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ABSTRACT In recent years, neural networks have become a common practice in academia for handling
complex problems. Numerous studies have indicated that complex problems can generally be formulated
as a single or a set of time-varying equations. Dynamic neural networks, as powerful tools for processing
time-varying problems, play an essential role in their online solution. This paper reviews recent advances in
real-valued, complex-valued, and noise-tolerant dynamic neural networks for solving various time-varying
problems, discusses the finite-time convergence, fixed/varying parameters, and noise tolerance properties
of dynamic neural network models. This review is highly relevant for researchers and novices interested in
using dynamic neural networks to solve time-varying problems.

INDEX TERMS Dynamic neural networks, zeroing neural network (ZNN), time-varying problems, activa-
tion function, noise-tolerant.

I. INTRODUCTION
Time-varying problems are a common feature of many
real-world applications [1], [2], [3], [4], [5]. These problems
are characterized by their dynamic nature, which means that
they change over time, making it challenging to develop a
single solution that can handle all possible scenarios. Time-
varying problems can arise in many fields [6], [7], [8],
[9], [10], from finance and economics to engineering and
robotics [11], [12], [13], [14], [15], [16], and they often
require real-time decision-making. The dynamic nature of
time-varying problems presents several challenges for their
solution models. These challenges include: (1) Temporal
dependency: the dynamic nature of time-varying problems
requires modeling methods that can accurately capture and
explain these dynamic variations; (2) System complexity:
the dynamic behavior of continuous-time systems can be
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highly complex, and developing models capable of effec-
tively representing and capturing these complex behaviors
presents a challenge; (3) Stability and convergence: due to the
dynamic variations, ensuring the stability and convergence of
solution methods for time-varying problems can be challeng-
ing. Despite the existence of these challenges, time-varying
problems remain an essential medium for solving practical
problems through modeling. Solving these problems can lead
to significant improvements in fields such as finance [17],
[18], [19], healthcare [20], and transportation [21], etc.
As such, there is a growing interest in developing advanced
solutions that can handle time-varying problems.

Machine learning techniques have gained significant atten-
tion in recent years, particularly neural networks. Neural
networks are a class of machine learning models that are
inspired by the structure and function of the human brain.
They can learn patterns from large amounts of data and use
this knowledge to make predictions or decisions. The neural
network approach has shown great success in a variety of
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applications, including image recognition [22], natural lan-
guage processing [23], and recommendation systems [24].
However, traditional neural networks are designed to solve
static problems (which do not change over time), and their
effectiveness in handling time-varying problems is not ideal.
To solve time-varying problems accurately, Zhang et al.
proposed a class of dynamic neural networks specifically
designed for this purpose [25], called zeroing neural networks
(ZNNs). These neural networks use the time derivative of
time-varying parameters to track time-varying solutions per-
fectly. In the past 20 years, various modifications have been
presented considering various external and internal factors.
In particular, significant progress has been made in stabil-
ity research after introducing nonlinear activation functions
(AFs) into the neural network model. Currently, this dynamic
neural networkmodel has achieved good results for numerous
time-varying problems and derivedmany dynamicmodels for
specific time-varying problems, including linear systems [5],
[26], [27], [28], nonlinear equations [4], [29], [30], matrix
square root finding [31], [32], [33], quadratic programming
(QP) and quadratic minimization (QM) problems [34], [35],
[36], etc. Additionally, this dynamic neural network model
has been widely applied in many popular fields such as robot
manipulator [9], [37], [38], image processing [39], [40], [41],
chaotic control [42], [43], [44], etc. Therefore, a detailed
survey and summary of the development of this dynamic
neural network model is necessary.

This work provides a comprehensive review of relevant
studies on zeroing neural networks for solving time-varying
problems from a model structure perspective. However,
it should be noted that dynamic neural network models
for handling time-varying problems encompass not only
zeroing neural networks. Gradient neural networks and
direct-derivation methods are also widely employed in
addressing time-varying problems and have demonstrated
exceptional performance in domains such as robotics [9],
[45], dynamic moore-penrose inversion [6], and time-varying
quadratic programming [46]. Furthermore, considering the
widespread occurrence of time delays, delay neural networks
have also garnered significant attention in the field of neural
networks and have achieved remarkable outcomes [47], [48],
[49]. These models, equipped with delay units, enable the
capture of temporal dependencies and effective modeling of
continuous data. As research progresses, advancements in
model design and optimization techniques will facilitate the
resolution of an increasing number of time-varying/dynamic
problems.

In this review paper, recent work on this dynamic neu-
ral network model for time-varying problem-solving will be
reviewed and summarized from the perspective of model
structure. The remaining contents will be presented in four
sections. Section II summarizes the structure of various types
of real-valued dynamic neural network models and gives sev-
eral common activation functions. Section III briefly reviews
various types of complex-valued dynamic neural network
models for dealing with complex time-varying problems.

Section IV presents works related to noise-tolerant dynamic
neural network models from the viewpoint of single-integral
and double-integral model structures. Finally, Section V pro-
vides a summary of this paper.

II. REAL-VALUED DYNAMIC NEURAL NETWORKS
Real-valued dynamic neural network models are powerful
tools for modeling complex systems that vary over time,
and have been extensively researched and applied across
diverse fields [50], [51], [52]. These models possess the
ability to capture the dynamic behavior of a broad range
of systems, ranging from physical processes such as cli-
mate change to social phenomena such as stock markets.
Dynamic neural networks are specialized models capable
of processing time-varying inputs and outputs, as opposed
to static neural networks that are designed to handle fixed
input-output mappings. These models are constructed with
a network of interconnected neurons that can adapt their
behavior over time, enabling them to effectively capture
the intricate dynamics of complex systems. The capacity of
dynamic neural networks to model dynamic behavior makes
them a valuable tool for analyzing systems that exhibit such
behavior. In summary, real-valued dynamic neural networks
have several properties, including:

• Flexibility: Real-valued dynamic neural networkmodels
are highly flexible and can be used tomodel a wide range
of complex systems. This flexibility is due to the ability
to handle continuous inputs and outputs, as well as the
ability to learn complex nonlinear relationships.

• Dynamic: Real-valued dynamic neural network models
are particularly suitable formodeling time-varying prob-
lems. They can capture the time dependence in complex
problems and give efficient results.

• Improved generalization: Real-valued dynamic neural
network models can improve generalization perfor-
mance by capturing the underlying dynamics of the
system being modeled. This allows them to make accu-
rate predictions even in the presence of noise and
uncertainty.

• Ability to handle multiple inputs and outputs: Real-
valued dynamic neural network models can handle
multiple inputs and outputs simultaneously. This makes
them suitable for modeling complex systems with mul-
tiple variables.

In the interest of readability, we will review the real-valued
dynamic neural network model by categorizing it based on
the presence or absence of an activation function (AF), as well
as its finite-time convergence properties.

