage joint channel decomposition and prediction
framework based on the two-timescale property and the chan-
nel prediction to get the CSI of the time-varying channels
in a RIS-assisted system. Additionally, create a new NN
structure termed sparse-connected-LSTM to perform channel
decomposition and prediction. For an OFDM-NOMA sys-
tem, LSTM-based CE and SD were also proposed in [20].
The four-layered DL architecture, which consists of one input
layer, two LSTM hidden layers, and one output layer, was
assessed for bit-error-rate analysis. LSTM based CE and SD
are carried out for multiuser NOMA system in [31]. The
presented approach evaluated the results based on different
cyclic prefixes (CP) and pilot numbers. BiLSTM network is
also practical in sequence classification as the data flow in
both directions compared with LSTM. Another related study
in [32], proposed Volterra-aided CNN and LSTM for mitigat-
ing nonlinearity and recovering transmitted signals in visible
light communication channel. CNN is used for extracting the
implicit feature of channel impairments and LSTM is used for
memory sequence prediction. In contrast, our study focused
on 1D-CNNwith BiLSTM structure for robust feature extrac-
tion for radio frequency NOMA communication system. The
motivation behind BiLSTM is that it offers additional training
capability as the output layers receive information from past
(backward) and future (forward) instances simultaneously to
provide better accuracy as compared to LSTM [33]. As the
flow of information in the BiLSTM network grows, the
architecture is able to extract more features from the input
data and improve the training capability [34]. According to
the experiment results from the study in [35], compared the
performance of LSTM and BiLSTM, where BiLSTM has a
greater capacity for feature extraction. Our previous study
in [36], proposed a CE and SD system based on a BiLSTM
network for achieving higher SER output performance. The
CE and SD are significantly impacted by the performance
in the aforementioned studies. In the NOMA-OFDM based
communication systems, the combination of 1D-CNN and
BiLSTM may be a potential method to attain high-accuracy
performance. Motivated by the above significant advantages
of 1D-CNN and BiLSTM and the research gap, in this study,
we propose a hybrid (HyDNN) for multiuser uplink CE and
SD in NOMA-OFDM systems. The HyDNN consists of a
1D-CNN and a BiLSTM where for assuming a large amount
of training data, the 1D-CNN model is added in front of
BiLSTM for extraction of channel features thus the combined
model improves the learning performance and enhanced the
SER. The proposed HyDNN-based receiver solves the SER
performance problems of conventional methods more effi-
ciently.
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The following is a summary of the study key contributions:

• The HyDNN framework is used in this study to develop
the uplink NOMA-OFDM CE and SD system over the
Rayleigh fading channel. The NOMA-OFDM problem
is solved by the design of the combined 1D-CNN fea-
ture extractor and BiLSTM layer. The 1D-CNN model
is performed to extract features of the received signal
and information to the BiLSTM model is fed for the
inference of the original signal at the receiver terminals.

• We segmented the data of the received signals using
a 1D-CNN based feature extractor, taking into account
inter-carrier interference (ICI) and inter-symbol interfer-
ence (ISI). The BiLSTM layers are offered for handling
the significant ISI generated by the multipath effect
and due to the bi-directional structure of BiLSTM,
it provides additional training capability for learning
the 1D-CNN features with forward and backward direc-
tions. Therefore, the output layers receive more feature
information for successful signal demodulation and pro-
vide better prediction accuracy.

• After offline training, the proposedmodel can be applied
to a multi-user NOMA-OFDM system for online predic-
tion. The concept is validated by employing two users in
the simulation system.

• Finally, the effectiveness of HyDNN is performed
by calculating SER at different signal-to-noise ratios
(SNRs) using the Monte Carlo simulation. The simu-
lation output is compared by learning the model with
different minibatch sizes and learning rates for perfor-
mance analysis. Simulation results have proved that the
efficiency of the proposed method is comparable to the
conventional NOMA-SIC method outage performance.
Moreover, the proposed HyDNNmodel outperforms the
CNN and BiLSTM models, respectively.

The rest of this article is structured as follows: Section II
describes the system’s data transmission and channel con-
cept, while Section III explains the specifics of the proposed
HyDNN model. Section IV presents the simulation findings
and complexity. The finding summary is finally presented in
Section V.
Notations:The boldface letter in lower case and upper case,

respectively, stands for a vector andmatrix; The ith element of
the vector x is represented by the subscript on the lowercase
letter xi; (·)H , (·)−1, ⊗ is the Hermitian transpose, inverse,
hadamard product, respectively; E represents the statistical
expectation.

II. DATA TRANSMISSION AND SYSTEM CHANNEL
MODEL
High spectral efficiency in wireless communications is pro-
vided by the multi-carrier modulation technology known
as OFDM. Binary inputs are transformed into phase shift
keying modulation for mapping to D parallel data streams
as part of the modulation process for OFDM. Let Xa[q]
represent the qth subcarrier’s ath transmit symbol where a

FIGURE 1. The system architecture of NOMA multiuser data transmission
from the Us to BS.

