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ABSTRACT Induction motors are important equipment in industrial production processes. To solve the
problem of characteristic harmonics overlappingwhen there is deterioration in different parts of the induction
motor and diagnose the deterioration degree of internal components such as bearings, stator winding
insulation, and air gap balance, a diagnostic method based on kernel principal component analysis (KPCA)
and radial basis function neural network (RBF) is proposed. Firstly, through the experimental analysis,
it is found that the 2nd, 3rd, 4th, and 5th order characteristic frequency harmonics in the current can
reflect the deterioration of the motor. Secondly, KPCA is used to determine the correlation degrees between
characteristic frequency harmonic contents and the deterioration of the corresponding parts of the motor.
Finally, the products of characteristic frequency harmonic contents and corresponding correlation degrees
are taken as the input vectors of radial basis neural network, and the deterioration degrees are taken as the
output vectors to diagnose the deterioration of the motor. Through the diagnostic analysis of the experimental
unit and the comparison of the actual deterioration degree of the motor after disassembly, it is proved that
the proposed method can accurately diagnose the deterioration of the motor. By the proposed method, the
correlation between motor deterioration and characteristic frequency harmonics has been identified, and
the degree of deterioration of each part of the motor has been quantified. It can monitor the degree of motor
deterioration in real-time, grasp the trend ofmotor deterioration, and detect early signs ofmotor deterioration.

INDEX TERMS Induction motor, diagnosis, harmonic, kernel principal component, radial basis function
neural network.

I. INTRODUCTION
Motors are the largest and most widely used industrial equip-
ment in various production activities of human society. In the
industrial field, equipment in factories is basically driven by
motors, and motors play an important role in human produc-
tion and life. However, motors are easily subject to failure
during their lifespan due to factors such as bad working envi-
ronment, load fluctuations, frequent startups, and power grid
energy quality. Once a motor fails, it can bring huge losses
and seriously affect people’s production and life. In order to
avoid economic losses and production accidents caused by
motor failure, real-time monitoring of motor running state is
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of great significance. Therefore, how to accurately diagnose
the motor fault has become a research hotspot. If the running
state of motors can be monitored in real time, motor failures
can be predicted early.

Currently, there are mainly three types of methods for
motor state monitoring and fault diagnosis. The first type
of diagnostic method is based on analytical models. This
kind of method has high diagnostic accuracy by establishing
an accurate mathematical model for the motor fault diag-
nosis. It mainly includes: system state estimation method,
system state parameter estimation method, and equivalent
space method. For example, based on the fractional mathe-
matical model and untracked Kalman filter, the permanent
magnet synchronous motor current fault diagnosis model was
established [1]. Aiming at the fractional characteristics of

65468
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0007-8771-1815
https://orcid.org/0000-0002-3452-5564


X. Song et al.: Running State Monitoring of Induction Motors

electromagnetic coupling and friction in permanent magnet
synchronous motor system, the state space equation of frac-
tional model was established, and a fault detection method
with the relative change rate was proposed based on Kalman
filter algorithm [2]. In order to effectively detect minor motor
faults, a full-dimensional state observer was designed based
on the fractional order model to obtain more effective resid-
uals [3]. To detect rotor eccentricity fault, a multi-physical
model was proposed to generate vibration displacement of
permanent magnet synchronous motor [4]. In order to detect
static eccentricity of permanent magnet synchronous motor,
the normal and eccentric permanent magnet synchronous
motor models based on finite element analysis was estab-
lished [5]. In order to study the fault-tolerant control strategy,
a model of polyphase permanent magnet synchronous motor
under phase-out fault was established [6]. In order to diagnose
the stator winding inter-turn short circuit fault, a permanent
magnet synchronous motor model considering full-space
harmonics was established based on winding function [7].
In order to diagnose motor bearing faults, a permanent mag-
net synchronous motor model considering bearing damage
was established [8], [9]. For linear systems, fault diagnosis
can be accurately performed through the establishment of
analytical models. However, motors are nonlinear systems,
and it is difficult to establish an accurate system state model.
Therefore, fault diagnosis methods based on analytical mod-
els are rarely applied to industrial sites.