A. GENERAL DYNAMIC NEURAL NETWORK MODEL
Firstly, the dynamic neural network model without acti-
vation function (or consider using linear AF) is con-
sidered and discussed in detail from the perspective
of two applications: dynamic optimization and dynamic
control.
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1) DYNAMIC OPTIMIZATION
Dynamic optimization problems necessitate making deci-
sions at various stages or time points, with each decision
impacting subsequent ones. Thus, the impact of future deci-
sions must be considered when making decisions. Dynamic
neural network algorithms offer a more efficient solution
process for such problems than traditional dynamic program-
ming approaches. This efficiency stems from the ability of
dynamic neural networks to make decisions based on learned
state representations and adapt to changing environments.
Numerous dynamic neural network models have been devel-
oped and studied for diverse dynamic optimization problems.
For instance, in [53], a dynamic optimization scheme for
bi-criteria minimization (BCM) has been proposed to address
time-varying quadratic programming problems, and its effi-
cacy has been demonstrated through its application to control
and motion planning of robot manipulators. The objective
of the model is to ensure the final velocity of joint motion
approximates zero. An alternative approach to this dynamic
optimization problem, referred to as the pseudoinverse-type
BCM scheme, was proposed in [54]. In [55], the authors
presented a reformulated dynamic optimization scheme for
robot control as a QP problemwith both equality and inequal-
ity constraints. They proposed a dynamic neural network
model for solving this problem, which, as indicated by the
authors, demonstrated favorable performance in addressing
the dynamic optimization problem. In [56], the authors dis-
cussed a dynamic optimization scheme utilizing dynamic
neural networks for coordinated path tracking of dual robot
manipulators. The primary objectives of this scheme were
to prevent high joint velocity and eliminate joint-angle drift
by incorporating two criteria, namely, the minimum velocity
norm and repetitive motion. Additionally, a dynamic neural
network model for online time-varying nonlinear optimiza-
tion (OTVNO) represented as

χ̇ (t) = −P−1(χ (t), t)
(

ζ h̄(
∂ h̄(χ (t), t)

∂t
+ χ (t), t)

)
was introduced and its theoretical properties were inves-
tigated by the authors, see [57]. The results suggested
that the model exhibited global exponential convergence.
Drawing on these results, the authors arrived at the con-
clusion that the dynamic neural network model was better
suited for solving OTVNO problems compared to traditional
methods.

2) DYNAMIC CONTROL
Dynamic control refers to the intricate process of regulating
and managing systems that exhibit fluctuations and vari-
ability over time. It involves an extensive analysis of the
system’s behavior, identification of significant factors that
affect the behavior, and implementation of suitable strate-
gies to achieve desirable changes. Dynamic control is a
fundamental concept in various fields of science, including
engineering [58], [59], [60], physics [61], [62], biology [63],
[64], and economics [15], [65]. It is leveraged to attain

optimal performance, minimize errors, and prevent system
failures. To ensure effective dynamic control, a thorough
comprehension of the system’s underlying principles and
the ability to monitor and respond to real-time changes are
critical. In this regard, dynamic neural networks have gar-
nered significant attention and research as powerful tools
for addressing dynamic control problems. In [13], a novel
approach called enhanced repetitive motion planning scheme
via dynamic neural networks (ERMPS-DNN) was proposed
to solve repetitive motion planning problems in robotic
systems. The ERMPS-DNN model is based on quadratic
programming and employs a time-varying unified constraint
to improve its performance. Through simulations conducted
on a UR10 robot manipulator, the authors demonstrated
the superiority of ERMPS-DNN over traditional schemes
in terms of practicality, validity, and completeness. In [66],
a dynamic neural network-based approach was proposed
for the dynamic control of mobile manipulator robotic sys-
tems (MMRSs) to perform periodic tasks and return to their
initial state. The proposed approach employs a QP-based
repetitive motion planning and feedback control (RMPFC)
scheme, which considers the physical limitations of the
system and can mix motion planning and reactive control.
The authors validated the efficacy of the RMPFC scheme
using gradient dynamics analysis and designed, modeled,
and analyzed a kinematically redundant MMRS to demon-
strate the effectiveness of the dynamic neural network-based
approach. In [67], a dynamic control methodology was pro-
posed for fractional-order uncertain systems, which utilized
a dynamic neural network and constructed an augmented
fractional-order system to transform the optimal output track-
ing problem into a linear quadratic regulator design problem.
The authors demonstrated the effectiveness of the proposed
approach in controlling and tracking the output trajectory of
fractional-order systems and suggested that it represented a
promising alternative to traditional control methods. In [68],
the authors proposed two dynamic gradient controllers for the
dynamic control of an inverted pendulum system. The pro-
posed controllers were evaluated through three experimental
cases, and their superior performance in solving singular-
ity problems without any switch strategy was demonstrated.
Additionally, the robustness of the controllers was analyzed
under the presence of time delay and disturbance.

Recurrent neural networks (RNNs) are a type of dynamic
neural network model that possesses distinct characteristics
compared to other dynamic neural network models. Unlike
traditional feedforward neural networks, RNNs introduce
recurrent connections, enabling the continuous propagation
and processing of information within the network. This recur-
rent connection enables RNNs to find extensive applications
in fields such as robotics [69], quadratic programming [70],
and optimization control [71]. For example, in study [72],
an accelerated RNN was applied to visual servo control
of a physically constrained robotic flexible endoscope. All
theoretical, simulation, and physical experimental results
demonstrate that the proposed RNN solution is effective in
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achieving visual servoing and simultaneously handling the
physical constraints of the robotic endoscope.

With the rapid development of numerical computing and
the extensive demand for numerical computation in practi-
cal applications, numerous discrete-time models/algorithms
for time-varying problem processing have been widely
proposed for better computational or simulation purposes
in optimization control. For example, a noise-perturbed
discrete-time advanced zeroing neurodynamic (NP-DTAZN)
algorithm, capable of simultaneously suppressing various
noise sources and providing real-time solutions to future
equality-constrained nonlinear optimization problems, has
been proposed in [73]. The algorithm has been applied to a
Kinova JACO2 robot manipulator to further substantiate the
effectiveness and superiority of the NP-DTAZN algorithm.
Moreover, based on the velocity level weighted multicriteria
optimization scheme and the six-step extrapolation-backward
discretization rule, a novel discretized zeroing neural network
model has been further proposed for robot manipulator con-
trol with multiple constraints, demonstrating higher solution
accuracy compared to existing discretized models, see [74].

B. NONLINEARLY ACTIVATED DYNAMIC NEURAL
NETWORK MODEL
Nonlinear activation functions (AFs) are an essential com-
ponent of dynamic neural networks since they introduce
nonlinearity, thereby enabling complex data representations
and avoiding the vanishing gradient problem. The output of
dynamic neural networks is influenced by all previous inputs,
and nonlinear AFs enable the network to learn and model
more intricate patterns in the data. If nonlinear AFs were not
used, the neural network’s ability to model the relationship
between inputs and outputs would be limited to linear func-
tions. In summary, the incorporation of nonlinear AFs plays a
crucial role in enhancing the modeling capability of dynamic
neural networks in dealing with intricate and time-varying
systems [75]. Next, we summarize and analyze some dynamic
model studies using general nonlinear AFs.

