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ABSTRACT Proximal least squares support vector regression is a new regression machine designed by using
regularization principle technology and least squares support vector regression. In this paper, we use the
above models framework to build a new regression model, called the Proximal least squares support vector
regression model with Heteroscedastic Gaussian noise (PLSSVR-HGN). Based on the Heteroscedastic
noise characteristics in the application field, the least square method is introduced and the regularization
terms are added respectively. PLSSVR-HGN is a regression model with equality constraints based on
Heteroscedasticity, which not only improves training speed and generalization ability, but also effectively
improves prediction accuracy. In order to solve the parameter selection of models LSSVR-HGN and
PLSSVR-HGN, the Particle swarm optimization algorithm with fast convergence speed and good robustness
is selected to optimize its parameters. In order to verify the forecasting performance of LSSVR-HGN and
PLSSVR-HGN, it is compared with the classical regressionmodels on the UCI data-set and wind-speed data-
set. Experimental results indicate that the proposed models not only inherit most of the merits of the original
LSSVR, but also has more stable and reliable generalization performance and more accurate prediction
results. These applications demonstrate the correctness and effectiveness of the proposed models.

INDEX TERMS Heteroscedastic Gaussian noise, proximal least squares support vector, regression model,
short-term wind-speed forecasting.

I. INTRODUCTION
In recent decades, the rapid consumption of coal and other
nonrenewable fossil fuels makes us urgently need to develop
new energy. Wind energy is a renewable clean energy
has been among the most rapidly growing global energy
resources in recent years [1]. However, due to the intermit-
tence and instability of wind energy, the power transmitted by
wind turbines after grid connection is unstable, which has a
great impact on our power system. How to effectively predict
wind-speed has become a big problem in the real society [2].
Least square support vector regression (LSSVR) is

a method of linear regression (LR) that implements a

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

sum-of-squares error function together with regularization
thus controlling the bias variance trade-off [3], [4]. Its
purpose is to discover the linear structures hidden in raw
data [5], [6]. At the same time, nonlinear mappings can be
estimated by kernel LSSVR, which is an extended LR with
kernel-techniques. In recent years, LSSVR as a data-rich non-
linear forecasting tool has been increasingly welcomed [7],
which is applicable in many different contexts, such as
machine learning [8], [9], especially wind speed/power fore-
casting [10], [11].

LSSVR uses equality constraints instead of inequality con-
straints to solve linear equations instead of classical quadratic
programming problems, thus reducing the computational
complexity. However, LSSVR lacks sparsity, and all samples
in the data set contribute to the forecasting of new samples,
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and the size of the contribution is determined by the size of the
corresponding Lagrange multiplier [12]. Therefore, on this
basis, Suykens et al [13] proposed the weighted least squares
support vector machines (WLSSVM), adding weights before
each error variable, assigning different weights according
to the error variables, so that the less important samples or
outliers have less impact on the training.

Fung and Mangasarian [14] proposed a new learning
method called Proximal support vector machine (PSVM).
PSVM can separate the two parallel hyperplanes as far
as possible, maximize the plane spacing, and change the
inequality constraint into equality constraint, which can not
only improve the training speed, but also the training accu-
racy is higher than or equal to the traditional support vector
machine. Wang et al [15] proposed a robust Proximal sup-
port vector regression based on maximum correntropy crite-
rion (PSVR-MCC), trying to suppress the negative effects of
outliers and enhance the robustness of PSVR. They improved
SVR by moving the two parallel hyperplanes out for a certain
distance, so that the sample points are concentrated near the
two parallel hyperplanes, which can separate the two parallel
hyperplanes as far as possible, maximize the plane spacing,
and change the inequality constraint into equality constraint,
which can not only improve the training speed, but also the
training accuracy is higher than or equal to the traditional
support vector machine. However, PSVR is sensitive to noise
and outliers, which leads to poor generalization performance
and robustness [16], [17].

In order to apply model LSSVR to better predict the wind-
speed, we analyze that the wind-speed satisfies the Gaussian
distribution of 0 mean and heteroscedasticity, whose variance
varies with the average wind speed. That is, it becomes a
task of Heteroscedasticity. Literatures [18], [19] studied the
problem of Heteroscedasticity (which means that the errors
at different sample points are not completely equal). Several
common cases of Heteroscedasticity are: (1) the dependent
variable has measurement error, and the size of the error
changes with the value of the dependent variable or inde-
pendent variable in the model; (2) The unit of analysis is
aggregation units with different scales, and the value of
dependent variable is determined by the individual value of
these aggregation units; (3) The social phenomenon reflected
by the dependent variable itself contains a certain trend of dif-
ference; (4) It originates from the interaction effect between
the independent variables contained in the model and a miss-
ing independent variable. It is pointed out that in the case of
Heteroscedasticity, in order to obtain the best linear unbiased
estimation, the generalized least squares method and the
weighted least squares method can be used for parameter
estimation and other models.

