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ABSTRACT The detection of the spine is crucial in automating the measurement of the Cobb Angle. While
various segmentation models have been employed for vertebrae segmentation in X-ray images, there is a
need to enhance segmentation performance. This paper proposes a comprehensive automatic measurement
method for the Cobb angle. The RetinaNet model is employed to detect the region of interest corresponding
to the spine, while theW-Net model is developed for accurate vertebrae segmentation. To address the issue of
adjacent vertebrae adhesion in the segmented image, a post-processing technique is applied. Experimental
results demonstrate that the W-Net model achieves superior performance, with a mean Intersection over
Union (MIoU) of 0.9073 ± 0.0021, Dice Coefficient of 0.9446 ± 0.0139, and Precision of 0.9390 ±

0.0190. The post-processing step reduces adhesion at one end by approximately 83.4% and adhesion at
both ends by approximately 83.6%. The reliability of the proposed method is evaluated through intra-group
correlation coefficients (ICC) of 0.902 and 0.915, respectively, between two observers, both exceeding
0.9. The mean absolute deviation (MAD) is 3.08◦ and 2.91◦, respectively. Therefore, the proposed method
achieves automatic detection of the Cobb angle without the need for manual cropping or additional human
intervention, while maintaining good reliability.

INDEX TERMS Cobb angle, deep learning, image segmentation, scoliosis.

I. INTRODUCTION
Scoliosis is a common spinal disease that often occurs in
adolescents and children [1]. When the degree of spinal
curvature is greater than 10◦, scoliosis is considered to be
present. Scoliosis can cause physical deformities such as pro-
truding scapula and ribs, uneven shoulders, and asymmetrical
waistline [2]. Untreated severe scoliosis can lead to complica-
tions such as respiratory distress, heart problems, and chronic
back pain [3], [4]. The main surgical treatment for idio-
pathic scoliosis is invasive spinal fusion surgery. Although
surgery can bring significant long-term benefits, the com-
plexity of the surgical process and the long recovery time
(6 months or more) pose particularly challenging require-
ments for patients, such as back pain and immobility [5].
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Therefore, early diagnosis and treatment are crucial for scol-
iosis patients.

Diagnosis and treatment of spinal curvature rely on X-rays
and measurement of the Cobb angle [6], [7]. The Cobb
angle [8], [9] is the angle between the upper edge of the
upper vertebra and the lower edge of the lower vertebra, used
to evaluate the degree of spinal curvature. Figure 1 shows
the results of traditional manual measurement of the Cobb
angle on spinal X-rays. Generally, observation treatment is
needed for Cobb angles less than 25 degrees, bracing treat-
ment for angles between 25 and 45 degrees, and surgical
treatment for angles greater than 45 degrees [10], [11]. The
traditional manual measurement of the Cobb angle method
has subjective and non-rigorous problems, and the efficiency
is also low. With the promotion of scoliosis screening, there
is an increasing demand for using X-rays to detect scolio-
sis. Therefore, it is crucial to adopt computer-aided or even
fully automated methods to measure the Cobb angle [12].
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FIGURE 1. Cobb angle manual measurement results.

Therefore, this article proposes a spinal segmentation method
based on deep learning, and through post-processing of the
segmentation image, automatic estimation of the Cobb angle
is achieved, thereby improving the efficiency and accuracy of
spinal curvature detection.

II. RELATED WORKS
The conventional approach to computer-based spinal X-ray
detection involves performing calculations on the pixel val-
ues of the X-ray image using standard image processing
algorithms. These algorithms include threshold-based seg-
mentation methods [13], [14], and edge-based segmentation
techniques [15], [16]. A denoising method has been proposed
in [17], which is followed by histogram equalization, Canny
edge detection, and Hough transform to identify the spinal
edge. In reference [18], the procedure entails converting the
digital X-ray image of scoliosis into grayscale, identifying
seed points for different types of scoliosis, dividing the
image into 12 sub-images, applying median and Canny edge
detection filters, identifying centroids, performing polyno-
mial curve fitting regression, and determining the Cobb angle
using the gradient principle. However, the efficacy of image
processing methods is greatly influenced by factors such as
image quality and pixel distribution, leading to suboptimal
segmentation outcomes.