In study [76], a dynamic neural network model under
the nonlinear activation function for addressing underde-
termined linear systems that have double bound limits on
residual errors and state variables. The model transforms
the bound-limited underdetermined linear system into a
time-varying system consisting of both linear and nonlinear
formulas by constructing a nonnegative time-varying vari-
able. Study [77] proposed an adaptive fuzzy-type dynamic
neural network (AFT-DNN) model to address time-varying
QP problems. The model uses multiple nonlinear activation
functions and investigates its characteristics through different
membership functions and fuzzy control values. Additionally,
in [78], the authors proposed a fuzzy adaptive nonlinearly
activated dynamic neural network model, represented as

Aχ̇ (t) = −(ζ + γ )(AAT + I )F(Aχ (t) − I ).

This model combines the advantages of gradient neural net-
work and zeroing neural network for computing time-varying

matrices, and has achieved promising results. The authors
conclude that the proposed model demonstrates signifi-
cant improvement over existing techniques in this field.
Nonlinearly activated dynamic neural networks have been
extensively investigated and applied in robot control. For
instance, a variable gain nonlinearly activated dynamic neural
network (VG-NADNN) model was proposed by the authors
in [79] for online solution of time-varying matrices, with the
structural

χ̇ (t) = −ζexp(λt)F(χ (t)).

Later, in [80], the VG-NADNN model was extended to solve
the joint-angular drift problem in redundant robot manip-
ulators. The authors conducted computer simulations and
physical experiments on a six-degree-of-freedom Kinova
Jaco2 robot to assess the effectiveness, accuracy, safety, and
practicality of the VG-NADNN model, and confirmed its
efficacy. In another study reported in [81], a DNN model
with nonlinear AFwas applied to solve the inverse kinematics
problem of mobile manipulators. The authors demonstrated
that the model could globally and exponentially converge to
the solution of the time-varying inverse kinematics problem,
while also coordinating the wheels and manipulator. Unlike
previous dynamic neural network models that employed a
single type of activation function, a new model with a com-
bined AF was proposed in [69] for kinematic control of
redundant robot manipulators. The authors demonstrated that
this model exhibited improved convergence performance.

C. FINITE-TIME CONVERGENT DYNAMIC NEURAL
NETWORK MODEL
With the continuous advancement of computer science and
hardware technology, the pursuit of efficient and stable sys-
tem operation has become a hot topic. Certainly, as the
main focus of this paper, dynamic neural networks are no
exception. Addressing some of the shortcomings of tradi-
tional neural network models, such as long training times,
high computational resource consumption, and poor perfor-
mance in adapting to dynamic environmental changes [82],
the proposed class of finite-time-convergence dynamic neural
networks undoubtedly provides an effective solution to these
issues. In general, finite-time convergent dynamic neural
networks have the following two advantages:

• Convergence: The finite-time convergent dynamic neu-
ral network models are capable of quickly adapting to
new data and environmental changes within a limited
time frame by utilizing new AFs or techniques, achiev-
ing faster and more accurate convergence. This enables
these models to better cope with real-time and dynamic
application scenarios.

• Robustness: The finite-time convergent dynamic neural
network models exhibit higher robustness and reliability
in practical applications, as these models can adaptively
adjust their structures and parameters to accommodate
different data and environmental conditions.
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Therefore, the proposed finite-time convergent dynamic neu-
ral network models are aimed at better meeting the needs
of practical application scenarios and have been widely
applied and validated in multiple fields, such as time-varying
Sylvester equation solution [83], dynamic linear system solu-
tion [76], [84], dynamic quaternion matrix inversion [41]
and vision control of surgical robots [85]. In this subsection,
we will categorize and summarize finite-time convergent
dynamic neural network models based on the types of param-
eters (fixed parameters or variable/adapted parameters).

1) FIXED PARAMETER
Real-time solutions of dynamic linear matrix equations
(DLMEs), including time-varying matrix inversion which
can be viewed as a specific type of DLMEs, have gar-
nered considerable attention from researchers as a fun-
damental problem in various scientific and engineering
domains [86]. In study [87], a dynamic neural network model
was introduced by the authors, with the objective of solving
time-varying matrix equations, and expressed as

A(t)χ̇ (t)B(t) = −Ȧ(t)χ (t)B(t) − A(t)χ (t)Ḃ(t) + Ċ(t)

− ζF(χ (t)B(t) − C(t)), (1)

which achieves finite-time convergence for computing
dynamic matrix equations. The finite-time convergence of
this model was theoretically analyzed and its excellent perfor-
mance was demonstrated through experiments. Additionally,
by designing two new nonlinear activation functions for
model (1), the authors investigated another type of dynamic
neural network model [88] with faster convergence and lower
convergence bound. According to the description in this
paper, the convergence bound of this model is

tup ≤ max{t−up, t
+
up} ≤ max

{
|η−(0)|1−ζ

λ(1 − ζ )
,
|η+(0)|1−ζ

λ(1 − ζ )

}
.

Similarly, the authors in [89] introduced two finite-time
dynamic neural network (DNN) models, namely DNN-I and
DNN-II, for matrix inversion, which is a special case of linear
matrix equations. They designed novel error functions to
enhance the performance of these models. Theoretical anal-
ysis indicates that the proposed models demonstrate superior
stability and finite-time convergence properties. The paper
also presented three simulation examples, which demon-
strated the effectiveness of DNN-I and DNN-II in finding
dynamic matrix inversion and verified the correctness of the
corresponding theorems. In [90], the authors extended the
solution of a single linear matrix equation to the solution of
linear matrix equation systems, and presented a DNN model
activated by a continuous SBPAF (7). The authors pointed
out that compared to the DNN model with a non-continuous
activation function, the dynamic neural network model with
continuous AF eliminates the problem of equilibrium point
oscillation. Similarly, in [26], a new dynamic system, called
the finite-time convergent dynamic system, is proposed for

solving online simultaneous linear equations, expressed as

A(t)χ̇ (t) = −ζ (sgnκ (A(t)χ (t) − e) + sgn1/κ (A(t)χ (t) − e)),

where κ ∈ (0, 1). Compared with existing gradient-based
dynamic systems, this system has better convergence per-
formance, and the upper bound of convergence time and
theoretical zero-error bound are analytically derived. The
authors have verified the effectiveness of this dynamic system
via experiments.

Nonlinear equations are frequently used to describe a vari-
ety of phenomena in physics and other fields. When it comes
to understanding the physical mechanisms underlying natural
phenomena, exploring real-time and accurate solutions to
nonlinear equations becomes an inevitable problem. In [30],
a novel method was investigated that utilized nonlinearly
activated neural dynamics for real-time solutions of dynamic
nonlinear equations. Unlike most existing neural dynamics,
the proposed method was shown to converge in finite time,
and the upper bound of the convergence time was estimated
through theoretical analysis. In [91], a specially-constructed
AF was studied for dynamic neural networks. The authors
pointed out that compared with traditional dynamic neural
network models, this model was presented in the form of
implicit dynamics, which has better consistency with actual
situations and stronger ability in representing dynamical sys-
tems. At the same time, the authors expanded the application
of this dynamic model to deal with the systems of nonlinear
equations and utilized it in the motion tracking of robots [37].