The second type of diagnostic method is based on signal
processing. This kind of method does not need to establish
an accurate mathematical model, but only needs to collect
time-domain signals such as current, vibration and sound
from the equipment in real time, and then analyze these sig-
nals with signal processing technology to obtain equipment
state parameters, and monitor these parameters to diagnose
equipment faults. For example, the wavelet transform was
used to decompose the signal into multiple frequency bands,
and then the signals of each frequency band were analyzed
and calculated to diagnose the state of the equipment, which
could effectively reduce noise interference [10]. The varia-
tional mode decomposition method based on cuckoo search
algorithm (CSA-VMD) was used to process non-stationary
vibration signals, and the optimal scale-morphology slice
bispectrum (OSMSB) technology was used to analyze the
spectrum, which could enhance the fault characteristics and
detect the bearing outer ring faults [11]. Ensemble empirical
mode decomposition (EEMD), wavelet threshold (WT) and
modulation signal bispectrum (MSB) were used for mul-
tistage noise reduction to extract pulse features from the
vibration signals, so as to improve the accuracy of motor
bearing inner ring and outer ring fault diagnosis [12]. Vibra-
tion signals were analyzed using weighted average ensemble
empirical mode decomposition (WAEEMD) and modulation
signal bispectrum (MSB) to extract characteristic frequencies
for bearing fault detection [13]. In order to detect the faults
of the bearing and impeller of the centrifugal pump, the

characteristics of vibration signals were extracted by mod-
ulation signal bispectrum (MSB) [14]. In order to suppress
noise interference, second-order total variational denoising
(TVD) and modulation signal bispectrum (MSB) were used
to process impact signals of rolling bearings, so as to realize
effective fault diagnosis of rolling bearings [15]. A method
combining the tunable Q-factor wavelet transform (TQWT)
and non-dominated negative entropy was proposed to deal
with weak transient periodic signals, which could diagnose
minor faults of rolling bearings [16]. To detect early faults in
rolling bearings, some methods were proposed, such as Mini-
mum entropy deconvolution (MED), detrendedwave analysis
(DFA) and improved K-nearest neighbor algorithm (IKNN),
improvedVMD-FRFT based on ICF, feature adaptivemethod
based on candidate fault frequency optimization graph,
and method combined with regression strategy, improved
variational mode decomposition (VMD) and infographic,
and method based on mahalanobis distance and cumulative
sum [17], [18], [19], [20], [21].

The third type of diagnosticmethod is based on knowledge.
This kind of method uses learning models to diagnose indus-
trial equipment without establishing accurate system models,
it is suitable for fault diagnosis of relatively complex indus-
trial equipment or systems. For example, the residual convo-
lution neural network of multi-scale kernel function was used
to process vibration signals to diagnose motor faults [22].
Based on the physical characteristics of vibration signals,
a cascade convolutional neural networkwith progressive opti-
mizationwas proposed to be suitable formotor fault diagnosis
under non-stationary conditions [23]. A two-dimensional
multi-scale cascade convolutional neural network was pro-
posed to solve bearing fault diagnosis under different working
conditions [24]. In order to avoid the convolutional neural
network falling into local optimization, an improved multi-
scale cascade convolutional neural network was proposed,
which could enhance the input classification information and
improve the effectiveness of bearing fault diagnosis [25].
Combined with particle swarm optimization algorithm, adap-
tive deep convolutional neural network was proposed, which
could improve the robustness of bearing fault diagnosis [26].
In order to diagnose the stator winding inter-turn short cir-
cuit fault, direct magnetic field orientation control method
based on deep neural network, convolutional neural network,
convolutional neural network based on wavelet kernel, com-
bined with wavelet transform and back-propagation neural
network were proposed [27], [28], [29], [30]. In order to
estimate the severity of motor faults, a hierarchical convolu-
tional neural network with feature inheritance was proposed
based on stator current signals [31]. The convolutional neural
network combined with batch normalization could simulta-
neously detect the motor bearing fault and rotor broken bar
fault [32]. Combining the deep convolutional neural network
with the improved Dempster-Shafer theory based on evi-
dence fusion, motor faults could be diagnosed under different
load conditions [33]. In terms of bearing fault diagnosis,
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deep integrated dense convolutional neural network, deep
feature alignment adaptive network, integrated deep neural
network and convolutional neural network have also been
proposed [34], [35], [36]. Kuncan et al proposed to apply
the one-dimensional local binary pattern (1D-LBP) method
to vibration signals to improve the accuracy of bearing fault
feature extraction [37], [38]. To improve the fault diagnosis
accuracy of rolling bearings under varying operating condi-
tions, Zhao et al proposed a method based on joint domain
adaptation (JDA) and deep belief networks (DBN) combined
with an improved sparrow search algorithm (CWTSSA) [39].
To understand the intrinsic mechanism of deep convolutional
neural networks in rolling bearing fault diagnosis, Yang et al
proposed to use neuron activation maximization and saliency
map methods to visualize the diagnostic knowledge learned
by deep neural networks [40]. Bayram et al proposed to
use wavelet analysis to obtain the wavelet coefficients of
vibration signals and achieve the classification of bearing
fault types [41].