In recent years, deep learning has been extensively applied
and developed in the field of medical segmentation, with the
U-Net [19] model proposed in 2015 being a prominent exam-
ple. Subsequent works, such as those by Tan et al. [20] and
Zhao et al. [21], have further improved the U-Net network

structure to achieve better segmentation results. In particular,
Zhao et al. [21] fitted the minimum circumscribed rectangle
to the segmentation image obtained by the improved U-Net
to obtain the information required for calculating the Cobb
angle. Horng et al. [22] employed an intensity histogram to
obtain the Region of Interest (ROI) of the spine, detected
vertebra edges using intensity and gradient methods, fed
a single vertebra into a segmentation network, and finally
reconstructed the segmentation results of the vertebrae into a
complete segmented spine image. Khanal et al. [23] initially
utilized Faster RCNN to detect individual vertebrae, followed
by DenseNet to detect four key points of each vertebra, and
eventually obtained the slope to calculate the Cobb angle.
The method proposed by Alharbi et al. [24] is similar to that
proposed by Khanal et al. They employed ResNet for detect-
ing individual vertebrae and extracting information from the
corresponding rectangular bounding boxes of each verte-
bra, enabling the calculation of the Cobb angle. However,
many improved U-Net structures have not achieved signif-
icant improvement in segmentation accuracy. Detection of
vertebra edges using intensity and gradient methods is highly
dependent on image quality. Themethod of reorganizing after
single vertebra detection is not robust. Furthermore, the X-ray
spine datasets used in the proposed methods were manually
cropped, and the input X-ray images were not complete full-
spine anteroposterior X-rays. Therefore, manual cropping or
box selection is still required in practical applications, which
cannot fully realize automatic detection.

To enhance the segmentation effect of spine X-ray images,
simplify the process, and improve the stability and reliability
of spine detection, we propose a novel W-Net model based
on the skip connection characteristic of U-Net. Our experi-
mental results demonstrate that the performance of theW-Net
model surpasses that of U-Net and other typical segmentation
models. To detect the spinal region, we employ the target
detection network RetinaNet [25] to exclude the unneces-
sary cervical vertebra and other features on the X-ray and
predict a bounding box containing 12 thoracic vertebrae and
5 lumbar vertebrae on the X-ray. By utilizing the coordinate
information of the bounding box, we can set the pixel values
of the segmented image predicted by W-Net, other than the
required region, to 0, thereby obtaining the segmented image
of 17 vertebrae. Our proposed detection method can achieve
automatic detection without the need for manual cropping of
the spine X-ray.

III. PROPOSED METHOD
This paper proposes a network architecture namedW-Net for
segmenting the spine based on the characteristics of theU-Net
network structure. The W-Net improves the segmentation
performance by modifying the network structure. We train
the W-Net on a custom dataset and apply it to the RetinaNet
object detection network for detecting the spine. Wemask the
areas outside the spine in the binary image obtained from
the W-Net segmentation to obtain the preliminary binary
image of the spine. Finally, we perform post-processing on
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FIGURE 2. Flow chart of automatic Cobb Angle detection.

the binary image to calculate the accurate Cobb angle. This
method effectively segments the spine and provides assis-
tance for the diagnosis and treatment of spinal diseases.

A. OVERALL STRUCTURE
In this study, we utilized the RetinaNet [25] object detection
network and our proposed segmentation network, W-Net,
to detect spinal X-ray images. By inputting spinal X-ray
images into RetinaNet andW-Net, we obtained the bounding
box of the spine ROI and a segmentation image. As the
segmentation network is essentially a binary classification
of each pixel, it is inevitable that some non-spinal features,
such as the head, organs, and bones, may be misclassified as
the spine in the untrimmed full spinal standing X-ray images
during training and prediction. To address this issue, we set
the pixel values outside the required spinal region to zero
using the bounding box coordinates, thereby obtaining a pre-
liminary segmentation binary image of the spine. However,
differences between spinal X-ray images and variations in
image quality may result in some segmentation images with
adhesion issues. Therefore, a series of post-processing steps
are required before the final Cobb angle calculation. The
automatic detection process of the Cobb angle is illustrated
in Figure 2.

B. SPINAL ROI DETECTION
RetinaNet [25] is a one-stage network proposed in 2017,
which outperforms two-stage networks [26], [27], [28] in
object detection. Due to its simpler model structure, Reti-
naNet achieves higher detection speed and accuracy than
two-stage networks. In this study, we use RetinaNet to detect
the ROI of the spine.