= 0, 1, 2, . . . ,∞ and q = 0, 1, 2, . . . ,Ns− 1. Transforming
signals from the frequency domain to the time domain is
done using the inverse fast Fourier transform (IFFT). To avoid
interference between symbols, a cyclic prefix (CP) is intro-
duced to the signal. Therefore, the transmitted symbol can be
thought of as follows:

Xa(n) =
Ns−1∑
q=0

Xa[q]ej(2πqn/Ns) n = 0, 1, 2 . . . , Ns − 1

(1)

where Ns is the FFT length.
In this paper, an uplink NOMA system is assumed. The

multiuser uplink NOMA system, which comprises of a BS
and two Us (Uu, u = 1, 2, . . . .N ), is depicted in Fig. 1. In this
system, it is assumed that all the nodes are constructed with
individual antenna and both Us transmit data at the same time
with identical frequency resources. The BS receives a super-
position of data symbols from twoUswith channel noise from
the transmitter, which employs a traditional NOMA-OFDM
scheme. The power allocation is done with the assumption
that the transmitter and receiver are aware of CSI. Moreover,
for the estimation and detection of the channel, a pilot symbol
is inserted into the system. On the other hand, the multiuser
side employs the HyDNN approach for flexible CE and SD.

For the NOMA system, the superposition of data symbols
for the N Us can be expressed as follows [22]:

y =
N∑
u=1

√
PuXu, (2)

where Pu and Xu are defined as the power allocation and the
transmitted baseband symbol for Uu.

If the OFDM system is formatted with K -subcarriers and
has N Us, the following is an expression for the received
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signal on subcarriers k:

y(k) =
N∑
u=1

√
Pu(k)hu(k)Xu(k), (3)

where the FFT of the impulse response of a multipath channel
and the received frequency-domain signal respectively, are
hu(k) and y(k). Xu(k) is a representation of Uu’s transmitted
symbol.

For the k subcarriers, at the receiver, the white additive
Gaussian noise (AWGN) W (k) is denoted by the sym-
bol CN (0, σ 2). Following the addition of the AWGN, the
received signal may be written as follows:

y(k) =
N∑
u=1

√
Pu(k)hu(k)Xu(k)+W (k). (4)

The power allocation Pu for the u Us with k subcarriers is
rewritten as Pu(k). However, the total power Pw is allotted to
each of the k subcarriers in the OFDM. The following is an
expression for the Uu’s power allocation coefficient:

δu(k) =
Pu(k)
Pw

. (5)

The following formulation can be used to express the
constraint of equation (5) [26]:

N∑
u=1

δu(k) = 1. (6)

Therefore, the impulse response of a multipath channel
FFT hu(k) for the Uu is stated as follows [37]:

Hu(t) =
M∑
m=1

υu,mη(t − τu,m), (7)

where υu,m and τu,m, respectively, stand in for the complex
channel gain and associated time delay for the Us’ mth mul-
tipath parameters. The channel is represented by Rayleigh
fading in the proposed work, where the total number of
determined pathwaysM is taken into account to be 20.

The signal is estimated and detected by the CSI using
conventional SIC techniques like LS and MMSE [38]. Addi-
tionally, ML detectors are utilized to predict signals since Uu
signals are given greater power [39]. For the uplink CE of
LS and MMSE, pilot data transmission is employed. So the
conventional LS CE of (4) can be expressed as follows [38]:

ĥLS =
yp
Xp

, (8)

whereXp is the transmitted pilot sequencesP = p1, p2, . . . pN
and yp is the received pilot data for estimation of channel
parameters. In addition for estimation of MMSE, the correc-
tion coefficientRhhLS is calculated. The estimation of MMSE
can be formulated as follows [38]:

ĥMMSEu = RhhLSR
−1
hLShLS

ˆhLS

= Rhh

(
Rhh + σ 2

s (XpXp
H )−1

)−1
ĥLSu, (9)

FIGURE 2. Block-type pilot signal insertion structure.

where the signal is transmitted from the uth transmit antenna,
ĥMMSEu is theMMSE estimated for the channel, ĥLSu is the LS
estimation of the uth transmit antenna, and AWGN channel
noise variance is σs2 .