In summary, for the single-part faults of motors, such as
bearing failures, broken rotor bars failures, and stator inter-
turn faults, a large amount of research has been conducted,
which can effectively classify the faults and normal states, but
cannot determine the degree of deterioration. As the operating
time increases, various parts inside the motor will experience
deterioration, and the characteristics of deterioration in differ-
ent parts overlap. It is urgent to find the correlation between
the deterioration and characteristics of different parts and
accurately determine the degree of deterioration of multiple
parts inside the motor.

In order to monitor the degree of deterioration of multi-
ple parts inside the motor in real-time, find the correlation
between deterioration and characteristic harmonics, and solve
the problem of overlapping features, a motor running state
monitoring method based on KPCA_RBF and current char-
acteristics is proposed in this paper. Firstly, the current signal
of the motor stator winding is collected. Then, the correlation
degree of characteristic harmonics in motor deterioration is
obtained by kernel principal component analysis. Finally, the
radial basis neural network is used to output the deterioration
degree of four parts inside the motor.

II. MOTOR STATE AND HIGHER HARMONICS
Motor is a power device that converts electrical energy
into mechanical energy based on electromagnetic theory.
It is composed of circuits, magnetic circuits, insulation and
mechanical parts. The circuit and magnetic circuit are the
main factors that affect the components of the stator current.
The formation process and manifestation of abnormal opera-
tion states of the motor are diverse, such as insulation aging of
the stator winding, bearing wear, and rotor eccentricity, etc.,
which cause different changes in the current components.
If the inherent relationship between the harmonic compo-
nents of the motor current and the operating status of the
motor can be found, the operation condition of the motor can
be judged and evaluated. However, it is difficult to describe

the relationship between current harmonics and motor oper-
ating status by establishing an accurate model. Therefore, it is
necessary to use neural networks and a large number of data
samples for training to find their inherent rules.

If the stator winding is locally overheated, it will accelerate
insulation aging, damage the insulation state, cause changes
in the winding impedance, and cause distortion in the mag-
netic flux waveform, resulting in harmonic flux. Harmonic
induced current is produced under the influence of harmonic
flux, and the harmonics in the current mainly manifest as odd
harmonics. When the center of the stator and the axis of the
rotor are not aligned, it will cause uneven air gap and changes
in the air gap magnetic field, thereby affecting the magnetic
potential and induced electromotive force in the winding,
resulting in harmonic current, which is mainly manifested as
odd harmonic.

When the internal air gap of the motor is significantly
unbalanced due to dust and overheating of the winding, irreg-
ular oscillation components appear in the motor current, with
the fifth harmonic being enhanced. The reverse torque caused
by the fifth harmonic reduces the efficiency of the motor.

FIGURE 1. Pulse shock wave.

If there is a failure in mechanical parts such as bearings
and rotating shafts, it will generate impact pulses as shown
in Fig. 1. Where f (θ ) is the function describing the impact
pulses. The impact pulses are transmitted to the conductor,
causing small movements in the conductor, and even harmon-
ics appear in the eddy currents generated by this movement.
An induction motor is composed of a winding section that
generates electromagnetic effects and a mechanical section
that transmits power, and these two sections influence each
other. Therefore, when any abnormal condition occurs in the
equipment, both odd and even harmonics will appear in the
stator winding current, and the content of various harmonics
in the stator winding current will vary depending on the
specific abnormal condition.

The motor is the driving system, so its operating state is
related to the fundamental wave and the 2nd, 3rd, 4th, and
5th harmonics, which have high energy and low frequency.

The structure of the motor is shown in Fig. 2. The four parts
of the motor monitored in this paper are: motor side bearing,
stator winding, load side bearing and air gap.
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FIGURE 2. Motor cross-sectional diagram.

III. MODEL PRINCIPLE AND ESTABLISMENT
A. PRINCIPLE OF KPCA
Principal Component Analysis (PCA) is an algorithm for
linear dimension reduction of data, but when extracting
features from data with non-linear relationships, it cannot
fully preserve the characteristic information of the data.
Kernel Principal Component Analysis (KPCA) combines
kernel functions based on PCA, which maps data to a
high-dimensional feature space, and then uses linear methods
to extract features in the mapped feature space. KPCA can
effectively improve the efficiency of feature extraction while
fully preserving the characteristic information of the data.