The generalization performance of LSSVR is high, and
the training effect of PSVR is efficient. Therefore, we can
use the principle of hyperplane of LSSVR and the advan-
tages of PSVR, on the basis of both, we propose least
squares support vector regression model (LSSVR-HGN) and
Proximal least squares support vector regression model with

Heteroscedast-ic Gaussian noise (PLSSVR-HGN). Models
LSSVR-HGN and PLSSVR-HGN transform inequality con-
straints into simpler equality constraints, which not only
improves the training speed, but also effectively enhances the
training efficiency and accuracy. We apply these proposed
models to the short-term wind-speed forecasting. The follow-
ing are the contributions of this article:

(1) Discover that the wind operation law meets a Gaussian
distribution with zero mean Heteroscedasticity by investi-
gating the properties of noise models in real wind-speed
forecasting; Derive optimal empirical risk loss function of
Heteroscedastic Gaussian noise characteristic by employing
the Bayesian principle and maximizing posterior probability
method; (2) Establish regression models LSSVR-HGN and
PLSSVR-HGN by combining the framework structure of
PLSSVR and the Gaussian noise characteristic of Heterosce-
dasticity; (3) Experimental results show that PLSSVR-HGN
not only maintains the advantages of LSSVR in simple
parameter setting and capability of rapid convergence, but
alsomakes up for the disadvantages of being sensitive to noise
and outliers and poor generalization performance, thus it can
be easily extended to large data treatment.

The rest of this paper is organized as follows: In the sec-
ond section, derive optimal empirical risk loss function of
Heteroscedastic Gaussian noise characteristics, briefly intro-
duce models LSSVR and PLSSVR. In Section III, we focus
on exploring the noise model properties in wind-speed fore-
casting, and present models LSSVR-HGN and PLSSVR-
HGN in detail. In Section IV, gives Algorithm design of
LSSVR-HGN and PLSSVR-HGN. To verify the correctness
of the established model, a significant number of Experimen-
ts on different data-sets including the UCI data-set and
real wind-speed data-are conducted in Section V. The final
section is the Conclusion of the article.

II. MATERIALS AND METHODS
The classical least squares support vector regression machine
based on Gaussian noise characteristics (LSSVR) [12], [13]
and the support vector regression machine based on Gaussian
noise characteristics (SVR) [20] assume that the noise char-
acteristics follow aGaussian distributionwith amean of 0 and
the same variance σ 2. In contrast, according to the continuous
method [19], statistical analysis of the acquired wind-speed
data-set reveals that the variance varies with the mean wind-
speed, the prediction error does not obey the Gaussian distri-
bution with 0mean and homoscedastic variance σ 2, but obeys
the Gaussian distribution with 0 mean and heteroscedastic
variance σ 2

i (i = 1, 2, · · · ,N ). At this time, the application
of models LSSVR and SVR to predict wind-speed cannot
achieve the expected effect.

A. OPTIMAL EMPIRICAL RISK LOSS FUNCTION OF
HETEROSCEDASTIC GAUSSIAN NOISE
CHARACTERISTICS
In this section, the optimal empirical risk loss function of the
Heteroscedastic Gaussian noise signature will be derived by
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utilizing the Bayesian principle and maximizing a posteriori
probability. Set the given data-set:

DN = {(x1, y1), (x2, y2), · · · , (xN , yN )} (1)

Suppose the N training data-sets with Heteroskedastic
Gaussian noise property distribution are{(xi, yi)}Ni=1 (i =

1, 2, · · · ,N ) and the association between the measured
value yi. Where xi = (xi1, xi2, · · · , xiL) ∈ RL and yi ∈ R,
R represents the set of real numbers, RL represents L dimen-
sional Euclidean space, N indicates the number of samples.
The predicted valuation f (xi) are as follows:

yi = f (xi) + ξi(i = 1, 2, · · · ,N ) (2)

In general, the noise density P(ξi) = P(yi − f (xi))
(i = 1, 2, · · · ,N ) is unknown in engineering technology
applications. Assume that ξi(i = 1, 2, · · · ,N ) is a random
noise variable known to be independently and identically
distributed (i.i.d.) with zero mean and standard deviation
σi(i = 1, 2, · · · ,N ). It is necessary to obtain unknown regres-
sion function f (x) from training samples Df ⊆ DN . Using
Bayes’ principle, the optimal empirical risk loss function in
the maximum likelihood sense [18], [21], [22] is stated as
follows:

l(ξi) = − logP(ξi)(i = 1, 2, · · · ,N ) (3)

where P(ξi) is the probability density function (PDF) of the
error variable ξi, l(ξi) signifies the loss value resulting from
comparisons between the predicted value f (xi) and yi received
at the sample point (xi, yi) for prediction, and l(ξi)(i =