Quadratic optimization is a common problem encountered
in various scientific and engineering fields, such as tracking
control [92], image processing [41], obstacle avoidance [93]
and communication processing. In addition, by transforming
the initial problem into a quadratic optimization problem
subject to equality constraints, various real-world problems
can be solved. Numerous dynamic neural network models
have been designed and proposed to tackle QP problems
in real-time. In study [94], the authors introduced a novel
neurodynamic model for the real-time resolution of equality-
constrained QP problems. The article derived the upper
bound of the finite convergence time of the model via Lya-
punov theory analysis. As the conclusion gives, the proposed
model has superior convergence performance compared with
existing optimization models. Similarly, The study in [36]
presented a fixed-parameter dynamic neural network model
with finite-time convergence to address time-varying QM
problems, and the model is mathematically formulated as

Q(t)χ̇ (t) = −Q̇(t)χ (t) − ζ sgn1/ξ (Q(t)χ (t) + s(t))

− ṡ(t) − ζ sgnξ (Q(t)χ (t) + s(t)).

The finite-time convergent dynamic neural network models
have been further applied in various fields. One of these
applications includes the solution of time-varying Sylvester
matrix equations [95], [96]. Additionally, these models have
been utilized for computing dynamic Lyapunov matrix equa-
tions [97] and online finding dynamicmatrix square root [98].
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FIGURE 1. Profiles for time-varying parameters commonly used in
dynamic neural network models.

These applications have demonstrated the effectiveness of
finite-time convergent dynamic neural network models in
handling complex mathematical problems with time-varying
parameters and provided new directions for future research.

2) VARIABLE/ADAPTED PARAMETER
In [99], the authors proposed a varying parameter dynamic
neural network (VPDNN) model for the online inversion
of time-varying matrices, which differs from the traditional
fixed parameter dynamic neural network (FPDNN) model.
The authors highlighted that the proposed model exhibits a
fast increase in parameter values with time iterations, which
renders it well-suited for hardware implementations. The
finite-time convergence and global exponential convergence
of thismodel have been demonstrated via theoretical analysis.
The proposed VPDNN model outperforms the traditional
FPDNN model in solving time-varying matrix inversion
problems, as concluded by the authors. In [100], the authors
investigated a DNN model with adaptive parameters for the
solution of the dynamic Sylvester equation with the structure
of

A(t)χ̇ (t) − χ̇ (t)B(t) = χ̇(t) − Ċ(t) + Ȧ(t)χ (t) − ζF(C(t))

− ζF(A(t)χ (t) − χ (t)B(t)).

Detailed theoretical proofs have been provided in the paper
for the stability and convergence verification of the model.
Similarly, in [101], a dynamic neural network model with
varying parameters was proposed for the dynamic Sylvester
equation solution. Three types of self-adaption parameters for
activation functions have been devised and proposed in this
paper, enabling the construction of three distinct models of
dynamic neural networks with adaptive coefficients. As sum-
marized by the authors, under the linear-type AF, the upper
bound of error function for this dynamic model is:

∥χ (t) − χ∗(t)∥F ≤
λ1(xy+

√
xy)γ2

2(µ(tς + P) − λ1λ1)
.

TABLE 1. Details of various linear and nonlinear activation functions.

The dynamic Lyapunov equation, as a specialized form
of the time-dependent Sylvester equation, holds significant
importance in the field of control theory. Therefore, the
online solution of dynamic Lyapunov equation is a hot topic.
In [102], an accelerated convergence dynamic neural network
model with varying parameters has been proposed for finding
the theoretical solution of the dynamic Lyapunov equation
online, and the excellence of the model has been verified by
theoretical analysis and numerical experiments. Studies [103]
and [104] proposed a class of variable parameter dynamic
neural network models for time-varying matrix inversion.
The proposed variable parametric dynamic neural network
model demonstrates a better convergence property and higher
solution efficiency compared to conventional dynamic neural
network models with fixed parameters and gradient-based
properties, as reported by the authors. Furthermore, this
type of variable parametric dynamic neural network model
has been successfully applied for online finding of square
roots of matrices [31], [98], [105], solving nonlinear non-
convex optimization problems [94], [106], matrix 4th root
finding [107], and angle of arrival (AOA) kinematic posi-
tioning [108]. A comprehensive review of various types of
variable-parameter dynamic neural networks was also con-
ducted by the study [109], and the study presented the profiles
of four common types of varying parameters in Fig. 1.

D. VARIOUS TYPES OF ACTIVATION FUNCTIONS
For the reader’s convenience, some of the activation functions
commonly used in dynamic neural network design are listed
in Table 1 and the details are given below.
1) general linear AF:

F(χ ) = χ . (2)

2) power AF:

F(χ ) = χκ , (3)

where κ is an odd integer and κ > 3.
3) bipolar sigmoid AF:

F(χ ) = (1 − exp(−κχ ))/(1 + exp(−κχ )) with κ > 1. (4)

4) hyperbolic sine AF:

F(χ ) = (exp(κχ ) − exp(−κχ ))/2 with κ > 1. (5)
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5) power-sigmoid AF:

F(χ ) =

 χκ , if |χ | ≥ 1,
1 + exp(−κ)
1 − exp(−κ)

·
1 − exp(−κχ )
1 + exp(−κχ )

, otherwise. (6)

6) sign-bi-power AF:

F(χ ) = (|χ |
κ

+ |χ |
1/κ )sgn(χ)/2, (7)

where 0 < κ < 1 and

sgn(χ) =


1, for χ > 0,
0, for χ = 0,
−1, for χ < 0.

7) tunable sign-bi-power AF:

F(χ ) =
1
2
ϱ1|χ |

κsgn(χ) +
1
2
ϱ2χ +

1
2
ϱ3|χ |

1/κsgn(χ), (8)

where κ ∈ (0, 1), ϱ1, ϱ2 and ϱ3 are greater than 1.
8) nonlinear AF 1 (NF1-AF):

F(χ ) = sgnκ (χ ) with 0 < κ < 1, (9)

9) nonlinear AF 2 (NF2-AF):

F(χ ) = ζ sgnκ (χ ) + λχ , (10)

where 0 < κ < 1, ζ > 0, and λ > 0.

III. COMPLEX-VALUED DYNAMIC NEURAL NETWORKS
In recent years, various machine learning methods based on
neural network models have been widely applied in the real
world [60], [65], [120], [121], [122], [123], [124]. In the
field of neural networks, real-valued weights and activations
are commonly used. However, for certain tasks, complex-
valued neural networks employing complex-valued weights
and activations can offer improved expressive power and
wider applicability. Several situations and reasons for using
complex-valued neural networks are reviewed below:

• The ability to handle phase information: In some appli-
cations, such as signal processing and image processing,
the phase information is crucial. Complex-valued neu-
ral networks can effectively handle such information,
as complex numbers consist of a magnitude and a phase
component.