Let x be a dataset with n samples, x = {x1, x2, · · · xn},
where xi ∈ RN , and each sample has m attributes, then
xi = {xi1, xi2, · · · xim}, construct an initial sample matrix
X ′
n×m based on the input samples, and normalize it to obtain

a sample matrix Xn×m [42].
First, the samples are mapped to the high-dimensional

feature space RF by a mapping function ϕ, the correspond-
ing mapped values are ϕ (x1) , ϕ (x2) , · · · , ϕ (xn), and then
using PCA method to solve, the covariance matrix C can be
written as:

C =
1
n

n∑
i=1

ϕ (xi) ϕ (xi)T (1)

Its characteristic equation is as follows:

Cν = λν (2)

where λ is the eigenvalue of the covariance matrix and νis
the eigenvector, and it can be solved from equations (1)
and (2):

ν =

n∑
i=1

ϕ (xi)
ϕ (xi)T ν

λn
=

n∑
i=1

ϕ (xi)αi (3)

where αi =
ϕ(xi)T ν

λn . Usually, the mapping function ϕ is not
explicit and the calculation of ν can be difficult. Therefore,
a kernel function is introduced as follows:

k
(
xi, xj

)
= φ (xi)Tφ

(
xj
)

(4)

For equation (2), any k = 1, 2, · · · , n has:

ϕ (xk)Cν = λϕ (xk) ν (5)

Substituting equations (1), (3), and (4) into equation (5),
we get:

Kα = λnα (6)

where K is the kernel matrix corresponding to k , and it is
defined as: K = k

(
xi, xj

)
, α = (α1, α2, · · · , αn).

Through Equation (6), the eigenvalues λ1 ≥ λ2 ≥ · · · λn
and their corresponding eigenvalues α1, α2, · · · , αn can be
obtained. Select p (p ≤ n) eigenvalues to meet the cumulative
contribution rate ≥ 85%. The j-th (j = 1, 2, · · · , p) coordi-
nate of the new projected sample ϕ

(
xj
)
is given by:

yj =

n∑
i=1

α
j
i

(
ϕ (xi)Tϕ

(
xj
))

=

n∑
i=1

α
j
ik
(
xi, xj

)
(7)

where αi has already been normalized, and α
j
i is the

j-th component of αi. Normalization should meet the
following requirements:

αTi αi =
1
λi

(8)

B. KERNEL FUNCTION SELECTION
Kernel functions are classified into local kernel functions and
global kernel functions, and the selection of kernel functions
often affects the effectiveness of KPCA data dimensionality
reduction. To better preserve the feature information of the
data, this paper combines two types of kernel functions with
weighted combination to build a new kernel function. The
kernel function parameters are obtained by multiple experi-
ments, and the proportion coefficients of the combined kernel
function are selected using grid search to achieve the maxi-
mum contribution rate. Kernel functions used are Gaussian
kernel function (local kernel function) and polynomial kernel
function (global kernel function) [42]:

k
(
x, x ′

)
= exp

(
−

∥∥x − x ′
∥∥2

2σ 2

)
(9)

k
(
x, x ′

)
=
(
γ
(
x, x ′

)
+ a

)d (10)

where σ is the undetermined parameter of Gaussian kernel
function, while γ , a and d are the undetermined parameters
of polynomial kernel function.

By weighted combination of Equation (9) and
Equation (10), we can get:

k
(
x, x ′

)
= η1 × exp

(
−

∥∥x − x ′
∥∥2

2σ 2

)
+ η2 ×

(
γ
(
x, x ′

)
+ a

)d
(11)

where η1 and η2 are the proportional coefficients of the
combined kernel function.
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C. PRINCIPLE OF RBF
Like BP neural network, radial basis network belongs to
nonlinear multilayer forward network, which can be divided
into two models: regularization network and generalized net-
work. In this paper, generalized network is selected. The RBF
network usually consists of three layers, namely input layer,
hidden layer and output layer. The number of neurons in the
input layer is equal to the number of attributes of the sample
data, while the number of neurons in the hidden layer of the
regularization network is equal to the total number of sample
data. In generalized networks, the number of neurons in the
hidden layer is generally between the number of attributes
in the sample data and the total number of sample data. The
activation function of the hidden layer is the radial basis
function, and generally, the Gaussian function is selected as
the activation function. The activation function of the output
layer is a linear function. Its network structure is shown in
Fig. 3, where the activation function of the node of the hidden
layer uses radial basis function to process the input variables,
and then maps linearly to the output layer [43].