1, 2, · · · ,N ) denotes the loss function.
Assuming that the noise in equation (2) is Gaussian

noise with zero mean and Heteroskedastic variance σ 2
i (i =

1, 2, · · · ,N ), the PDF of ξi is P(ξi) =
1

√
2πσi

exp{−
ξ2i
2σ 2

i
}.

According to equation (3), the corresponding optimal
loss function with Heteroskedastic Gaussian noise can be
expressed as:

l(ξi) =
1

2σ 2
i

ξ2i (i = 1, 2, · · · ,N ) (4)

If the noise in equation (2) is Gaussian noise, its mean value
is zero and its covariance is σ 2, then the empirical risk loss
function will be represented as l(ξi) =

1
2ξ

2
i (i = 1, · · · ,N ).

That is, it is a square loss function.

B. REGRESSION MODEL LSSVR
Due to computational complexity, the support vector regres-
sion (SVR) model cannot predict the accumulation rate, and
may generate a large amount of computational consump-
tion. To overcome this problem, in the case of classic SVR
models, the least squares support vector regression machine
based on Gaussian noise characteristics (LSSVR) model was
proposed, which can solve linear and nonlinear equations
rather than quadratic equations. As an important extension
model of SVR, LSSVR has strong fitting ability and strong
generalization ability by using square error as the objective

function, which greatly reduces the computational burden and
improves computational efficiency. The least square method
has become the most widely used method of data processing
in many fields. The multiple nonlinear regression model is
f (xi) = ωTφ(xi) + b + ε, the parameter vector ω ∈ RN

is determined by the least squares regression model. The
original problem of model LSSVR is:

gLSSVR =
1
2
ωT

· ω + C
N∑
i=1

(yi−ωT
· φ(x i) − b)2

s. t. yi = ωT
· φ(xi) + b+ ξi(i = 1, 2, · · · ,N ) (5)

where φ(·) is the kernel function used to convert the input
space into a high-dimensional space. When the noise loss
follows the Gaussian distribution, the prediction results can
meet the actual requirements using the least squares support
vector regression machine.

The decision function of the linear regression model
is f (x) = ωT

· x + b, where xi ∈ RL , the param-
eter vector ω = (ω1, · · · , ωL) ∈ RL and parameter
b ∈ R determine the structure of the regression model.
The kernel function K (·, ·) is constructed by kernel tech-
nique, and the linear regression model is extended to the
kernel regression model LSSVR. The nonlinear decision
function f (xi) = ωT

· φ(xi) + b of model LSSVR.
Where K (xi, xj) = (φ(xi) · φ(xj)), φ : RL → H ,
H is a Hilbert space and (φ(xi) · φ(xj)) is the inner product
of the space H , superscript T indicates transpose of vector.
Common kernel functions are [3], [4], and [22]:
(1) Polynomial kernel function:

K (xi, xj) = (γ (xi · xj) + c)d , d is a positive integer;
(2) Gauss radial basis kernel function:

K (xi, xj) = exp(−
∥∥xi − xj

∥∥2)/σ 2
;

(3) Sigmoid kernel function:
K (xi, xj) = tanh(γ (xi · xj) + c),

tanh represents hyperbolic tangent function.

C. REGRESSION MODEL PLSSVR
The support vector classificationmodel is based on two paral-
lel hyperplanes with maximum interval between two classes
of samples to determine the optimal solution. For more com-
plex problems, the interval between two parallel hyperplanes
is too small, which makes it difficult to obtain the optimal
solution. Fung and Mangasarian [14] proposed Proximal
support vector machine (PSVM). Two parallel hyperplanes
can be moved out for a certain distance, so that the sample
points are concentrated near the two parallel hyperplanes,
and then the two parallel hyperplanes can be separated as far
as possible, (ωT

· x) + b = ±1 is no longer the boundary
plane, but becomes the ‘‘Proximal’’ plane (As shown in the-
Figure 1). For direction ω and relative position b, the distance
between the boundary planes is maximized, and the distance

between the two hyperplanes is changed to 2
/∥∥∥∥[

ω

b

]∥∥∥∥.
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And analytical solutions can be obtained, greatly improving
the training speed.