The human spine consists of 7 cervical vertebrae, 12 tho-
racic vertebrae, 5 lumbar vertebrae, and 1 sacrum. The
vertebrae required for calculating the Cobb angle include

12 thoracic vertebrae and 5 lumbar vertebrae, while cervical
vertebrae have features very similar to those of thoracic and
lumbar vertebrae. Therefore, even if the annotated objects
are the aforementioned 17 vertebrae, directly predicting the
entire spine radiograph will detect some pixels in the cervi-
cal vertebrae and sacrum regions as the required vertebrae.
Meanwhile, the essence of segmentation models is to classify
each pixel, so training and predicting on the entire spine
radiograph without cropping inevitably classifies some pixels
outside the spine region as the required vertebrae. Therefore,
to extract the 17 vertebrae from the segmentation image,
we train RetinaNet to detect one bounding box of the 17 ver-
tebrae on each X-ray image. The bounding box coordinates
are then used to set the pixel values outside the 17 vertebrae
to 0 on the segmentation image.

C. VERTEBRAE SEGMENTATION BY W-NET
While typical models based on U-Net [19], such as U-Net++

and U2Net, have shown slightly better segmentation per-
formance than UNet, their structures are complex and their
parameter quantities are large. Therefore, we aim to develop
a segmentation model with a simpler structure, fewer param-
eters, and superior performance. U-Net is a neural network
with an encoder-decoder structure, and its most prominent
feature is the skip connection. This network fuses low
semantic and fine-grained features from the contraction path
with high semantic and coarse-grained information from
the expansion path, thereby preserving high-level abstract
semantic information to the high-resolution feature layer
and achieving more accurate segmentation. After training a
custom spine X-ray dataset on U-Net, we found that its seg-
mentation performance was good, but there was still room for
improvement. We believe that the skip connection of U-Net is
the main reason for its excellent segmentation performance.
Therefore, this paper proposes a novel network architecture,
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FIGURE 3. W-Net structure.

W-Net, as illustrated in Figure 3, which is based on the
characteristics of U-Net to achieve superior segmentation
performance. W-Net consists of two U-Nets, and the input
size of the X-ray image is 1024 × 512. After four times of
maximum pooling in the contraction path, the resolution is
reduced to a minimum of 256×128. To reduce the number of
parameters and computation time, we replaced the convolu-
tion in the expansion path of the original U-Net network with
upsampling. The concatenation of the two U-shaped struc-
tures and the concatenation between the expansion path and
the contraction path are similar. The first feature layer of the
contraction path of the right U-shaped structure is obtained
by performing two 3 × 3 convolutions on the last feature
layer of the expansion path of the left U-shaped structure. The
other four feature layers of different scales in the expansion
path of the left U-shaped structure are concatenated with the
other four feature layers of different scales in the contraction
path of the right U-shaped structure. In the final part of the
network, the first feature layer of the contraction path of the
two U-shaped structures is concatenated with the last feature
layer of the expansion path of the right U-shaped structure
after two 3×3 convolutions, and then two 1×1 convolutions
are performed to obtain a feature layer with a channel number
of 2. Finally, we use the argmax function in numpy to perform
binary classification on the pixel points of the X-ray image
and output a binary image.

IV. EXPERIMENT
A. EXPERIMENTAL PREPARATION
1) EXPERIMENTAL PLATFORM
The GPU used in this experiment is GTX3090, and the
graphical memory is 24GB. The software environment was

Python in Anaconda virtual environment, with PyTorch ver-
sion 1.11.0.

2) DATASET
The custom dataset provided by Carespine consists
of 380 X-ray images in jpg format, with 300 images used for
training, 50 for validation, and 30 for testing. The dataset was
annotated under the guidance of professional doctors. The
rectangular bounding boxes for the spine ROI were labeled
in txt format using labelImg, while te ground truth for spine
segmentation was annotated in json file format using labelme.
The X-rays were not cropped, and thus contain features such
as the skull, cervical vertebrae, thoracic vertebrae, lumbar
vertebrae, hip bones, sacrum, and internal organs. Figure 4
provides an example of the annotation for the spinal X-ray
dataset. As the calculation of the Cobb angle is performed on
12 thoracic vertebrae and 5 lumbar vertebrae, and the cervical
vertebrae share very similar features with the thoracic and
lumbar vertebrae, the model may inevitably predict the pixels
at the cervical vertebrae as ground truth during training and
prediction. Therefore, to avoid misleading the model and
improve segmentation performance, the cervical vertebrae
were also annotated as ground truth, and the parts outside the
thoracic and lumbar vertebrae were masked using bounding
boxes predicted by the object detection network.