• Increased robustness to noise: Complex-valued neural
networks are more robust to noise than their real-valued
counterparts due to their inherent redundancy in the
representation.

• Enhanced representation power: Complex-valued neural
networks can represent a wider range of functions than
real-valued neural networks, which can be beneficial in
certain applications.

In summary, complex-valued neural networks have shown
potential benefits in a variety of applications where handling
phase information, robustness to noise, enhanced representa-
tion power, or efficient computations are desired [125]. In this
section, we will review various dynamic neural network mod-
els with complex-valued activation functions, specifically
with regards to their ability to solve time-varying problems,
and their finite-time convergence properties.

A. GENERAL COMPLEX-VALUED DYNAMIC NEURAL
NETWORK MODEL
Online solutions of complex-valued linear matrix equations
(CVLMEs) are often found in many important scientific
and engineering applications, such as neuro-fuzzy infer-
ence systems [126], [127], human action recognition [122],
[128], [129], [130], and blind signal extraction [131],
[132]. Complex-valued dynamic neural network models have
received extensive attention and research as a powerful tool
for dealing with complex time-varying problems. In [133],
a fully complex dynamic neural networkwas studied for com-
puting CVLMEs in the complex domain. It was emphasized
that the proposed model has advantages over real-valued
neural networks in reducing unnecessary complexities in
real-time computation and theoretical analysis. The paper
also includes numerical experiments and convergence anal-
ysis to demonstrate the superiority of the DNN model for
online solving of CVLMEs. Furthermore, in study [110],
the authors expanded the complex-valued dynamic model
to solve a set of CVLMEs and demonstrated its effec-
tiveness and convergence through theoretical analysis and
simulation examples. The dynamic neural network model
proposed in this study was ultimately applied to the task of
motion tracking for a mobile manipulator, and the experiment
results provided empirical evidence for the feasibility of this
approach in robotic applications.

Regarding the solution of time-varying complex general-
ized inverse (TVCGI) in the complex domain, the authors
introduced five distinct error functions and correspond-
ingly constructed five complex-valued dynamic models in
study [134]. The mathematical representations of the five
error functions are given as

E1(t) = A(t)B(t)BH (t) − BH (t) ∈ Cn×m (11a)

E2(t) = BH (t)B(t)A(t) − BH (t) ∈ Cn×m (11b)

E3(t) = B(t)A(t) − I ∈ Cm×m (11c)

E4(t) = A(t)B(t) − I ∈ Cn×n (11d)

E5(t) = B(t) − A+(t) ∈ Cm×n (11e)

where A+(t) represents the generalized inverse of the
time-varying complex matrix A(t). Additionally, this
paper revealed the relationship between the proposed
complex-valued dynamic models and the Getz-Marsden
dynamic system in the complex domain and validated the
effectiveness of the five dynamicmodels for solving the prob-
lem of TVCGI through theoretical analysis and numerical
experiments. In [135], an error function was constructed for
processing dynamic complex-valued outer inverses, which
was utilized in the design of complex-valued dynamic
models. The authors emphasized that the results of Moore-
Penrose [136], [137] and Drazin inverses [138] could be
simply derived as special representations of the proposed
model, avoiding restrictions on the spectrum and require-
ments for certain matrix nonsingularity.
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FIGURE 2. Sign-bi-power activation function (7) at different κ .

Quadratic programming (QP) problem is often found in
scientific and engineering applications, such as nonlinear
control, image processing and communication systems.Many
DNN models have been designed and developed for the
purpose of resolving QP problems. In [139], the authors pro-
posed two complex-valued dynamic neural network models
by defining two distinct complex error functions. These mod-
els were investigated for computing complex-valued dynamic
QP (CVDQP) subject to complex linear equality constraints.
The paper showed that both of these complex dynamic mod-
els can globally and exponentially converge to the theoretical
optimal solution of the CVDQP, and their performance is
superior to that of complex traditional gradient neural net-
work models extended from real domain. In [111], a novel
dynamic model named CVDQP decomposition-based lin-
ear matrix equation (CVDQP-LME) model was proposed
to address the complex time-varying linear matrix equation
problems frequently encountered in science and engineering.
The proposed model exhibits notable benefits in its capability
to handle linear systemswith square or rectangular coefficient
matrices for both matrices and vectors. Its efficacy has been
confirmed through diverse numerical simulations as well
as practical applications such as robot motion tracking and
reaching angle positioning.

B. NONLINEARLY ACTIVATED COMPLEX-VALUED
DYNAMIC NEURAL NETWORK MODEL
The nonlinearly activated complex-valued dynamical neural
network (CDNN) is a distinctive neural network category that
utilizes complex numbers as input and output values of the
network’s neurons. The nonlinear activation function of the
CDNN is specifically designed for the domain of complex
numbers. This neural network model has been widely applied
in addressing complex challenges in speech and image recog-
nition, natural language processing and machine learning.
Compared to the nonlinearly activated real-valued dynamic
neural network, the CDNN exhibits greater expressive capa-
bility and improved potential for generalization.

In [140], a class of nonlinearly activated CDNN models
was proposed to address the complex time-varying matrix
inversion problem. Considering the unavoidable noise in
practical applications, the authors verified the convergence
and stability of the proposed dynamic model under noisy
environments. Additionally, in study [141], a class of CDNN
models with general nonlinear AFs and noise tolerance capa-
bility was proposed for solving the time-varying matrix
pseudoinverse problem. For the online solution of complex
linear equations, a class of CDNN models with a novel non-
linear AF was proposed in [116], and its model structure is

χ̇ (t) = −ζ sign(χ(t))(ρ1|χ (t)|κ + ρ2|χ (t)|1/κ − ρ3|χ (t)|),

where κ ∈ (0, 1). In this work, both theoretical derivations
and numerical examples have supported the effectiveness
of this model. Moreover, the authors pointed out that the
nonlinear AF used in this study is superior to the linear AF
and adjustable AF used in previous dynamic neural networks,
and has higher convergence efficiency. Building upon this,
in [112], this model was further extended for robot manipula-
tor control, and simulation results confirmed the effectiveness
and superiority of the proposed complex-valued dynamic
neural network model.

In [138], the authors investigated and proposed two
CDNN models for computing the Drazin inverse of arbi-
trary complex-valued dynamic matrices. These two dynamic
neural networks were designed based on the corresponding
matrix-valued error functions generated by the limit rep-
resentation of the Drazin inverse and using two different
AFs. The paper also provided theoretical results for conver-
gence analysis to demonstrate the desirable properties of the
CDNN models. Finally, numerical results were presented to
verify the effectiveness of the proposed models. In [142],
a CDNN model for computing the dynamic complex matrix
Moore-Penrose inverse was proposed. In constructing this
model, the authors defined a special type of saturating acti-
vation function that relaxes the convex constraint on the AF,
i.e.,

F(χ ) =

{
χ, ∥χ∥F ≤ ϕ,

ϕ
χ

∥χ∥F
, ∥χ∥F > ϕ,

(12)

where ϕ > 0. Furthermore, various types of nonlinear acti-
vation CDNN models have also been widely designed for
time-varying QP problems [11], [143], time-varying equality
and inequality constraints [1], [144], etc.