In Literature [23], PSVM is extended to Proximal
least squares support vector regression (PLSSVR). Model
PLSSVR has added a bias term b to the optimization goal,
thus transforming the corresponding optimization problem
into a strict convex quadratic programming. And the analyt-
ical solution can be obtained, greatly improving the training
speed. The original problem of model PLSSVR is as follows:

min
ω,b

{PPLSSVR =
1
2

∥ω∥
2
+

1
2
b2 +

C
2

N∑
i=1

ξ2i }

s. t. yi − ωT
· φ(x) − b = ξi(i = 1, 2, · · · ,N ) (6)

where ξi is the relaxation variable, C is the parameter, and
φ(xi) is the mapping from low dimensional space xi to high
dimensional space.

Fig.1 shows the geometric interpretation of PSVM, and
obtains the partition plane by maximizing the interval. The
plane ωT x + b = ±1 is no longer the boundary of the
distribution of two kinds of points, but becomes the clustering
center of the two kinds of points. The two planes are separated
as far as possible because of ∥ω∥

2
+ b2 in the optimization

problem (6), so that the training set can be separated better.
Lagrange function is constructed

L(ω, b, ξi, αi) =
1
2

∥ω∥
2
+

1
2
b2 +

C
2

N∑
i=1

ξ2i

+

N∑
i=1

αi(yi − ωT
· φ(x) − b− ξi) (7)

FIGURE 1. Proximal support vector classifier machine.

where α = (α1, α2, · · · , αN )T is the Lagrange multiplier
vector. By using the optimization principle, the dual problem

of the model PLSSVR can be obtained as follows:

max
α

{DPLSSVR = −
1
2

N∑
i=1

N∑
j=1

αiαjK (xi, x)

−
1
2

N∑
i=1

N∑
j=1

αiαj −
1
2C

N∑
i=1

α2
i +

N∑
i=1

αiyi} (8)

The vectors ω and ξi(i = 1, · · · ,N ) are eliminated. For the
sake of brevity, the following linear equations are obtained:

(K +
1
C
IN + eeT )α = y

b = eTα

where IN is the identity matrix N × N of e = (1, 1, · · · , 1)T

and K = (Kij)N×N is the kernel function. The decision
function of PLSSVR about b and αi(i = 1, 2, · · · ,N ) can
be expressed as follows:

f (x) = ωT
· φ(x) + b =

N∑
i=1

αiK (xi, x) + b.

III. MODELS LSSVR AND PLSSVR WITH
HETEROSCED-ASTIC GAUSSIAN NOISE
CHARACTERIS-TICS
A. UNCERTAINTY OF WIND
To investigate the behavior of the noise model in the
actual wind-speed forecasting, the wind-speed data from
Heilongjiang province is collected, which has a sampling
interval of 5 seconds. After statistical analysis and processing,
the average wind-speed and variance of every 10 minutes
were finally obtained. It was observed that the current fore-
casted wind-speed is a wind-speed in an average sense, while
the real wind-speed consists of two parts, namely, hourly
average wind-speed and instantaneous random fluctuations.
Assuming that the time sequence of the actual instantaneous
wind-speed data of the wind farm is {v(t)}, and the time
sequence of the wind-speed on the hourly scale is {v̄(t)}.
Then according to the composition of the real-time instanta-
neous wind-speed, the instantaneous random fluctuation part
of the wind-speed, the turbulence residual can be expressed
as follows: e(t) = {v(t)} − {v̄(t)}, and the variance of the
random fluctuation of the wind-speed can be expressed [19]
as follows:

Var(t) =
1

N − 1

N∑
t=1

e2(t) =
1

N − 1

N∑
t=1

[v(t) − v̄(t)]2 (9)

According to Equation (9), when calculating the variance
of wind-speed Var(t), the variance of wind-speed is practi-
cally the equal in the time of t = 1, 2, · · · ,N by default.
However, it is investigated that the variance of wind-speed
varies at different moments. As shown in the Figure 2:
By observing the two images, it can be seen that both the

average wind-speed and the wind-speed variance varies with
time, and the trends of both are somewhat similar. Therefore,
it is reasonable to assume that there is a connection between
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FIGURE 2. (a) represents the variation curve of the average wind-speed
every 10 minutes; (b) Indicates the variation graph of the wind-speed
variance.

wind-speed variance and wind-speed. To further investigate
the association between the two, the following experiments
were conducted, setting the average wind-speed as the x-axis
and the wind-speed variance as the y-axis. Figure 3 illustrates
the outcomes of the experiment.

FIGURE 3. Modulation effect of wind amplitude on its variance.