These covariance matrices can be expressed as follows:

Rhh = E{hhH }, (10)

RhhLS = E{hĥLS
H
}, (11)

RhLShLS = E{ĥLSĥLS
H
}, (12)

where (10) is defined as channel autocorrelation matrix of
frequency-domain with expectation operator E, (11) is the
cross-correlation among the actual channel and predicted
channel which is estimated via LS estimator with the size of
FFT × pilot, P. MMSE estimator can increase the accuracy
of CE because it considers the impact of noise and it needs the
prior information on channel characteristics which enhances
the computational complexity compared to LS. However,
each U transmits a pilot symbol P, to the BS, and this pilot is
used for the CE. The second U signal, y′2(k), can be calculated
after the first U signal has been estimated which can be
formulated as follows:

y2′(k) = y(k)−
√
P1ĥ(k)X̂1(k). (13)

A. INSERTION OF PILOT DATA TO THE OFDM
The pilot signal is known as symbols which are inserted on
OFDM subcarriers to get the information for the channel
response. The operation of CE and SD is done based on
these pilot responses. Block-type pilot insertion strategy that
is most widely utilized and adopted [40]. Fig. 2 shows the
design of a block-type insertion of the pilot, where the green
and white squares indicate the value of the pilot signal and
data signal, respectively.

The pilot and data symbols of block-type are individually
inserted between each pair of subsequent OFDM signals.
Either just pilot or only data symbols are contained in the
single OFDM signal. Additionally, as shown by the obtained
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FIGURE 3. Training input dataset of the proposed model.

pilot and data responses, the signal is detected at the conclu-
sion of two successive OFDM symbols [41].

III. PROPOSED HyDNN MODEL
In this paper, the proposed HyDNN network is formed by
combining 1D-CNN and BiLSTM models. The 1D-CNN
model output is cascaded with the BiLSTM model (i.e, the
input of the BiLSTMmodel is the model output of 1D-CNN).
The receiver objective is to retrieve the sent symbols for mul-
tiuser usage according to the presented model at the BS. The
proposed network is trained with the channel characteristics
using the OFDM simulation data which are generated with a
certain channel profile.

A. DATASET PREPARATION
To ensure optimal CSI and SD performance, data generation
and model construction of the DL network are very crucial
points. In this subsection, the dataset generation procedure is
discussed.

In this paper, the subcarrier length is 64 of the
OFDM system for the generation of the training dataset
is considered. The data is transmitted from an OFDM
packet and 1 OFDM packet contains 3 OFDM sym-
bols such as 1 data stream (ydu1, ydu2, ydu3, . . . ..yduM )
and 2 pilot data symbols (ypu1, ypu2, ypu3, . . . ..ypuM ),
(y′pu1, y

′

pu2, y
′

pu3, . . . ..y
′
puM ), respectively as shown in Fig. 3.

In themultiuser case, the first 2 OFDM symbols are generated
by each U as 2 pilot sequence, and the third OFDM symbol
occupies the transmitted 1 data symbol. The previous section
II-A provides a description of the specifics of pilot data
insertion. Considered is the quadrature phase shift-keying
(QPSK) modulation, which uses 2 bits per subcarrier for
each symbol. In order to create an OFDM packet with fixed
pilot sequences, QPSK random data symbols are used in the
training data preparation. The Rayleigh fading channel is
used to send the OFDM packets to the receiving end. The BS
on the receiving end receives the combined OFDM packet
from all Us together with extra AWGN noise in order to
decode the OFDM packets.

Algorithm 1 Training Data Generation Process

1: Initialize data: T is total packet, N is number of OFDM
subcarriers, Nsc is pilot subcarrier, Mcp is the CP length,
EdB is SNR value
2: for each EdB value in EdB
3: for n = 1: T, generate training data for each class, Nl .
4: Randomgeneration of Rayleigh channel coefficients and
AWGNW noise.
5: Generate fixed pilot symbols and insert them to compose
the pilot-OFDM symbol.
6: Randomly generate Nlog2Mu, for Us u = 1, 2, . . .N
bits and map them Xu by Mu-ary modulation. Then obtain
y symbols according to Eq. (2).
7: According to Eq. (4), calculate the received signal
y transmission through Rayleigh channel coefficients in
step 4, and based on the y, obtain the (YRedu ,Y Imdu ,Y Repu ,Y Impu )
8: end for
9: end for
10: Outputs (YRedu ,Y Imdu ,Y Repu ,Y Impu )
11: Save the generated data

By constructing a feature vector called F, the received
OFDM packet is saved as a sample for the training data set.
The real, Re, and imaginary, Im values of each symbol in the
OFDM packet are combined to form the feature vector F. The
amount of the training sample is equal to the product of the
total number of data packets (T ) and the total number of labels
(Nl). The proposedHyDNNnetworkmay be taught to recover
data on any subcarrier k by employing the corresponding
L(k) in the training process. Multiuser transmission symbols
are assigned to a single integer value label for classification.
There are a total of 24 combinations or labels available in
the system for Us transmitting QPSK symbols. However,
for Nl = 16, the entire label may be written as L(k) =
1, 2, 3, 4 . . . ..Nl . 1 OFDM packet has three OFDM symbols,
2 active Us, and a total input size of 384 as the 64 subcarriers
are taken into account. Data samples totaling 50000 × Nl =
800000 are created for training, using 50000 data packets.
The whole generated data sample is divided into two portions,
such as train and validation data size, in order to create the
model as effectively as possible. The size of the training data
sample is (4/5), or 640000, while the validation data sample
is (1/5), or 160000. The process of training data generation
is summarized in the Algorithm 1.