In order to standardize and expand the dataset, as well as
improve the model’s generalization ability, we performed
preprocessing before inputting the dataset into the network
for training. This preprocessing includes randomly scaling
the images to a custom size of 2000 × 1000, horizontally
flipping with a probability of 0.5, randomly cropping to a
uniform input size of 1024 × 512, and normalization.
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FIGURE 4. Schematic drawing of spinal X-ray dataset: a) original spinal
X-ray image; b) fused image; c) ground truth of vertebrae.

For the annotated files of spine segmentation, the back-
ground pixel value is 0 and the foreground pixel value is
255. To better calculate the loss, we set the foreground pixel
value of 255 to 0 and set the areas outside the spine ROI on
RetinaNet to 255.

B. LOSS CALCULATION
During the model training process, the calculation of the
loss is composed of two parts, namely Cross Entropy Loss
and Dice Loss. As the segmentation target is only the spine,
i.e., the number of categories is 2 (including background),
the calculation is based on binary cross entropy loss. When
calculating this loss, the region outside the spine is masked,
i.e., the pixel values in the region where the value is set to
255 when reading the dataset are ignored. The formulas for
binary cross entropy loss and Dice Loss are as follows:

LossBCE = −yt · log(yp) − (1 − yt ) · log(1 − yp) (1)

Lossdice = 1 −
2

∣∣yt ∩ yp
∣∣

|yt | +
∣∣yp∣∣ (2)

where yt is the ground truth, and yp is the predicted result.

C. PERFORMANCE INDEX
During the training process, the main metrics recorded were
Loss, Dice Coefficient, Global Accuracy, and MIoU (Mean
Intersection over Union).

1) Dice Coefficient
The Dice coefficient is commonly used to calculate the

similarity between two samples, and in this study, it is
used to calculate the similarity between the ground truth
and predicted values of the spine. The formula is as
follows:

Dice =
2

∣∣yt ∩ yp
∣∣

|yt | +
∣∣yp∣∣ (3)

where yt represents the number of pixels annotated as ground
truth for the segmentation target (in this paper, referring to the
vertebrae), and yt represents the number of pixels predicted
as ground truth.

2) Global Accuracy
Global Accuracy refers to the proportion of correctly pre-

dicted pixels to the total number of pixels (annotated as the
number of vertebral ground truth pixels) and is calculated
using the following formula:

Global Acc =

∑
i nii∑
i ti

(4)

3) MIoU
IoU refers to the cross combination ratio of true value and

predicted value, and MIoU refers to the mean IoU of the
foreground (vertebrae) and background (spine ROI except
vertebrae). The calculation formula is as follows:

mean IoU =
1

N + 1
·

N∑
i=0

nii∑N
j=0 nij +

∑N
j=0 nji − nii

(5)

where nij represents the number of pixels predicted as class
j for class i, and ti represents the total number ofpixels for
class. i

D. TRAINING DETAINS
This article compares and analyzes six classic segmenta-
tion networks, including FCN [29], DeepLabv3 [30], U-Net,
U-Net++ [31], U2Net [32], and the proposed W-Net. All
networks were trained for 200 epochs, with an initial learning
rate of 0.05 and SGD optimizer. Figure 5 shows the change
curves of several indicators during the training process.

FCN and DeepLabv3 used ResNet [33] as the feature
extraction network (backbone) and were trained with pre-
trained weights. To avoid damaging the pre-trained weights
of the feature extraction network, the traininsg of FCN
and DeepLabv3 first froze the pre-trained weights and only
trained the feature layers except for the feature extraction
network. After 80 epochs, the feature extraction network
weights were unfrozen, and the entire model was trained.
Therefore, the curve of FCN and DeepLabv3 will undergo
a discontinuity, as shown in the figure 5.

Although FCN and DeepLabv3 have deeper network struc-
tures and use feature extraction networks, the training results
show that these two models do not perform better than other
models that directly train the entire network.

In addition, the training curves of W-Net, U-Net,
U-Net++, and U2Net are similar, but it can be seen that the
convergence process of W-Net is more stable, and the MIoU,
Dice

Coefficient, Global Accuracy, and convergence speed are
slightly better than other networks.

V. RESULTS AND DISCUSSION
A. MODEL PERFORMANCE ANALYSIS
We have recorded the MIoU, Dice Coefficient, Precision,
parameter count, and FPS of the networks. Table 1 presents
a comparison of the performance of these models. MIoU and
Dice Coefficient have been defined earlier, while Precision is
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FIGURE 5. Training process curve.