C. FINITE-TIME CONVERGENT COMPLEX-VALUED
DYNAMIC NEURAL NETWORK MODEL
A crucial feature of dynamic neural network models is
finite-time convergence, which ensures that the steady-state
solution can be attained in a specified amount of time. This
property is particularly significant in modeling and predicting
complex systems, as it offers numerous benefits such as:

• Practicality: Dynamic neural network models with
finite-time convergence and complex-valued outputs
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TABLE 2. Various types of dynamic neural network models for
time-varying problem solving.

have practical advantages for prediction and control
tasks. By reaching a steady state within a limited
time, such models can facilitate efficient and effective
real-time decision-making, making them applicable in
various domains, such as control systems, robotics, and
signal processing.

• Accuracy: Models that exhibit finite-time convergence
have the advantage of achieving stable states within a
shorter duration of time, leading to higher accuracy in
prediction and control tasks. Consequently, thesemodels
are less prone to prediction and control errors than their
counterparts lacking finite-time convergence.

• Stability: The stability of the system is a critical aspect in
the prediction and control of complex systems. CDNN
models with finite-time convergence can attain a stable
state in a shorter period of time, and once in a stable state,
the output of the model will remain largely unchanged.
This characteristic of limited variation in the output
is particularly valuable in ensuring the stability of the
system.

Therefore, CDNN models with finite-time convergence have
significant importance for modeling and predicting complex
systems, and can provide more accurate and reliable predic-
tion and control methods for practical applications.

Nonlinear AFs, as an important component of dynamic
neural network models, are of great significance in enhancing
the expressive power, robustness and generalization ability of
the models. Various nonlinear activation functions have been
designed and proposed for complex-valued dynamic neural
network models aimed at solving various time-varying prob-
lems to achieve convergence within a finite time. In [114],
a class of complex-valued composite DNN models were
proposed for the inverse of dynamic matrices. The sign-
bi-power function was used as the AF in this model, and
the theoretical upper bound of the convergence time of the
model was derived as (ζ + η)λ1−κ

0 /ζη(1 − κ). Fig. 2
shows the contours of the sign-bi-power function (7) at
different κ . In [145], a variable-parameter finite-time con-
vergent dynamic neural network model was proposed for
the same problem of time-varying matrix inversion, and

was applied in manipulator trajectory tracking. Similarly,
in the studies presented in [146] and [147], finite-time
dynamic neural network models were proposed for the prob-
lems of time-varying matrix pseudoinverse and complex
time-varying matrix inversion, respectively. Combined with
the advantages of fuzzy logic systems for computing uncer-
tainty and dynamic neural network models with parallel
processing properties, two complex fuzzy dynamic neural
network models were established in [148]. The authors con-
cluded that the proposed complex fuzzy dynamic neural
network not only had the inherent ability of finite-time con-
vergence and robustness to noise, but also had faster adaptive
convergence efficiency in noisy environments. Meanwhile,
for the solution of complex linear dynamic equation sys-
tems, multiple CDNN models with finite-time convergence
capability have been proposed, see [117] and [149]. The
Sylvester equation, as a famous matrix equation, has a wide
range of applications in control theory. Solving time-varying
Sylvester equations (TVSEs) is a major problem in multiple
engineering fields and digital applications, such as image
processing, robot applications, and eigenvalue assignment.
In [150], a class of complex-valued dynamic neural network
models with finite-time convergence property was proposed
for online solving TVSEs, and the finite-time convergence
properties of the DNN were supported by theoretical and
numerical results. In [151], an improved DNN model was
designed for solving the TVSE. The authors proposed a
new sign-multi-power activation function and provided a
theoretical convergence upper bound for the model in this
work. Additionally, a class of variable-parameter arctan-type
DNN models with accelerated convergence capability was
proposed for online solving complex TVSEs [152]. The con-
vergence factor of this model continuously increases over
time, and the proportion factor approaches a constant when
the model converges, which ensures fast convergence speed
and avoids waste of computing resources. Table 2 presents
the structure of the dynamic neural network model used for
different time-varying problems.

D. COMPLEX-VALUED NONLINEAR ACTIVATION
FUNCTIONS
The property of finite-time convergence in CDNN models is
closely linked to the complex nonlinear AF. This function
extends the nonlinear AF from the real domain to the complex
domain, thereby enabling more efficient processing of com-
plex inputs and outputs. Compared to their counterparts in the
real domain, complex nonlinear AFs have greater efficacy in
handling the nonlinearity of complex data, as they can operate
on complex inputs and outputs.

In [153], the authors studied a new approach to extend
nonlinear AFs from the real domain to the complex domain.
They demonstrated the convergence of the CDNN model
using complex-valued non-linear AFs through theoretical
analysis. Specifically, the authors proposed two methods to
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extend real-valued AFs to complex-valued AFs, which are as
follows.

• Extending Method 1:

A(a+ ib) = F(a) + iF(b). (13)

This method involves applying the real-valued AF to the real
and imaginary parts of the complex-valued input, respec-
tively. Here, A(·) in equation (13) represents the complex-
valued AF.

• Extending Method 2:

A(a+ ib) = F(0) ⊛ exp(i�). (14)

This method constructs a complex-valued AF from the per-
spective of the modulus 0 ∈ R and argument� ∈ (−π, π] of
the complex number a+ ib, using real-valued AF. In equation
(14), the operator ⊛ represents the element-wise multipli-
cation between two matrices or vectors. i.e., C ⊛ D =

[cxydxy], where cxy and dxy denote the xy-th sub-elements of
the real-valued matrices C and D, respectively.

IV. NOISE-TOLERANT DYNAMIC NEURAL NETWORKS
Dynamic neural networks are used to model complex and
dynamic systems that change over time. They are able to
adapt and learn from changing input data, and can handle
unexpected changes in the environment. However, real-world
data is often noisy and contains variability (noise may arise
from inaccuracy of the sensor, interference in signal trans-
mission, error in signal sampling and rounding errors in
calculations, etc.), which can affect the performance of these
networks.

Noise-tolerant dynamic neural networks are designed to
address this challenge by incorporating mechanisms for
robustness and adaptability in their architecture [154]. They
are able to handle noisy and dynamic data by incorpo-
rating feedback loops, recurrent connections, and dynamic
state variables that allow them to learn and update their
representations over time [155]. The key characteristics of
noise-tolerant dynamic neural networks include their ability
to handle noisy and dynamic data, their adaptability and
robustness, and their suitability for real-world applications.
They are well-suited for applications such as image process-
ing and natural language understanding, where noise and
variability are common.

Overall, the use of noise-tolerant dynamic neural networks
represents an important advancement in the field of neural
networks, as they are able to handle real-world data and
improve the accuracy and robustness of models in practi-
cal applications. This section aims to present an overview
of noise-tolerant dynamic neural network models from the
perspective of activation function type, single-integral model
structure or double-integral model structure.