From Figure 3, it can be concluded that there is a lin-
ear correlation between the two and that the wind-speed

variance y varies with the average wind-speed x. The rela-
tionship expression is y = 0.0896∗x+0.1780, which implies
that the variance of the wind-speed is distinct at various
times and varies with the average wind-speed, which is a
Heteroskedastic task.

B. LEAST SQUARES SUPPORT VECTOR REGRESSION
MODEL OF HETEROSCEDASTIC GAUSSIAN NOISE
CHARACTERISTICS
Generally, classical regression models (Least squares support
vector regression, support vector regression, etc) assume that
the noise distribution in the data-set follows the homoscedas-
tic Gaussian distribution. Relevant research shows that in
the practical application field, some noise distributions do
not obey the homoscedastic Gaussian distribution, but obey
the Heteroscedastic Gaussian distribution. Especially in
wind-speed/wind power prediction, the noise distribution
changes with seasons and regions, and can be represented by
Heteroscedastic Gaussian distribution, so as to fit the
unknown noise characteristics in uncertain data. At this time,
the classical regression model is not the optimal prediction
model in line with the actual situation. Aiming at the above
problems, according to the actual distribution of noise charac-
teristics of wind-speed data, this paper uses Heteroscedastic
Gaussian noise to fit the unknown noise characteristics, and
proposes a least squares support vector regression model with
Heteroscedastic Gaussian noise characteristics (Abbreviated
as LSSVR-HGN). The original problem is:

min
ω,b,ξi

{gPLSSVR−HGN =
1
2
ωT

· ω +
C
N
(
N∑
i=1

1

2σ 2
i

ξ2i )}

s. t. ξi = yi − ωT
· φ(xi) − b

ξi ≥ 0, i = 1, 2, · · · ,N (10)

whereC > 0 is the penalty factor, ξi is the relaxation variable,
and σi(i = 1, 2, · · · ,N ) is the Heteroscedasticity.

Proposition 1 The solution about ω of the original problem
(10) of model LSSVR-HGN exists and be unique.

Proof: This proposition can be proved by referring to The-
orem 1 [21].

Theorem 1 The dual problem of the original problem (10)
of model LSSVR-HGN is:

max
αα∗

{gDLSSVR−HGN = −
1
2

N∑
i,j=1

(αiαjK (xi, xj))

+

N∑
i=1

(αiyi −
Nσ 2

i

C
α2
i )}

s.t.
N∑
i=1

αi = 0 (11)

whereC > 0 is the penalty factor, ξi is the relaxation variable,
and σi(i = 1, 2, · · · ,N ) is the Heteroscedasticity.
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Proof: Introducing the Lagrange functional L(ω, b, α, ξ ),
get

L(ω, b, α, ξ ) =
1
2
ωT

· ω +
C
N

· (
N∑
i=1

1

2σ 2
i

ξ2i )

+

N∑
i=1

αi(yi − ωT
· φ(xi) − b− ξi)

In order to find theminimumvalue ofL(ω, b, α, ξ ), the partial
derivatives of ω, b, ξ are calculated respectively. By KKT
conditions:

∇ωL = 0, ∇bL = 0, ∇ξL = 0

Get

ω =

N∑
i=1

αi · φ(x i),
N∑
i=1

αi = 0,
C

Nσ 2
i

· ξi − αi = 0.

Substitute the above extreme conditions into L(ω, b, α, ξ ),
and seek the maximum of α, we can obtain the dual
problem (11) of the original problem (10) of the model
LSSVR-HGN.

And there is

b =
1
N

N∑
i=1

(yi −
N∑
j=1

αjK (xi, xj) −
Nσ 2

i

C
αi),

the decision function of model LSSVR-HGN is

fLSSVR−HGN (x) = ωT
· φ(x) + b =

N∑
i=1

αiK (xi, x) + b (12)

where ω ∈ RL is the parameter vector, φ : RL → H (H is
the Hilbert space) is the kernel transformation, and (φ(xi) ·

φ(xj)) represents the inner product in the spaceH ,K (xi, xj) =

(φ(xi) · φ(xj)) is the kernel function.

C. PROXIMAL LEAST SQUARES SUPPORT VECTOR
REGRESSION MODEL OF HETEROSCEDASTIC
GAUSSIAN NOISE CHARACTERISTICS
In the practical application field, the noise distribution is
unknown, or most of the noise distribution does not obey the
homoscedastic Gaussian noise distribution. In this section,
the Heteroscedastic Gaussian noise distribution is used to fit
the unknown noise characteristics. The original problem of
Proximal least squares support vector regression model with
Heteroscedastic Gaussian noise characteristics (Abbreviated
as PLSSVR-HGN) is:

min
ω,b,ξi

{gPLSSVR−HGN =
1
2
ωT

· ω +
b2

2
+
C
N
(
N∑
i=1

1

2σ 2
i

ξ2i )}

s. t. ξi = yi − ωT
· φ(xi) − b

ξi ≥ 0, i = 1, 2, · · · ,N (13)

whereC > 0 is the penalty factor, ξi is the relaxation variable,
and σi(i = 1, 2, · · · ,N ) is the Heteroscedasticity.