B. 1D CONVOLUTIONAL NEURAL NETWORK
DESCRIPTION
The proposed 1D-CNN network is depicted on the left side in
Fig. 4. 1D-CNN architecture model for extraction of signal
features is used. The input layer is fed into an OFDM data
symbol with an input dimension equal to the quantity of fea-
tures in the input. Convolutional 1D, ReLU, and normalizing
layers are the following layers. Every neuron in the convolu-
tional layer gets input characteristics from a rectangular area
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of the previous layer, resulting in a rectangular grid of neurons
in this layer. In order to condense the output of the convolu-
tional layer into a single vector, a global average pooling 1D
layer is utilized last. The goal of the 1D-CNN network is to
local feature extraction and through the sharing parameters
reduce the number of weights. Thus, the calculation of the
overall network is effectively reduced by 1D-CNN.

C. BiLSTM NETWORK DESCRIPTION
On the right side of Fig. 4 the BiLSTM model framework
is illustrated. The motivation for proposing the BiLSTM
network is as follows. The unidirectional LSTM networks
perform sequences in the past, without considering the future.
This is due to the fact that unidirectional LSTM only retains
information from earlier time steps since it only receives
input from the past [42]. On the other hand, the BiLSTM
is comprised of the forward (one from past to future) and
backward (one from future to past) directions of the uni-
directional LSTM. The input flows both ways, allowing it
to utilize both sides of the information, offering additional
training feature extractions and improving the prediction per-
formance. Fig. 5(a) and (b) display a schematic representation
of the internal cell architecture of the unidirectional LSTM
and BiLSTM, respectively. BiLSTM hidden, fully connected,
softmax function and classification layers are among the
4 layers that make up the proposed BiLSTM model. There
are 100 hidden units used to implement the BiLSTM hidden
layer. The fully connected layer is executed with a 16 number
of classes. The outputs for the end layer are obtained by using
the softmax function. The classification layer is used in the
final layer to convert the output to a vector probability.

D. MATHEMATICAL OPERATION OF CNN-BiLSTM
Input Layer: The input for 1D-CNN is comprised of the
sequence of real and imaginary values with corresponding
labels. Let the input sequence features matrix of F=[S1Re ,
S1Im , S2Re , S2Im , . . . , SNRe , SN Im ], which is composed of two
numerical values together and their label classes. The ith
output of the sequence matrix is Si, so that S0=F . Each
sequence contained 384 real, Re, and imaginary, Im values
and which represent the label,Nl . The dimension of 384×1 is
assumed to represent the size of the input features in the input
layer. The input layer of the CNN is fed the two numerical
values of sequence features with its label from the generated
dataset, where there are the same number of features in the
input data as the input size.
Convolutional 1D Layer (i = 1): The convolutional layer

function is fed to the sequence inputs and extracts local
features from it. A group of learnable filters makes up the
parameters for the convolutional layer (k×s, where k denotes
the kernel size and s denotes the dimension of the input data).
A total of 32 filters in 3 × 3 different sizes are used in the
convolutional layer for the feature extraction. Accordingly,
the output feature matrix Si can be expressed as follows:

Si = f (Si−1 ⊗ wi + bi), (14)

where wi is denotes weight for ith layers and bi is denotes the
bias for ith layers. The ReLU (rectified linear unit) activation
function is used in the next layers which is a non-linear
or piece-wise linear function. The ReLU function output is
directly input if it is positive, else, the output will be 0. The
mathematical formulation of the ReLU function is as follows:
f (x) = max(0, x).
1-D Global Average Pooling Layer (i = 2): To minimize

the information dimension and the likelihood of network
overfitting, the pooling layer is primarily utilized to compress
the features that the convolutional layer has extracted. A 1-D
global average pooling method is used in this study where the
main role of this layer is the reduction of sequence features
computational time from prior hidden layers. The maximum
of the prior features matrix is produced by the pooling layer.
As a result, the output feature matrix Si can be written as
follows:

Si = fp(Si−1) (15)

where the pooling function is fp. The dimension of S2 ism/z×
n which is obtained from the pooling layer, where z stands in
for the current layer’s scale value in the pooling layer, the
input data time steps are denoted by m, and the quantity of
filters is defined by n.
BiLSTMLayer (i = 3):The input gate, output gate, and for-

get gate make up a BiLSTM cell. Each time slot sequence into
and out of the cell is controlled by these three gates. As the
BiLSTM network flows the information in both directions,
more training features from both directions are recorded for
mapping Us transmitting in the successive time slot. The
mathematical formulation of BiLSTM is as follows. For input
signal S2 at the current time step t , the calculation of BiLSTM
layers in both directional flows can be expressed as follows:

−→
h3f = σ (W3f S2t +W3f h3t−1 + b3f ), (16)
←−
h3r = σ (W3r S2t +W3r h3t+1 + b3r ), (17)

where σ is the activation function, the time steps of forward
and backward represent t − 1 and t + 1, the hidden state
of previous and next are h3t−1 and h3t+1 , respectively, the
weights and learnable bias of both directions is W3f and W3r
and b3f and b3r , respectively, and finally, the forward and

backward direction LSTM network outputs are
−→
h3f and

←−
h3r

respectively. Therefore, the output S3 of BiLSTM can be
formulated as follows:

S3 = σ (WS3
−→
h3f ⊕WS3

←−
h3r + bS3 )

= σ (WS3 h̃3t + bS3 ), (18)

where the output weights of the BiLSTM network are WS3 ,
the learnable parameter of BiLSTM output bias is bS3 , the
concentration of the hidden state at both directions of BiL-
STM is h̃3t .
Fully Connected Layer (i = 4): The fully connected

layer is very important and its work is to classify whereas a
method of activation, the softmax is chosen. Particularly, the
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FIGURE 4. The proposed HyDNN model architecture connection of its different layers: the 1D-CNN network structure is on the (left
side) and the BiLSTM network structure is on the (right side).

FIGURE 5. Internal cell structure of one layer: (a) LSTM; (b) BiLSTM.

final classification is performed by the fully connected layer.
Here, the model estimates the probability that each sample
presently belongs to each class and then derives a features
expression (Ypred ) that can be stated as follows:

Ypred (i) = f (L = li|S3; (W , b)) (19)

where the features from the BiLSTM layer are S3 and the soft-
max activation function is f (·). li represents the calculation
output of the ith classes of the input data, and the weight and
bias value are represented byW and b, respectively.

The cross-entropy operation calculates the cross-entropy
loss for single-label and multi-label classification tasks
between network predictions and target values. When work-
ing with models of output probabilities, cross-entropy is
typically the best option. Additionally, L2 regularization can
be seen as a successful compromise between locating small
weights and lowering the cost function [43]. Cross-entropy
and L2 regularization are therefore used to avoid overfitting.
Reducing the computation of loss is the goal of training the
model that is formulated as follows:

Loss(W , b) = −
ns∑
i=1

c∑
t=1

(Y (t)(i) ∗ log(Y (t)
pred (i))+

λ

2

ns∑
i=1

W 2
i

(20)

where (Y (t)(i) stands for the prospect of the known goal,
(Y (t)
pred (i)) is the probability that the ith sample belongs to the

tth class, the sample numbers is ns, the class size is c, and
finally, λ is used to define the regularization coefficient of
L2. The Adam optimization technique is applied to reduce
the loss [44].

E. HyDNN MODEL TRAINING AND TESTING PROCESS
Based on the design and data generation of the proposed
DL network architecture, the training procedure is done in
the offline. The offline training of the proposed HyDNN
model is shown in the upper part of Fig. 6. The generated
dataset is split into two portions: training and validation for
learning of the model. According to Fig. 6 in the upper
part, the proposed HyDNN model is loaded as sequential
inputs of the training and validation data to the input layer
of the 1D CNN model and the corresponding labels as
supervised information. The dimension of sequence input of
CNN is 384× 1.

The input layer is fed into these sequential data with label
values together. The vector of input features is then learned
by the convolutional 1D layer with the learnable parameters
(weights=3×384×32 and basis=1×32). Then the learnable
CNN is fed into BiLSTM input. The total hidden units of
BiLSTM are summed up forward and backward which is
100+ 100 = 200, where the weights of input dimension are
800× 32, weights of recurrent dimension are 800× 100, and
bias is 800 × 1. The fully connected layer is then classified,
and the softmax is used as an activation function. The output
dimension of the model is 16× 1. Thus, the operation of the
HyDNNmodel is done and it is called for training as HyDNN
described in Algorithm 2.

Table 1 shows the training and optimized parameters for
training setting the HyDNN. The training and validation
performance is done with a total of 100 epochs to learn
the model. Furthermore, it has been found that the learning
rate performance of the proposed model is extremely robust
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FIGURE 6. Training and testing procedure of the proposed HyDNN model: the training mechanism in the offline stage (upper part);
the testing mechanism in the online stage (bottom part).