FIGURE 3. Stucture of RBF.

In the RBF network structure, U = [u1, u2, · · · , un]T is
an n-dimensional input variable, and the radial basis vector
of the hidden layer can be expressed as:

H = [h1, h2, · · · , hm]T (12)

where m is the number of nodes in the hidden layer and h is
the Gaussian radial basis function, then hm can be expressed
as [43]:

hm = exp

(
−

∥U − cm∥
2

2b2m

)
(13)

In the equation, C = [c1, c2, · · · , cm]T is the central param-
eter of the hidden layer nodes, B = [b1, b2, · · · , bm]T

is the width parameter of the radial basis function, W =

[w1,w2, · · · ,wm]T is the network weight parameter from the
hidden layer to the output layer, then the output of the RBF

network at moment k can be expressed as [43]:

y (k) =

m∑
j=1

hjwj (14)

D. KPCA_RBF MODEL CONSTRUCTION
Through the previous analysis, it is known that the degrada-
tion level of the bearings, stator winding insulation, rotating
shaft and air gap inside the motor is directly related to the
2nd to 5th harmonic contents in the motor current. How-
ever, through the experiment, it is found that the correlation
between the deterioration of different parts and the 2nd to 5th

harmonic contents is different. For example, the correlation
between the deterioration of the motor-side bearing and the
2nd harmonic content in the current is relatively high. The
insulation deterioration of the stator winding is highly cor-
related with the 3rd harmonic content in the current, the
load-side bearing deterioration is highly correlated with the
4th harmonic content of the current, and the air gap equilib-
rium deterioration is highly correlated with the 5th harmonic
content in the current. Therefore, KPCA was used to deter-
mine the correlation degrees of the 2nd to 5th harmonic
contents in the deterioration of different parts of the motor,
and the products of the 2nd to 5th harmonic contents and their
correlation degrees were taken as the input vectors of RBF,
and the deterioration degrees of each part of the motor were
taken as the output vectors. So, the degradation status of
various parts of the motor is being monitored in real-time.

The process of model establishment in this paper is as
follows:

Step 1: KPCA was used to process the motor current data
and determine the correlation degrees of the 2nd to 5th char-
acteristic harmonics in the deterioration of the corresponding
parts of the motor. The specific steps of KPCA are as follows:

(a) Standardize the initial harmonic data of the motor
current (standard deviation normalization method is adopted
in this paper) and calculate the kernel matrix K .

(b) Since the motor current harmonic data is non-
centralized, it needs to be centralized. The centralized kernel
matrix is expressed as follows:

K∗
= K −

1
n
zz′K −

1
n
Kzz′ +

1
n2
(
z′Kz

)
zz′ (15)

where z is an n-dimensional vector with all elements equal
to 1.
e Calculate the eigenvector V and eigenvalue λ of the

matrix K∗.
(d) Normalize the eigenvector.
eCalculate the cumulative contribution rateG1,G2,· · ·,Gn

of eigenvalues λ1, λ2, · · · , λn, and verify whether the contri-
bution rate of the first principal component is consistent with
the set cumulative contribution rate p.

(f) According to the factor loading coefficients and eigen-
value λ1 of the first principal component, calculate the
correlation degree of each factor, that is, determine the
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correlation degrees ρ1, ρ2, · · · , ρ4 of the 2nd to 5th harmonic
contents in the motor deterioration;

(g) Multiply the original sample X with the corresponding
correlation degrees ρ1, ρ2, · · · , ρ4 to get the input vectors of
the RBF network.

Step 2: Split the original data into training and testing
samples.

Step 3: Train the RBF network with training samples.
Step 4: Input test samples into the trained model for

independent sample test.

IV. EXPERIMENTAL ANALYSIS AND VERIFICATION
A. EXPERIMENTAL SETUP
In order to obtain the harmonic data of the motor, an experi-
mental setup is constructed as shown in Fig. 4(a). The device
is composed of a motor and an AC generator, which are
directly connected by a coupling. The parameters of themotor
are: insulation class B, rated voltage of 380 V, rated power
of 3 kW, rated current of 6.8 A, rated speed of 1500 r/min,
efficiency of 82.5%. The generator parameters are: rated
power of 2 kW, rated voltage of 400 V, rated current of 3.6 A,
excitation voltage of 70 V, excitation current of 3 A, rated
speed of 1500 r/min, and insulation Class B.