A. SINGLE-INTEGRAL-STRUCTURE DYNAMIC NEURAL
NETWORK MODEL
Solving time-varying equations is essentially similar to con-
trolling dynamic systems: the residuals are required to be

FIGURE 3. Basic framework of dynamic neural network model (16).

reduced to an acceptably small value as soon as possible.
Study [156] proposed a dynamic neural network design for-
mula, its structure can be mathematically expressed as,

χ̇ (t) = −J−1(χ (t), t)
(
ζ f (χ (t), t)

+ λ

∫ t

0
f (χ (τ ), τ )dτ +

∂f (χ (t), t)
∂t

)
, (15)

from the perspective of control theory, based on the essential
similarity between solving time-varying equations and con-
trolling dynamic systems, aiming to handle the convergence,
stability, and robustness issues of continuous (and discrete)
time models. The design formula can be regarded as a control
theory framework, which provides valuable tools for these
problems. The authors concluded that this study was the first
to extend existing research results from a control theory view-
point for time-varying problems processing, building upon
the previous work that addressed static problems. The design
formula can serve as a foundation for further research on
solving time-varying problems based on the internal model
principle and can be extended to more complex formulas,
opening a door for research on solving time-varying prob-
lems with noise. The basic framework of the dynamic neural
network model (16) is shown in Fig. 3.

1) GENERAL NOISE-TOLERANT DYNAMIC NEURAL
NETWORK MODEL
Building upon the work [156], the study [157] introduces
a novel dynamic neural network model for computing the
matrix outer inverse subject to null space and specific range
constraints under the various noise. Theoretical analysis
shows that the proposed model converges globally and expo-
nentially to the theoretical solution, and simulation results
show that it performs well in the presence of various noises.
Furthermore, in [158], the authors further extended the single-
integral-structure dynamic neural network model (15) to the
online solution of time-varying Lyapunov equations. In [159],
A hybrid enhanced dynamic neural network model was pro-
posed based on the previous dynamic neural network model.
This work studied the convergence and robustness of the
proposed hybrid enhanced dynamic model both theoreti-
cally and numerically, and compared it with the standard
dynamic model. Based on the aforementioned control theory
framework, study [160] proposed a novel dynamic neural
network for redundant manipulator kinematic control that
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can handle input disturbances and physical constraints such
as joint angle and velocity constraints, while optimizing a
general quadratic performance index. The neural network is
suitable for both regulation and tracking tasks, and theoretical
analysis shows that it can achieve asymptotic convergence
to zero for the tracking and regulation errors of the end
effector, even in the presence of input disturbances and two
constraints.

2) NONLINEARLY ACTIVATED NOISE-TOLERANT DYNAMIC
NEURAL NETWORK MODEL
Based on the single-integral structure dynamic neural
network model (15) and nonlinear AFs (9) and (10),
two complex-valued dynamic neural network models were
designed in [113] to solve complex time-varying linear
equations (TVLEs). The convergence analysis results of
the paper showed that the stable error upper bound of the
model’s convergence can be successfully obtained, demon-
strating its superior robustness. The authors pointed out
that the two proposed nonlinear activation functions have
better performance compared to Linear (2), Power (3),
Bipolar sigmoid power-sigmoid (4), Power-sigmoid (6) and
Sign-bi-power (7) AFs. Similarly, for the problem of solv-
ing TVLEs defined in the real domain, a dynamic neural
network model with nonlinearity and robustness was pro-
posed [27]. The authors pointed out that this dynamic model
can converge to the theoretical solution of the time-varying
matrix equation regardless of the type of activation func-
tion used. In [32], a new type of nonlinear activation
dynamic neural network model was proposed for finding the
time-varying and static matrix square roots with the model
structure of

χ̇ (t) = −ζ1F
(
χ (t)

)
− ζ2G

(
χ (t) + ζ1

∫ t

0
F

(
χ (t)

)
dt

)
,

(16)

where χ (t) = A2(t)−B(t) ∈ Rn×n, and B(t) is a time-varying
positive definite matrix, B(t) is the time-varying unknown
matrix to be solved. The authors pointed out that the pro-
posed model considered the noise interference that exists in
the hardware implementation process. Even in the face of
large noise errors, the state solution of this model can still
converge to the theoretical square root of the given matrix.
In study [35], the nonlinear activation and noise-resistant
dynamic neural network model were further extended for
online solving time-dependent QP and time-dependent QM
problems. In this work, the authors also provided two prac-
tical application cases (robot tracking and risk investment),
further verifying the effectiveness, accuracy, and wide appli-
cability of the proposed model. Taking into account the
interference of noise, the nonlinearly activated noise-tolerant
dynamic neural network model has been widely used in
popular fields such as redundant mechanical arm motion
planning [161] and distributed network coordinated motion
of robots [38], [162].

TABLE 3. Various types of noise-tolerant dynamic neural network models
for time-varying problem solving.

3) FINITE-TIME CONVERGENT NOISE-TOLERANT DYNAMIC
NEURAL NETWORK MODEL
In practical applications, dynamic neural networks often
face problems such as model instability, convergence dif-
ficulties, and sensitivity to noise. To address these issues,
various dynamic neural network with finite-time convergent
capability and noise tolerant have been proposed in recent
years [166], [167]. Dynamic neural networks with finite-time
convergence capability can solve time-varying problems in a
limited time, thus facilitating optimization and control more
effectively [115]. The noise-tolerant ability of the model
enables it to deal with time-varying tasks with noise and
reduces instability and errors caused by noise [29], [33].
In this subsection, we will review the finite time convergent
and noise tolerant dynamic neural networks from the per-
spective of dynamic optimization control and dynamic linear
system solving.

a: DYNAMIC LINEAR SYSTEM SOLVING
Time-varying matrices, which are matrices with elements
that change over time, are widely used in various fields to
describe the dynamic characteristics of systems. The inver-
sion of time-varying matrices is a fundamental mathematical
operation that is frequently required. The ability to perform
this operation accurately and efficiently in the presence of
external disturbances or errors is crucial for the effective
functioning of dynamic systems. In [168], a new robust
dynamic neural network was proposed for online solving
the time-varying matrix inversion problem with disturbances.
This dynamic neural network uses a universal activation
function and solves the inverse of the time-varying matrix
within a predetermined time. In [169], a dynamic model with
changing parameters was investigated for dynamic matrix
inversion, which has faster convergence compared to tra-
ditional dynamic neural networks with fixed parameters.
Furthermore, considering the dynamic characteristics of har-
monic noise, study [163] proposed a dynamic neural network
model that can simultaneously suppress harmonic noise and
perform time-varying matrix inversion within a specified
time. More generally, the design of noise-tolerant dynamic
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neural networks for solving time-varying matrix pseudoin-
verse problems was further discussed in [165] and [170].
The Lyapunov equation is a matrix equation widely used to
analyze the stability and performance of linear time-invariant
systems. In practical applications, systems are frequently
time-varying, making it critical to consider the solution of
time-varying Lyapunov equations. As a result, numerous
dynamic neural network models have been proposed for this
purpose. In [171], a Z-type neural dynamical model was
introduced, which employs a nonlinear activation function
with an integral term and converges in a finite time while
suppressing inherent noise. This model is effective in solving
time-varying problems in noisy environments. In [172], two
robust nonlinear dynamic models were designed to solve
time-varying Lyapunov equations. Themodels were shown to
have a predetermined convergence property and the conver-
gence effect was independent of the initial values. In [173],
a dynamic model based on variable scaling factors was
proposed to solve more general time-varying Sylvester equa-
tions. In [174], a dynamic method with a nonlinear activation
was introduced to solve dynamic Sylvester equations, while
in [175], dynamic neural networks were used to solve these
equations in various noise environments within a finite time.