TABLE 1. Comparison of the results for segmentation networks.

calculated using the following formula:

Pr ecision =
TP

TP+ FP
(6)

In the above formula, TP represents the number of pixels cor-
rectly predicted as vertebrae, while FP represents the number
of non-vertebrae pixels predicted as vertebrae.

As shown in Table 1, FCN and DeepLabv3, which have
larger model parameters and network depth and use feature
extraction networks, did not achieve betterMIoU.W-Netwith
a channel of 32 in the first feature layer after inputting the
image has a similar MIoU to U-Net, U2Net, and U-Net++.
W-Net with a channel of 64 in the first feature layer achieved
the best performance in terms of MIoU, Dice Coefficient,
and Precision. Additionally, W-Net with a channel of 32 in
the first feature layer maintained a high MIoU while having
parameters and FPS second only to U-Net with a channel of
32 in the first feature layer. It can be seen that our model
has better performance compared to other segmentation
models.

B. VERTEBRAE SEGMENTATION RESULTS
As shown in Figure 6, the segmentation results of the pro-
posed W-Net are compared with those of U-Net, FCN,
DeepLabv3, U-Net++, and U2Net. It can be observed that
W-Net performs the best in the spinal segmentation task,
exhibiting more stable segmentation results and less adhesion
compared to the other networks.

C. SEGMENTATION RESULTS OF ADHERENT VERTEBRAE
Due to the variability in pixel distribution and spacing
between adjacent vertebrae in spinal X-ray images, it is
inevitable that there will be adhesions in the binary images
obtained through segmentation models. Figure 7 illustrates
four different types of adhesion. Most segmentation images
exhibit no adhesion, as shown in Figure 7(a). However, there
are cases where adjacent vertebrae are partially adhered or
fully adhered at both ends, as shown in Figures 7(b) and 7(c),
respectively. For X-ray images with poor quality, there
may be multiple or large areas of adhesion, as shown in
Figure 7(d). Since the adhesion in Figure 7(d) cannot be
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FIGURE 6. (a)original x-ray images, (b)∼(g): segmentation result of W-Net, U-Net, FCN,
DeepLabv3 U-Net++ and U2Net.

FIGURE 7. Ahesdion situations (a) No adhesion; (b) one end adhesion;
(c) both ends adhesion; (d) others situations.

segmented through post-processing methods, the following
post-processing methods are designed for the most common
cases of adhesion at one end or both ends.

In order to obtain the necessary vertebral information for
calculating the Cobb angle, we designed an effective post-
processing method for vertebrae segmentation, as shown in
Figure 8. This method includes the following steps:

1) First contour extraction: The findContours [34] function
in OpenCV is used to extract contours from the segmentation
image. Due to the problem of adhesion between individual
vertebrae in some images, a contour may contain two verte-
brae.

2) Cut adhesion at one end: The convexHull function in
OpenCV is used to calculate the convex hull of the extracted
contour. This method can detect adhesively connected verte-
brae at one end and determine the adhesion position. Based on
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FIGURE 8. Post-processing of spinal segmentation.

TABLE 2. Adhesion situations before and after post-processing ∗ PP in table2 refers to post-processing.

the returned two adhesion coordinates, the pixel values of the
line connecting the two points are set to 0, thereby achieving
segmentation of the adhesion.

3) Second contour extraction: The convex hull detection
method described above can segment vertebrae with adhesion
at one end, but there may be cases where two vertebrae
are adhesively connected at both ends. Therefore, a second
contour extraction is needed to determine the position of
the vertebrae with adhesion at both ends. For vertebrae with
adhesion at both ends, the gap in the middle will be detected
as a contour.

4) Cut adhesion at two ends: Based on the contour coordi-
nates of the gap in the middle of the vertebrae with adhesion
at both ends determined by the second contour extraction,
the boundingRect and minAreaRect algorithms in OpenCV
are used to detect the minimum enclosing rectangle and min-
imum enclosing parallelogram. The coordinates of the two
ends of the middle gap are calculated based on the coordinate
information and rotation angle of the two rectangles. Using
the samemethod as for segmentation of adhesively connected

vertebrae at one end, the pixel values on the extension line
connecting the two points are set to 0 to achieve segmentation.

5) Third contour extraction: Accurate vertebral contours
without adhesion are obtained.

6) Calculation of the minimum enclosing rectangles:
Based on the vertebral contour information without adhe-
sion, the minAreaRect algorithm is used to fit the minimum
enclosing parallelogram. The coordinates of the four ver-
tices of the minimum enclosing parallelogram are used as
the four corner points of each vertebra for Cobb angle
calculation.