FIGURE 4. Experimental setup. (a) Motor-generator unit. (b) Structure of
experimental device.

The structure of the experimental device is shown in
Fig. 4(b), including themotor-generator unit and themeasure-
ment system. The operation mode of the unit is as follows: the

three-phase power of the grid is supplied to the motor, and the
motor drives the generator. After the generator is connected
to the grid, the electric energy emitted will be returned to the
grid. By setting the output power of the generator, the load
rate of the motor can be easily controlled. The measuring
system collects the current signals through the sensors and
uploads them to the upper computer.

In order to obtain the harmonic data in the motor current,
the sensor as shown in Fig. 5(a) was designed. This sen-
sor detects the motor current signal through electromagnetic
induction, without any electrical connection to the motor
power cable. It is easy to install, and only needs to be tied
to the three-phase power cable of the motor. Installation can
be done without stopping the motor, and real-time motor
current signals can be collected without affecting the normal
operation of the motor. Its specific parameters are: inductance
of 30 mH, DC resistance of 155 �.

FIGURE 5. Measuring system. (a) The sensor. (b) Measuring equipment.

The designed signal acquisition device is shown in
Fig. 5(b). The signal acquisition device is composed of three
parts: power supply, data acquisition board and commu-
nication board. The power supply part is used to convert
single-phase AC power into 12 V DC power to supply power
to the data acquisition board and communication board.
The data acquisition board is mainly composed of signal
auto-gain amplifying and filtering circuit and single-chip
microcontroller circuit. The amplifying and filtering circuit
is responsible for amplifying and filtering the small sig-
nals detected by the sensors. To ensure the accuracy of the
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data, it must be able to effectively filter out interference
signals, and finally the processed analog signals are sent
to the single-chip microcontroller circuit to be converted
into digital signals. The single-chip microcontroller circuit
is also responsible for performing fast Fourier transform on
the collected current data to obtain the harmonic content in
the motor current. The communication board is responsible
for transmitting the harmonic content data through the 4G
network to the upper computer system.

B. EXPERIMENTAL DATASET CONSTRUCTION
To ensure that the collected data can accurately reflect the
deterioration of various parts of the motor, the load rate of the
motor needs to be above 30%, and the load rate of the motor
is set to 60% in the experiment. In the experiment, various
deterioration degrees ofmotor side bearing, load side bearing,
stator windings and internal air gap are designed and achieved
by replacing parts. The deterioration degrees of various parts
are quantified between 0-100%, and the deterioration degrees
are divided into four types. The deterioration degrees between
0 and 40% are considered as good, between 41% and 60%
as mild deterioration, between 61% and 80% as moderate
deterioration, and above 80% as severe deterioration. In the
experiment, 8000 data points are collected for each part,
with each of the four deterioration degrees having 2000 data
points. A total of 32000 data points are collected from the
four parts. The dataset is divided into training and testing sets
in a ratio of 80% and 20%.

FIGURE 6. The parameter of the gaussian kernel function.

C. MODEL TRAINING RESULTS
In this paper, the collected harmonic data are firstly analyzed
by KPCA. In determining the parameter σ of the Gaussian
kernel function, a grid search method is used. That is, σ is
gradually increased from small to large, and the contribution
rate of the first principal component is calculated. The value
of σ that maximizes the contribution rate of the first principal
component is selected as the parameter of the Gaussian kernel

function. The results are shown in Figure 6. As can be seen
from the figure, σ is taken as 1.18.
Using the same grid search method, with the maximization

of the first principal component as the objective, the param-
eters of the polynomial kernel function are determined as
a = 1, d = 3, and the combination coefficients are η1 = 0.8
and η2 = 0.2. The results of KPCA analysis are shown in
Table 1.

TABLE 1. The second to fifth harmonic correlation.