b: DYNAMIC OPTIMIZATION CONTROL
Dynamic quadratic minimization (DQM) is a mathemat-
ical optimization problem, whose objective function is a
time-varying quadratic function that can be mathematically
described as

min. χT (t)K (t)χ (t)/2 + µT (t)χ (t)

s.t. f (χ (t), t) = 0 (17)

where K (t) ∈ Rn×n and µ(t) ∈ Rn are the known
time-varying coefficient matrix and vector, respectively;
χ (t) ∈ Rn is the unknown variable to be computed, and
f (χ (t), t) = 0 denotes a set of equation constraints. DQM has
been widely applied in optimization [176], [177], collabora-
tive processing [178], [179], [180], control theory [181], and
engineering [182], [183]. To achieve fast and accurate solu-
tions to DQM problems, numerous dynamic neural network
models with limited time convergence and noise tolerance
capabilities have been proposed. A unified framework was
proposed in [34] to design dynamic neural network models
that exhibit both noise tolerance and predefined time con-
vergence to address the DQM problem (17). This framework
was obtained by using AF (8) on the basis of the dynamic
model (16). In [184], the authors investigated a new dynamic
method for solving the DQM problem considering additive
noise. The proposed dynamic method was designed based on
a new nonlinear activation integral design formula. In [185],
a new piecewise time-varying dynamic model was designed
to handle DQM problems. This dynamic model includes an
integral term and a nonlinear AF, as well as two specially con-
structed time-varying piecewise parameters, which enable the
model to have both faster convergence speed and better noise

resistance. Similar to DQM problems, time-varying nonlin-
ear minimization problems (TVNMPs) have also received
widespread attention. In [118], a robust predefined-timeDNN
model was studied for solving the TVNMP. The authors
pointed out that previous models for TVNMPs either had
finite-time convergence or noise suppression, but not both.
This model was designed to have both finite-time con-
vergence and noise suppression, and theoretical analysis
was provided to support its superior performance. In addi-
tion, in [119], the authors further extended this finite-time
robust neural network model to solve TVNMPs with equality
constraints. Table 3 lists the structure of the single-integral-
structural noise-tolerant dynamic neural network model for
solving different time-varying problems.

B. DOUBLE-INTEGRAL-STRUCTURE DYNAMIC NEURAL
NETWORK MODEL
Drawing on the principles of control theory, a dynamic neural
network design framework with a single integrator struc-
ture was designed and proposed in the previously mentioned
study [156]. Numerous dynamic neural network models for
solving time-varying problems have been proposed based on
this framework [186], which possess features such as finite-
time convergence, dual acceleration convergence, various
noise tolerances, and adaptive parameters. However, enhanc-
ing the noise tolerance ability of dynamic neural network
models is an important topic for improving model perfor-
mance. Therefore, in [187], the authors further extended
the single integral framework in [156] to a design formula
with double integral structure for solving various types of
time-varying problems, its structure can be mathematically
expressed as

χ̇ (t) = −3ζχ (t) − 3ζ 2
∫ t

0
χ (τ )dτ − ζ 3

∫ t

0

∫ τ

0
χ (σ )dσdτ.

Using the aforementioned design formula, the authors inves-
tigated a DNN model for computing complex dynamic
Lyapunov equations. They established the convergence
and robustness of the DNN model via theoretical evalua-
tion and numerical testing. The author concludes that the
double-integral structure dynamic neural network is more
general compared to the single-integral structure dynamic
neural network, and this model has better noise suppression
ability (i.e., it can achieve complete suppression of linear
noise).

In [42], the authors proposed a similar structured DNN
model for solving time-varying matrix inversion problems
and verified its noise tolerance performance. Furthermore,
this double integral structure DNN model was further used
for the control of chaotic systems in controllable permanent
magnet synchronous motors, further verifying its excellent
noise tolerance performance. In [188], this model was fur-
ther used to solve time-varying quadratic matrix equations.
In [43], the authors proposed an accelerated dynamic neural
networkmodel for handling time-varying Sylvester equations
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via adding a nonlinear AF, mathematically expressed as

χ̇ (t) = −2ζ1χ (t) − ζ2F(χ (t)) − ζ 2
1

∫ t

0
χ (τ )dτ

− 2ζ1ζ2

∫ t

0
F(χ (τ ))dτ − ζ 2

1 ζ2

∫ t

0

∫ τ

0
χ (σ )dσdτ.

The article concludes that compared with the single integral
structure dynamic neural network model (15), this model
can achieve complete suppression of linear noise while
having a faster convergence rate. Furthermore, the excel-
lent performance of this model was further validated in
the control of the sine function memristor chaotic system.
At present, the noise-tolerant dynamic neural network model
with double-integral structures has done some work on the
online solution of the time-varying Lyapunov and Sylvester
equations. In the future, the noise-tolerant dynamic neural
network model with double-integral structure can be accel-
erated by adding nonlinear activation functions that can be
considered as

F(χ ) = a exp(|χ |
q)|χ |

psgn(χ ) with a > 0,

q > 0, and p < 1.

In addition, it is also a worthwhile research direction to
improve the convergence rate of noise-tolerant dynamic
neural network models with double-integral structure by
designing adaptive parameters.

V. CONCLUSION
This review paper has primarily investigated DNN mod-
els for handling various time-varying problems from the
perspective of model structure. These structures include gen-
eral nonlinearly activated, finite-time convergence, varying
parameters, single-integral structures with noise tolerance,
and double-integral structures with noise tolerance.This work
has highlighted the applicability and advantages of DNN
models in processing time-varying problems, and has com-
pared their performance. Furthermore, the practical applica-
tions of these models, including matrix inversion, Lyapunov
equations, quadratic programming, and robot manipulators,
have been thoroughly discussed.

DNNs have undergone continuous development and have
been widely applied in various practical scenarios. However,
there are still many new challenges that need to be addressed.
In the future, the following aspects require further efforts:
(1) Designing dynamic neural network models with stronger
noise tolerance capabilities; (2) Constructing better nonlinear
activation functions to accelerate the convergence speed of
neural network models, which remains a popular research
topic in this field; (3) Expanding the application scenarios is
crucial for the practical implementation and advancement of
dynamic neural networks and applied mathematics.

In summary, this review paper offers a valuable reference
for readers seeking a comprehensive understanding of the
utilization of DNN models in addressing time-varying prob-
lems. It thoroughly examines the distinctions, benefits, and
drawbacks associated with various model structures.
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