Proposition 1: The solution about ω of the original prob-
lem (13) of the model PLSSVR-HGN exists and be unique.

Proof: This proposition can be proved by referring to
Proposition 1.
Theorem 1: The dual problem of the original problem (13)

of the model PLSSVR-HGN is:

max
αα∗

{gDPLSSVR−HGN = −
1
2

N∑
i,j=1

αiαj[K (xi, xj) − 1]

+

N∑
i=1

(αiyi −
Nσ 2

i

C
α2
i )} (14)

whereC > 0 is the penalty factor, ξi is the relaxation variable,
and σi(i = 1, 2, · · · ,N ) is the heteroscedasticity.

Proof: Introducing the Lagrange functional L(ω, b, α, ξ ),
we can get:

L(ω, b, α, ξ ) =
1
2
ωT

· ω +
b2

2
+
C
N
(
N∑
i=1

1

2σ 2
i

ξ2i )

+

N∑
i=1

αi(yi − ωT
· φ(xi) − b− ξi)

In order to find theminimumvalue ofL(ω, b, α, ξ ), the partial
derivatives of ω, b, ξ are calculated respectively. By KKT
conditions:

∇ωL = 0, ∇bL = 0, ∇ξL = 0.

Get:

ω =

N∑
i=1

αiφ(x i),
N∑
i=1

αi = b,
C

Nσ 2
i

ξi − αi = 0.

Substitute the above extreme conditions into L(ω, b, α, ξ ),
and seek the maximum of α, we can obtain the dual
problem (14) of the original problem (13) of the model
PLSSVR-HGN.

And there is b =

N∑
i=1

αi, the decision function of model

PLSSVR-HGN is:

fPLSSVR−HGN (x) = ωT
· φ(x) + b =

N∑
i=1

αi[K (xi, x) + 1]

(15)

where ω ∈ RL is the parameter vector. φ : RL → H (H is
the Hilbert space) is the kernel transformation, and (φ(xi) ·

φ(xj)) represents the inner product in the spaceH ,K (xi, xj) =

(φ(xi) · φ(xj)) is the kernel function.

IV. ALGORITHM DESIGN OF MODELS LSSVR-HGN AND
PLSSVR-HGN
In this section, parameter C and kernel functionK (·, ·) are not
fixed, which will affect the final optimization results. There-
fore, the Particle swarm optimization (PSO) and Grid search
methods [15], [24], [25] are introduced. The PSO algorithm
can find the parameter C and the kernel function K (·, ·) more
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conveniently and quickly. However, the optimal parameters
and the optimal calculation accuracy found by PSO algorithm
are not fixed each time, and will fall into the local optimal
solution. Therefore, in order to find the optimal calculation
accuracy more accurately, after determining the approximate
range of parameters, the Grid search method is used to find
the optimal solution. The standard PSO algorithm update
iteration formula is as follows:

µij(t + 1) = µij(t) + ηij(t + 1)

ηij(t + 1) = g · µij(t) + α · σ (t)(λij(t) − µij(t))

+ α∗
· σ ∗(t)(λ∗

ij(t) − µij(t)) (16)

where µ(t) is the position vector, η(t) is velocity vector, g is
the particle inertia,µ(t) is the positive acceleration coeffi-
cient, σ ∗(t) is the random value, λij(t) is the best position
found by the particle in dimension i, λ∗

ij(t) is the best position
found by any particle in dimension j.

The specific algorithm designs of models LSSVR-HGN
and PLSSVR-HGN are as follows:

A. ALGORITHM DESIGN OF THE REGRESSION MODEL
LSSVR-HGN
The algorithm design of least squares support vector regres-
sion model with Heteroscedastic Gaussian noise characteris-
tics (LSSVR-HGN) is:

Step 1. Let a given data-set Dl = {(x1, y1), (x2, y2), · · · ,

(xN , yN )} with noise characteristics, where xi ∈ RL ,
yi ∈ R (i = 1, 2, · · · ,N ), RL represents the L dimensional
Euclidean space, R represents the real number set, and N rep-
resents the number of samples;

Step 2. By using the Particle swarm optimization (PSO)
algorithm to determine the optimal parameter C and select
the appropriate kernel functionK (·, ·); Set t in PSO algorithm
to 1;

Step 3. Construct and solve the optimization problem (11)
of model LSSVR-HGN, the optimal solution α = (α1,
α2, · · · αN ) at different time t are obtained and updated
continuo- usly, where α1, α2, · · · , αN are Lagrange
multipliers;

Step 4. If the time t ≤ m, skip to Step 2 and Step 3; If so
t > m, go to Step 5;
Step 5. Construct the decision function

fLSSVR−HGN (x) =

N∑
i=1

αiK (xi, x) + b,

where

b =
1
N

N∑
i=1

(yi −
N∑
j=1

αjK (xi, xj) −
Nσ 2

i

C
αi).