TABLE 1. The simulation parameters of proposed HyDNN model.

in relation to the iteration and epoch values. The testing
method begins in the online stage once the proposed HyDNN
model has undergone consecutive training. With the train-
ing settings of 500 for the minibatch size and 0.01 for the
learning rate, the validation accuracy is attained at a rate
of 99.93. The lower part of Fig. 6 shows the online testing
process that the testing datasets test the trained HyDNN
model where the channel characteristics are tested as input
to match the true and predicted values for optimal prediction
calculation.

In the online deployment process, for evaluating the sys-
tem performance, the trained model is loaded and initialized
with the parameters of testing data of the NOMA-OFDM
signal over the Rayleigh fading channel. Then the SER
simulation results of the proposed model are obtained in
different SNR values. The details of the situation evaluations
are represented in section IV. The training and testing pro-
cedure for the proposed network overview is provided on
Algorithm 2.

Algorithm 2 HyDNN Training and Testing Process
Training procedure:
1: Load the data symbols: assuming (YRedu ,Y Imdu ,Y Repu ,Y Impu )
2: split the data samples into a training and validation set
at a ratio of 80% and 20%.
3: Passing processed data to build the model and configure
the layers.
4: Setting the model parameters like learning rate, maxi-
mum epochs, and minibatch size.
5: Loss function calculation by (20).
6: Using the Adam optimization technique, find the best
solution while updating the parameters and computing the
correction parameter.
7: Save the model.
8: Output: HyDNN model.
Testing procedure:
9: Load the trained HyDNN model.
10: Initialize the all parameters.
11: for e: 1 to Iteration do:
12: for n: 1 to SNR do:
13: Data symbols transmit through channel matrix.
14: Received data symbols.
15: Generate test label classes from received data symbols
16: Match the label classes with the trained model to
classify.
17: SER performance with different SNR.
18: end for
19: end for
20: Output: SER results.

IV. SIMULATION PERFORMANCE EVALUATION
In this paper, the simulation work is conducted on the Win-
dows 10 Pro operating system. The program is performed
with MATLAB. The DL network formation is performed
by interconnecting DL layers which are provided in the DL
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FIGURE 7. Different hyperparameters tuning effect of HyDNN and CNN models with; (a) Epoch=100, minibatch (Mb) size=500 and learning
rate=0.01 and 0.001, (b) Epoch=100, minibatch (Mb) size=1000 and learning rate=0.01 and 0.001, (c) Epoch=100, minibatch (Mb) size=2000 and
learning rate=0.01 and 0.001,(d) Epoch=100, minibatch (Mb) size=5000 and learning rate=0.01 and 0.001, (e) Epoch=100, minibatch (Mb)
size=8000 and learning rate=0.01 and 0.001.

ToolboxTM. The DL ToolboxTM also provides Us with the
creation of DL models and monitors the training process.
An NVIDIA graphic card is utilized to enhance training
performance. The simulation outcomes are done using the
various simulation settings listed in Table 1 for the pro-
posed HyDNN-based multiuser CE and SD. The training data
information in the previous section III-A was explained. For
generating the training dataset, the SNR value is considered
at 30 dB in the offline stage. Evaluation of the simulation
results with an SNR range of [0: 2: 30] dB is done in order to
test the trained model in the online stage. To infer the model
and obtain the optimal results, 3000 packets for testing the
trained model are used. For evaluating the SER performance
of the proposed HyDNN network, Monte Carlo simulations
are provided. 64 pilots in each transmitted package, and a CP
size of 20 during training and testing are utilized to compare
the proposed model with traditional MMSE, LS, and ML
methods and CNN and BiLSTM models.

To illustrate the system performance, the proposed net-
work with conventional SIC approaches such as MMSE, LS,
ML, as well CNN, and BiLSTM models are used. In this
proposed system, two different Us are considered. As a
result of the ICI and ISI not being totally eliminated, the
MMSE-SIC findings are not ideal for the distorted practical
settings [22].

A. PERFORMANCE EVALUATION
To get the optimal prediction performance, the tuning of
hyperparameters is very important at the time of learning the
model. To get the best-learned model, the proposed model
is trained with a variety of hyperparameters. Figure 7(a) and
(b) shows the hyperparameters comparison of HyDNN and
CNNmodels with loss function versus different epochs value
of 100, minibatch=500, 1000 and learning rates=0.01 and
0.001, respectively. In addition, Figure 7(c), (d), and (e)
shows the hyperparameters comparison of HyDNN and
CNN models with loss function versus different epochs
value of 100, minibatch=2000, 5000, 8000 and learning
rates=0.01 and 0.001, respectively. The loss function of
these results is taken under SNR 30 dB. It is seen from

FIGURE 8. (a), (b): Confusion matrix results for multi class symbol
classification according to true class and predicted class at minibatch
500 with a learning rate of 0.01 and 0.001. (c), (d): Correlation of true and
predicted results for multi classes symbol classification according to true
class and predicted class at minibatch 500 with a learning rate of
0.01 and 0.001.

the above graph, by increasing the learning rate and mini-
batch size, the performance is achieved better. With the
decrease in learning rate and increased minibatch, the con-
vergence time is decreased. However, the loss value is
increased which caused the degradation of CE estimation
performance. For getting better CE estimation and avoiding
over-fitting risk, it is kept learning rates=0.01 and 0.001 and
minibatch=500.