From Table 1, it can be seen that the deterioration of
the motor-side bearing is highly correlated with the second
harmonic content of the motor current, with a correlation
coefficient of 0.55. This indicates that when the motor-side
bearing deteriorates, the second harmonic content in the
motor current will significantly increase. The insulation dete-
rioration of the stator winding is most highly correlated with
the third harmonic content of the current, with a correlation
coefficient of 0.61. This indicates that when the third har-
monic content of themotor current increases, the insulation of
the stator winding has deteriorated. In addition, the insulation
deterioration of the stator winding is also highly correlated
with the fifth harmonic content of the current, with a corre-
lation coefficient of 0.22. The deterioration of the load-side
bearing is most highly correlated with the fourth harmonic
content of the current, with a correlation coefficient of 0.41.
In addition, it is also correlated with the second harmonic
content of the current, with a correlation coefficient of 0.23.
The balance of the internal air gap of the motor is highly
correlated with the fifth harmonic content of the current, with
a correlation coefficient of 0.59. This indicates that when the
motor air gap is unbalanced, the fifth harmonic content in the
motor current will significantly increase.

The input vectors of the RBF network were obtained by
multiplying the contents of the second to fifth harmonics with
the corresponding correlation, and the deterioration degrees
of each part of the motor were taken as the output vectors
to set up the training samples. Input training samples into
the RBF network to train the network. The input layer of the
RBF neural network has 4 nodes, and the input is a vector of
1 row and 4 columns. The output layer has 1 node. The Mean
Squared Error (MSE) goal was set to 0.001, and the radial
basis function expansion rate was set to 1.6. The faster the
expansion rate, the smoother the training curve will be. There
is no need to set a hidden layer in the middle. Instead, the
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TABLE 2. Diagnostic accuracy of motor deterioration.

number of hidden layers can be increased continuously until
the output error is satisfied.

The test sample data were input into the trained RBF
neural network for testing, and the test results are shown in
Table 2. The accuracy of RBF neural network in diagnosing
the deterioration of each part of the motor can reach more
than 89%.

D. EXAMPLE VERIFICATION 1
In order to verify the accuracy of the model, data were col-
lected in real-time on the unit platform and uploaded to the
upper computer through a 4G wireless module. The trained
model was then used for diagnosis on the upper computer.
Figure 7 shows the original signals collected by the sensor,
where Figure 7(a) is the signal when the motor side bearing
is deteriorated, and Figure 7(b) is the signal after the motor
side bearing is repaired. As can be seen from the figure, the
amplitude of the signal is only a little over 2 mV, and it is cou-
pled with a lot of noise signals. Therefore, before analyzing
the signal, amplification and filtering must be performed.

FIGURE 7. Sensor signal. (a) Before maintenance. (b) After maintenance.

The harmonic contents in the motor current at the 9th
minute before motor maintenance is shown in Fig. 8(a). It can
be seen from the figure that the content of the 2nd harmonic is
significantly increased, reaching 2.8%. It can be preliminarily
judged that the motor side bearing is deteriorating. However,
it is not enough to judge the deterioration of the motor side
bearing based solely on the increase in the 2nd harmonic
content. This is because poor motor dynamic balance and
poor installation can also cause an increase in the content

of the 2nd harmonic. Therefore, it is necessary to make a
comprehensive judgment by combining the content of other
harmonics.

FIGURE 8. Harmonic content. (a) Before maintenance. (b) After
maintenance.

The deterioration values of the four parts of the motor
at each moment output by the upper computer model are
shown in Figure 9, with a sampling and analysis period of one
minute. From the pre-maintenance stage in the figure, it can
be seen that the deterioration value of the motor side bearing
is around 67%, which belongs to moderate deterioration. The
deterioration value of the stator winding insulation is around
40%, which is in good condition. The deterioration value
of the load side bearing is around 50%, which is a mild
deterioration. The deterioration value of the air gap balance
is around 38%, which is in good condition. In order to verify
whether there is deterioration in the motor side bearing, the
motor side bearing was dismantled and observed. As shown
in Fig. 10(a), it was found that the bearing was short of oil and
had indeed deteriorated. When the bearing operates in a low
oil state, it will experience wear, which further exacerbates
deterioration. At the same time, it will intensify the vibration
of the motor. Bearing oil must be added as soon as possible.
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FIGURE 9. Deterioration values of four parts of the motor.

The motor side bearing was repaired and bearing oil was
added. The post-repair condition is shown in Fig. 10(b). The
harmonic data of the motor after maintenance were collected,
and the harmonic content at the 51st minute is shown in
Fig. 8(b). As can be seen from the figure, the content of
the 2nd harmonic is significantly reduced, dropping to 1.1%.
After bearing lubrication, the rotor runs smoothly, the impact
on the motor is weakened. The vibration during motor
operation is significantly weakened, and the characteristic
harmonic contents in the motor current are also significantly
reduced. The collected harmonic data were analyzed by the
diagnostic model of the upper computer, and the results are
shown in Figure 9 after maintenance. It can be seen from the
figure that the deterioration value of the motor side bearing
has been reduced to about 47%.