B. ALGORITHM DESIGN OF THE REGRESSION MODEL
PLSSVR-HGN
The algorithm design of Proximal least squares support vector
regression model with Heteroscedastic Gaussian noise char-
acteristics (PLSSVR-HGN) is:

Step 1. Let a given data set Dl = {(x1, y1), (x2, y2), · · · ,

(xN , yN )} with noise characteristics, where xi ∈ RL , yi ∈ R
(i = 1, 2, · · · ,N ),RL represents the L dimensional
Euclidean space, R represents the real number set, and N rep-
resents the number of samples;

Step 2. By using the PSO algorithm to determine the
optimal parameter C and select the appropriate kernel func-
tion K (·, ·); Set t in PSO algorithm to 1;

Step 3. Construct and solve the optimization prob-
lem (14) of model PLSSVR-HGN, the optimal solution
α = (α1, α2, · · · αN ) at different time t are obtained and
updated continu- ously, whereα1, α2, · · · , αN are Lagrange
multipliers;

Step 4. If the time t ≤ m, skip to Step 2 and Step 3; If so
t > m, go to Step 5;
Step 5. Construct the decision function

fPLSSVR−HGN (x) =

N∑
i=1

αiK (xi, x) + b

where b =

N∑
i=1

αi.

V. EXPERIMENTS AND DISCUSSION
In this section, we mainly conducted three experiments. The
first experiment mainly used UCI data-set to test and compare
the prediction results ofmodels SVR, LSSVR, LSSVR-HGN,
PLSSVR and PLSSVR-HGN. The second and third experi-
ments are to predict the real wind-speed data-set at different
times in the future to further verify the effectiveness of mod-
els LSSVR-HGN and PLSSVR-HGN. All experiments were
carried out on a personal notebook with Inter Core i5-8700,
4GB memory, and windows 7 operation system in python 3.7
environment such that the same platform is provided for
simulations.

In addition, parameter selection is one of the key issues
affecting model evaluation, such as the regularization coef-
ficient and the number of hidden layer nodes have a large
impact on the generalization performance of the model.
There have been many algorithms for selecting the optimal
parameters, including Particle swarm optimization algorithm,
grid search algorithm, etc. In this paper, the more popular
and general grid search method is used to optimally select
the parameters of the above models, which locate the opti-
mal solution by traversing the specified parameters in the
parameter space. In this section, the proposed model uses a
polynomial kernel function, and the initial parameters of the
proposed PSO method is C ∈ [1, 201].
Meanwhile, to evaluate the performance of the

aforementioned algorithms, the following five commonly
used evaluation criterions are imported before presenting the
experimental results [19], [21]. Namely, mean absolute error
(MAE), root mean square error (RMSE), sum of error squares
(SSE), total sum of squares (SST), and sum of squares of
regression (SSR) to compare the learning performance of
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different models. Table 1 presents the evaluation indicator
and its definitions of each metrics.

TABLE 1. Evaluation indicator and its definition.

Without loss of generality, assume that the mean value of

the test sample is ȳ =
1
M

M∑
i=1

yi, while yi represents the true

value of the sample points, y∗i indicates the prediction result,
andM denotes the number of test samples. In addition, in gen-
eral, a smaller MSE, MAE, SSE, SSE/SST indicates a better
learning ability of the regression model. However, when the
prediction sample contains noise, a smaller MSE may imply
overfitting, and a smaller SSE/SST typically accompanies a
larger SSR/SST. However, over-small is not necessarily the
best, as it probably means mismatching.

A. UCI DATA-SET
In this section, in order to further verify the effectiveness of
models, we apply the proposedmodel to UCI data-set, includ-
ing Auto MPG(http://archive.ics.uci.edu/ml/index.php).

Select 200 training samples and 200 test samples from the
Auto MPG data-set to verify the effectiveness of the model.
The prediction results of the five regressionmodels are shown
in Figure 4, and the prediction error results are shown in
Figure 5 and in Table 2. In the experimental part, we mainly
use MAE, RMSE, SSE, SSE/SST and SSR/SST to evaluate
the prediction results of five different models.