The simulation results are conducted by comparison of
different traditional signal estimation and detection schemes.
The results of a simulation using a confusion matrix show
how robust the model symbol categorization is during test-
ing. Fig. 8 illustrates the confusion matrix and correlation
for symbol categorization based on the number of labels.
In Fig. 8(a) and (b), the confusion matrix results for the mini-
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FIGURE 9. SER achievement of the proposed HyDNN model with two Us for NOMA-OFDM system; (a), (b), (c) and (d) are SNR versus SER achievement for
the proposed model and traditional (MMSE, LS, ML) methods, CNN model at minibatch (Mb) size 500, and learning rate 0.01 during training.

FIGURE 10. SER achievement of the proposed HyDNN model with two Us for NOMA-OFDM system; (a), (b), and (c) (d) are SNR versus SER achievement
for the proposed model and traditional (MMSE, LS, ML) methods, CNN model at minibatch (Mb) size 500, and learning rate 0.001 during training.

batch size 500 with the learning rates of 0.01 and 0.001 are
shown, respectively. In contrast, correlation results of true
and predicted values for minibatch size 500 with the learning
rates of 0.01 and 0.001, are shown in Fig. 8(c) and (d). The
proposed HyDNN model has a very high symbol decoding
and classification rate, which grounds true class and predicted
class matching with the exception of a few small missing
classes.

In Fig. 9(a), (b), (c), (d), and (e) the SER performances
of the HyDNN model are compared with the conventional
(MMSE, LS)-SIC, ML method, CNN and BiLSTM model
for U-1 and U-2 are shown respectively. With a minibatch
size of 500 and a learning rate of 0.01, the proposed model is
compared against existing approaches. The proposed model
is compared to the ML approach with the ideal scenario of
perfect CSI circumstances. According to Fig. 9(a) and (b),
the proposed model achieved 16 dB SNRwhereas theMMSE
and LS achieved 20 dB SNR. In addition, in Fig. 9(c), the
ML also achieved less performance than the HyDNN model.
The performance of the proposed HYDNN is also evaluated
in comparison to that of the CNN and BiLTSM models to
determine its efficacy. It is observed that the CNN model
achieved 22 dB SNR and the proposed model gained 6 dB
SNR more than the CNN model. It is also seen that the
proposed HyDNN model outperforms the BiLSTM model as
well.

On the other hand, Fig. 10(a), (b), (c), (d), and (e) depict
the SER performance of the proposed model with MMSE,

LS, ML, CNN, and BiLSTM at the minibatch size of 500 and
a learning rate of 0.001 for both Us. Additionally, it is stated
that the proposed model consistently outperforms CNN and
BiLSTMmodels as well as conventional approaches in terms
of SER performance. However, Fig. 10(c) shows that the
SER accuracy of the ML methods is a little higher than the
proposed network at the end of the curve with high SNR for
U-2. In Fig. 10(c), the ML performance is higher after the
SNR of 28 dB for U-2. This small degradation happens due
to the low learning rates of the model and the ideal case of
the ML technique. With the lower learning rate and same
minibatch size, the performance of the proposed model is
achieved 18 dB SNR which is 2 dB degradation than the
learning rate of 0.01. However, though the performance of the
proposed model is a little degraded with less learning rate,
still the SER performance is higher than all other methods
as well as the CNN and BiLSTM models. From the above
discussion, it can be stated that the proposed HyDNN-based
receivers can handle the ICI and the ISI using 1D-CNN and
BiLSTM based networks very effectively. It is also observed
that information about the interconnections among subcarri-
ers by the convolution for the input sequence of the proposed
model is also possible to extract. With the exception of a little
deterioration, the proposed detection network outperforms
all of the approaches in the overall cases as shown in
Fig. 11(a) and (b).