Overall, this post-processing method effectively segments
the spinal image and provides accurate information for calcu-
lating the Cobb angle.

We sampled adjacent vertebrae and recorded the adhesion
status before and after post-processing on 30 X-ray images.
As shown in Table 2, the results indicate a significant reduc-
tion in adhesion quantity and an increase in the number of
non-adherent vertebrae after post-processing. Specifically,
the adhesion at one end decreased by approximately 83.4%,
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TABLE 3. Comparison of SMAPE errors.

and the adhesion at both ends decreased by approximately
83.6%.

D. RESULTS OF COBB ANGLE MEASUREMENT
Using 30 test images, this study compared the symmetric
mean absolute percentage error (SMAPE) of the methods
proposed in literature 17, 19, and 22 with the method pro-
posed in this study, with the physician-measured Cobb angle
serving as the reference standard. SMAPE is calculated using
the following formula:

SMAPE =
1
n

∑
n

∣∣θpred − θgt
∣∣(∣∣θpred ∣∣ +

∣∣θgt ∣∣) /2
· 100% (7)

where n is the number of samples, and θgt and θpred are the
actual and predicted values of the Cobb angle, respectively.

The results showed that the traditional image processing
method (presented in literature 17) had the highest SMAPE,
reaching 37.83%. In contrast, methods 2 and 3 that used
segmentation models, object detection models, and key point
detection models, had SMAPE of 24.15% and 26.91%,
respectively, which was significantly lower than that of the
traditional method. The proposed method in this study had
the best performance, achieving an SMAPE of 11.82%.

In order to validate the proposed automatic detection
method for Cobb angle, we conducted a reliability analysis
of manual measurement and the automatic detection method
on 30 X-ray images. The intraclass correlation coefficient
(ICC) within and between observers was used as an indica-
tor of inter-observer reliability. The mean absolute deviation
(MAD) was used to calculate the average absolute deviation
of individual observations from the arithmetic mean.

The reliability analysis within and between observers is
shown in Table 4. The ICCs within the two observers were
0.955 and 0.950, respectively, with 95% confidence intervals,
and the MADs were 2.18 and 2.33, respectively, indicating
excellent intra-observer reliability. The ICCs between the
first and second measurements were 0.939 and 0.947, respec-
tively, with MADs of 2.57 and 2.50, respectively, indicating
good inter-observer reliability. Generally, the intra-observer
reliability of manual methods is slightly better than the inter-
observer reliability.

Table 5 shows the reliability evaluation of the automatic
detection method compared to manual measurement. The
ICCs between the automatic detection method and the two
observers were 0.902 and 0.915, respectively, with 95%
confidence intervals, and the MADs were 3.08 and 2.91,
respectively, indicating good reliability of the computerized
automatic detection of Cobb angle.

TABLE 4. Reliability analysis of Cobb Angle manual measurement
method.

TABLE 5. Consistency analysis of Cobb Angle automatic measurement
and manual method.

VI. CONCLUSION
Considering the low efficiency and lack of rigor in tradi-
tional manual measurement methods for Cobb angle, as well
as the limitations of current deep learning-based automatic
measurement methods that require manual cropping of X-ray
image, this paper proposes a method based onW-Net for seg-
menting full-spine anterior-posterior X-ray images. Firstly,
we construct aW-Netmodel for binary segmentation of spinal
X-ray images. Then, utilizing the object detection model
RetinaNet, we automatically detect the region of interest
of the spine, which helps filter out the interference on the
binary image, replacing the manual cropping or selection
of regions containing the 17 vertebral bodies for detection.
Finally, we design a post-processing method to segment the
adhesion between adjacent vertebrae in the binary image and
employ the minimum bounding rectangle to fit each vertebral
block for Cobb angle calculation.

Through experiments comparing with several typical
semantic segmentation models, we find that W-Net exhibits
better performance in terms ofmodel accuracy and spinal seg-
mentation. The experimental results also demonstrate that the
post-processed vertebral segmentation images significantly
reduce adhesion. Furthermore, through a consistency analysis
experiment with manual measurement personnel, we validate
the reliability of the proposed automatic Cobb angle measure-
ment method in this paper.

In summary, this paper presents a complete and feasible
automatic measurement method for Cobb angle, which can
accurately measure the Cobb angle without interference from
human factors. The introduction of this method addresses the
shortcomings of traditional manual measurement methods
and demonstrates its superiority in spinal image segmentation
and Cobb angle measurement through experiments. Future
research will further optimize and improve the performance
of this method.
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