From Table 2, Figure 4 and Figure 5, among all the
algorithms, the PLSSVR-HGN improves the learning effect
and has the smallest evaluation standard, which is also the
motivation to develop the algorithm in this paper. Specially,

FIGURE 4. Prediction results of the five models on Auto MPG.

FIGURE 5. Error of the five models on Auto MPG.

TABLE 2. Prediction errors of five models on Auto MPG.

the proposed model derives the smallest SSE and SSE/SST,
and the largest SSR/SST among these five algorithms, which
indicates the statistical information in the training datasets
is well presented by the proposed model with fairly small
regression errors. That is to say, the presented model not
only obtain more accurate prediction but also owns good
generalization performance.

B. SHORT-TERM WIND-SPEED FORECASTING
In the above subsection, PLSSVR-HGN has demonstrated
its advantages on public data-set. To further proof the
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benefits of the model in practical applications, one-year
wind-speed data of Heilongjiang province was gath-
ered, which yields 62,466 samples with four attributes:
mean, variance, minimum, and maximum. In this exper-
iment, 432 training samples and 432 test samples are
selected for analysis, respectively. The windspeed forecasting
pattern is constructed as follows: the input vector

−→
Xi =

(Xi−11,Xi−10,Xi−9, · · · ,Xi−1,Xi) , i = 1, 2, · · · , 864, the
output value xi+step, and xi is the wind-speed value at a
certain moment. The experimental setup step = 3, 5 in this
section, where step is the forecast scale. That is to say, the
above models are used to forecast and analyze the wind-
speed at 30 minutes and 50 minutes after a certain time in
Heilongjiang Province in Summer. The forecasting results of
five models on wind-speed after 30 minutes and 50 minutes
are shown in Figure 6 and Figure 7. Table 3 and Table 4 show
the result comparisons of five models on wind-speed after
30 minutes and 50 minutes, respectively.

FIGURE 6. Forecasting results of five models on wind-speed after 30 min.

TABLE 3. Forecasting error of five models on wind-speed after 30 min.

Table 3 and Table 4 demonstrate that the proposed models
have distinct advantages over the other comparability models,
particularly in wind-speed forecasting error statistics after
30 minutes, where model PLSSVR-HGN achieves smaller
MAE, SSE, and SSE/SST, and the largest SSR/SST among
these five algorithms. Furthermore, the prediction accuracy of
the proposedmodel in terms of RMSE is always the strongest.

FIGURE 7. Forecasting results of five models on wind-speed after 50 min.

TABLE 4. Forecasting error of five models on wind-speed after 50 min.

Also, as shown in Figure 6 and Figure 7, the regression
curves obtained by these algorithms all deviate from the
original equation to varying degrees, whereas the regression
curve obtained by the proposed model is always the closest to
the original system, indicating that the proposed model has a
highest accuracy effect than several other models. As a result,
the proposed models can be deemed an effective approach for
predicting actual wind-speed.

VI. CONCLUSION
Proximal least squares support vector regression is a new
regression machine designed by using regularization princi-
ple technology and least squares support vector regression.
In the objective function, the bias term is introduced as
the variable of the optimization problem, which makes the
formula become a strongly convex objective function with
equality constraints and improves the accuracy. From a vari-
ety of perspectives, it is not considered as the most adequate
model and there is much room for improvements.

This section summarizes our main work: (1) Discover that
the wind operation law obeys Gaussian distribution with
zero mean Heteroscedasticity by investigating the proper-
ties of noise models in real wind-speed forecasting; Derive
Heteroscedastic optimal empirical risk loss function by
employing the Bayesian principle and maximizing poste-
rior probability method; (2) Establish the regression models
LSSVR-HGN and PLSSVR-HGN; (3) Using the Lagrange
function, obtained the dual problems of LSSVR-HGN and
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PLSSVR-HGN according to KKT conditions; (4) Solving
models LSSVR-HGN and PLSSVR-HGN by ALM method,
which guaranteed the effectiveness and stability of algo-
rithms; (5) Experiments on Auto MPG, and wind-speed
data-set demonstrate that the constructed models are more
effective than other several three models recently released
algorithms.

However, this work only solves the problem of
Heteroscedastic Gaussian in least square regression models.
In more practical situations, the true distribution of noise is
complex and unknown. Considering the limited predictive
ability of Heteroscedastic noise regression model to handle
complex noise, authors will study using alternating mixed
distributions to model noise distribution in practical prob-
lems. In addition, we can also develop issues similar to
classification learning.
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