In order to examine the learning capacity of the proposed
HyDNN model, the simulation outcomes are also done in

VOLUME 11, 2023 66751



M. H. Rahman et al.: HyDNN: A Hybrid DL Framework Based Multiuser Uplink CE and SD

FIGURE 11. Overview of SER performance of the proposed HyDNN model
with two Us for NOMA-OFDM system; (a) with learning rate 0.01, (b) with
learning rate 0.001.

terms of testing precision utilizing SNR (0 − 30) dB values
of the final Monte Carlo simulations. Table 2 provides an
illustration of the testing accuracy findings using various
SNR settings. The proposed model is trained with the mini-
batch size 500, 1000, 2000, 5000, and 8000 is considered
by the learning rate of 0.01 and 0.001. The evaluation of
the proposed HyDNN model performance for the SER using
SNR values demonstrated that testing accuracy varies very
little with varied minibatch and learning rates. However, the
average variation of accuracy is not much different with dif-
ferent parameter settings. The testing accuracy for different
SNR values is 99.93 and 99.56 percent for 500 minibatch and
learning rates of 0.01 and 0.001, respectively. The achieved
accuracy with simulation parameters is showing best among
all of the outcomes which shows the robustness of the infer-
ence capacity of the proposed model.

The simulation results of various schemes are shown in
Fig. 12, where the curves show the effectiveness for channel
estimation and signal detection of the proposed HyDNN
model, DNN in [21], DNN in [45] and CNN-LSTM in [26]
for U-1 and U-2, respectively. According to the figure, the
proposed HyDNN model has a similar trend with [45] and
provides better performance as compared to other models for
U-2 in terms of SER. In the case of U-1, the proposed method
outperforms the existingmodels by 10dB SNR gain. The SER
versus SNR graphs demonstrate that the performance of the
proposedHyDNNnetworkwith the other existing approaches

FIGURE 12. Comparison results of the proposed system in terms of SER
achievement and different SNR values.

TABLE 2. Testing performance evaluation of the proposed HyDNN.

is relatively higher for U-1 with the ranges of lower SNR
values.

Figure 13 shows the comparison of the proposed system
results regarding SER achievement and different SNR values
with different system configurations. The simulation results
are taken with a learning rate of 0.01 during the model
training. To justify of ICI and ISI handling capability of
the proposed model, different CP values and pilot num-
bers are considered for system configuration. From Fig. 13,
it is indicated that with the CP=20, pilot=64 and CP=20,
pilot=32, the proposed model showed almost the same SER
performance with SNRs for the U-1 and U-2, respectively.
In addition, with a fixed pilot of 64 and changing the CP to
16, the proposed model performance is not much different.
Furthermore, with the value of CP=16 and pilot=32, the
proposed model showed a little bit less performance than
other configurations for both Us.

B. COMPLEXITY ANALYSIS
In this section, the proposed model complexity is explained.
By taking into account the quantity of floating-point oper-
ations, computational complexity is quantified in terms of
time. The complexity of the 1-DCNNmodel can be described
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TABLE 3. Online computational time (in seconds) and FLOPs for the different estimation methods.

FIGURE 13. Comparison of the proposed system results regarding SER
achievement and different SNR values with different system
configurations.

as: O(N ,K ) [24] where N stands for the number of the
filters and K for the convolutional kernel. The complexity
of the LSTM is given by: O(L) [29] where L is the weight
size of hidden layers. So, Consequently, the complexity of
the BiLSTM model can be written as O(2L) as it flows
in a bi-directional mode. However, the HyDNN detection
model complexity can be represented as: O(N ,K + 2L).
In the traditional LS and MMSE-SIC detection method, the
complexity is as: O(4M + 2), where M stands for the mod-
ulation order. The complexity of the ML approach is further
represented as follows:O(2M ). The above complexity of the
HyDNN model is involved in the offline training process
which required a long running time during the training of
the model. However, the proposed HyDNN model includes
many parameters, the complexity can be decreased by using
parallelization of the graphics processing unit (GPU) [46]
in the actual online process. Table 3 shows the justifica-
tion of each method’s result of the online process which is
executed by proposed algorithms. In addition, floating point
operations (FLOPs) are also presented in the table. Although
the proposed model required higher complexity than oth-
ers, its estimation performance is higher than all and the
computational time can be reduced by using GPU parallel
computing.

V. CONCLUSION
A multiuser CE and SD method in uplink transmission for
the NOMA-OFDM is presented in this study using a HyDNN

network. The HyDNN model is constructed by a 1D-CNN
and a BiLSTM model. The proposed HyDNN model works
better than the traditional SIC-based techniques in terms of
symbol recovery rate. It is demonstrated that the proposed
HyDNN network is more efficient for radio resources like
the strength of signals, pilot symbols, and CP data than tradi-
tional CE approaches like MMSE, LS, andML. Additionally,
the proposed model outperforms the CNN and BiLSTM
models when using the same channel parameters. The pro-
posed model shows high learning ability even though the
model with training less learning rate. Additionally, the pro-
posed system SER detection performance rate is significantly
higher than that of existing approaches. Future applications of
this technique include more intricate systems like the NOMA
system with MIMO communication. It can also be used
in physical layers applications like reconfigurable reflecting
surfaces-based wireless networks.
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