FIGURE 10. Motor bearing state. (a) Before maintenance. (b) After
maintenance.

E. EXAMPLE VERIFICATION 2
To verify the effectiveness of the proposed method in
industrial field, the developed system was installed on a
three-phase asynchronous motor in a paper mill. The param-
eters of the motor are as follows: rated voltage of 380 V, rated
power of 18.5 kW, and rated speed of 500 r/min.

The deterioration levels of the four parts of the motor
detected are shown in Figure 11. It can be seen from the

FIGURE 11. Deterioration values of four parts of the motor.

figure that many of the deterioration data of the motor stator
winding insulation are above 80%, indicating that the stator
winding insulation is in a severe deterioration state and must
be shut down for maintenance, otherwise the motor is likely
to burn out. After disassembly, the stator winding is shown
in Figure 12. It can be seen from the figure that the insula-
tion paint on the winding has aged and peeled off, which is
consistent with the results we monitored.

It can also be seen from Figure 11 that the deterioration
levels of the motor-side bearing and the load-side bearing
are between 60% and 70%, and the deterioration level of
the motor-side bearing is higher than that of the load-side
bearing, which is in a moderate deterioration state. This is
mainly due to the long running time of the motor, and the
internal bearings will naturally wear and age, which is a
normal phenomenon, but the deterioration trend needs to
be monitored. The air gap balance between the stator and
rotor is in a slightly deteriorated state, with a level between
50% and 60%.

FIGURE 12. Stator winding insulation status.

F. COMPARATIVE RESULTS WITH LITERATURE
From Table 3, it can be seen that many studies focus on a
specific type of fault inside the motor, such as stator inter-
turn faults, broken rotor bars, or bearing faults. This paper

65476 VOLUME 11, 2023



X. Song et al.: Running State Monitoring of Induction Motors

TABLE 3. Comparison with results from the literature.

focuses on the study of faults in four specific parts inside the
motor. Compared with the study of faults in a single part, it is
more prone to the problem of feature overlap, which increases
the difficulty in the identification rate and accuracy of fault
diagnosis. Although the accuracy of the method proposed in
this paper for diagnosing faults in a single part may not be
as good as other literature, this paper considers the deteri-
oration diagnosis of all four parts inside the motor, and the
overall diagnostic accuracy is above 89%, which meets the
requirements of industrial field application. In addition, it can
provide specific levels of deterioration. It is able to grasp the
trend of motor deterioration.

As can be seen from Table 3, the signals collected in
the study of motor faults mainly include stator current and
vibration signals, both of which contain information about
motor faults. The signals collected in this paper are stator

current signals, and the designed sensor is easy to install on
the industrial site without stopping the motor.

V. CONCLUSION
This paper proposes a motor deterioration diagnosis method
based on stator current characteristics. The Kernel Princi-
pal Component Analysis (KPCA) is used to determine the
correlation between the 2nd to 5th harmonics and the dete-
rioration of various parts of the motor, and the Radial Basis
Function (RBF) neural network is used to output the degra-
dation values. This method has found the correlation between
motor deterioration and characteristic harmonics, solved the
problem of feature overlap, and can perform real-time online
monitoring of four parts of the motor, enabling grasp of the
trend of motor deterioration, facilitating intervention in the
early stage of motor degradation to prevent serious damage
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and failure of the motor. The designed sensor and measuring
device are easy to install on-site and can be installed without
stopping the machine.

Through case analysis, it was found from the degradation
chart that the deterioration value of the motor side bearing
increased. After disassembling, it was found that the bearing
did indeed have a situation of oil shortage and wear. After
repairing the motor bearing and adding lubricating oil, the
degradation value of the motor bearing in the degradation
chart decreased, which proved the effectiveness and real-time
performance of this method. It can effectively detect prob-
lems with motors in industrial applications.

In this study, only the deterioration of the motor part was
monitored in real-time. In the future, research needs to be
carried out on the deterioration of the load part, such as
the coupling, gear, transmission belt, and rotary shaft. Addi-
tionally, the impact of motor load on the deterioration value
should also be studied. In terms of diagnostic accuracy, the
overall accuracy rate is over 89%, which meets the require-
ments of industrial applications. However, in the future, other
deep learning algorithms can be tried to further improve the
diagnostic accuracy.
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