
Received 18 May 2023, accepted 23 June 2023, date of publication 27 June 2023, date of current version 5 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289887

An Explainable Intelligent Framework for
Anomaly Mitigation in Cyber-Physical
Inverter-Based Systems
ASAD ALI KHAN 1, (Member, IEEE), OMAR A. BEG 2, (Senior Member, IEEE),
YU-FANG JIN1, (Member, IEEE), AND SARA AHMED 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
2Department of Electrical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA

Corresponding author: Omar A. Beg (beg_o@utpb.edu)

ABSTRACT Inverter-based microgrids essentially constitute an extensive communication layer that makes
them vulnerable to cyber anomalies. The distributed cooperative controllers implemented at the secondary
control level of such systems exchange information among physical nodes using the cyber layer to meet the
control objectives. The cyber anomalies targeting the communication network may distort normal operation,
therefore, an effective cyber anomaly mitigation technique using an Artificial Neural Network (ANN) is
proposed in this paper. The intelligent anomaly mitigation control is modeled using a dynamic neural
network that employs a nonlinear autoregressive network with exogenous inputs. The effects of false data
injection on the distributed cooperative controller at the secondary control level are considered. The training
data for designing the neural network are generated by multiple simulations of the designed microgrid
under various operating conditions using MATLAB/Simulink. An explainable framework is employed to
interpret the output generated by the trained neural network-based controller after the neural network has
been trained offline and validated online in the simulated microgrid. The proposed technique is applied as
secondary voltage and frequency control of distributed cooperative control-based microgrid to regulate the
voltage under various operating conditions. The performance of the proposed control technique is verified by
injecting various types of false data injection-based cyber anomalies. The proposed ANN-based secondary
controller maintained the normal operation of the microgrid under various cyber anomalies as demonstrated
on a real-time digital simulator.

INDEX TERMS Artificial neural networks, cyber anomaly mitigation, distributed cooperative control,
explainable neural networks, false data injection attacks, microgrids.

I. INTRODUCTION
Microgrids have evolved into cyber-physical systems (CPS)
that include multiple distributed generators (DGs), loads, and
a communication network. Both centralized and distributed
control mechanisms have been deployed in microgrids [1],
[2], [3]. Distributed control for microgrids provides improved
reliability and scalability when compared to centralized
control [4]. However, the challenges in designing and deploy-
ing modern distributed microgrids include uncertainties
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associated with loads, renewable energy resources, and com-
munication networks that are vulnerable to cyber anomalies
[5], [6]. Cyber anomalies occur when an adversary targets the
communication network by False Data Injection (FDI) attack
or compromising information sharing in the network [7], [8],
[9], [10]. These anomalies can result in system instability
issues such as loss of synchronization during operation [11].
Therefore, an effective mitigation strategy is required for the
smooth operation of microgrids to cater to those anomalies.

Most of the recent anomaly mitigation techniques in AC
microgrids are model-based approaches, requiring a detailed
accurate model and accurate architectural knowledge of the
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system [12], [13], [14], [15], [16], [17], [18]. However, for
large-scale microgrid systems whose mathematical models
are hard to derive, learning-based tools such as Artificial Neu-
ral Networks (ANNs) can be deployed for cyber anomalies
mitigation, distributed generation management, and resilient
control design in multi-DG microgrids [19], [20], [21], [22],
[23], [24], [25]. In addition, ANNs can be designed using
historical voltage and current measurements to act as an
estimator and an observer layer for FDI attack detection and
mitigation in cooperative controlled DC microgrids [26].
In [27], ANN-based resilient control design is proposed to
withstand the FDI attacks that contain an anomaly detec-
tion system based on the Luenberger observer and ANN.
An Extended Kalman filter is used to update the ANN learn-
ing weights online such that the input to the ANN is the
difference between the actual system output and the output
from the Luenberger observer. This will allow the ANN to
detect an anomaly in the system and feedback data from the
anomaly detection system is then used in a linear quadratic
controller to compensate for the anomalies. This proposed
method involves iterative calculations that pose scalability
challenges as the power system becomes larger and more
complex with the integration of distributed energy resources.
In [28], an ANN-based reference tracking algorithm is intro-
duced to mitigate the effect of FDI attacks in distributed
consensus control-based DC microgrids. This is a two-layer
control design in which ANN is applied to mitigate the
discrepancies between a normal and compromised signal
being fed to a proportional-integral (PI) controller. The signal
latency or loss of communication between two such layers
may endanger the microgrid’s stable operation, which may
even lead to a loss of synchronism among DGs. In [29],
a model predictive control (MPC)-based ANN control strat-
egy is proposed for the dynamic damping of DC microgrids.
This proposed control approach attained the balance between
demand and supply under variable operating conditions, but
the robustness of the controller under cyber anomalies is not
discussed. In [30], ANN is used as an estimator to detect
the FDI attack by estimating the reference voltage for the
secondary control layer of a DC microgrid. This is similar to
a two-layer design using an estimated reference value from
ANN as an input to an MPC-based controller to calculate the
optimal values of the inputs to track the references by the
plant outputs. This method will function properly if ANN
can accurately estimate the actual voltage of the DC bus,
which may be challenging if the system consists of multiple
converters that experience unintended signal perturbation.

A CPS is a sophisticated system that connects physi-
cal processes and objects to the network while integrating
sensing, computation, control, and networking [31]. Such
CPS, including microgrids, are vulnerable to cyber-attacks
due to dependence on interactions with the environment
and communication networks. In [32] and [33], a fuzzy-
model-based approach is utilized to minimize the malicious
effects of denial-of-service attacks on control networks and

a truck-trailer system under cyber-attacks, respectively. The
proposed approach has the potential to be applied to a wide
range of networked control systems, especially those operat-
ing in harsh environments where cyber-attacks are common.
The electric grid is changing from a relatively closed sys-
tem to a complex highly integrated environment and the
security system should evolve as threats to the electric sys-
tem are inevitably diversified and multiplied. For critical
infrastructure to be secure, the three most essential elements
are hardware, software, and communication network [34].
Cyber-resiliency of such systems can be enhanced by incor-
porating modern control techniques.

Artificial intelligence (AI)-based techniques provide sta-
ble, secure, and reliable methods to address challenges with
distributed control design and improve microgrid’s stabil-
ity [35]. However, the AI models are sometimes referred to
as the black box models due to the limited understanding
of their working behavior. Interpretability offers a set of
techniques to overcome this black-box nature of AI models
by revealing the impact of various features on the predictions
of trained AI models [36], [37]. An explainable framework
is needed to help users comprehend the outputs created by
AI-based models. Such an explainable AI framework gives
users the confidence in understanding and examining AI
models in a variety of contexts, including healthcare and
anomaly-based in-vehicle intrusion detection systems [38],
[39]. An explainable framework based on partial dependence
plots (PDP) for the neural network-based controller for power
electronics converter is given in [40]. In a trained AI model,
partial dependence relates to the interactions between pre-
dictor variables and predicted responses. Such explainable
techniques may also help to understand feature correlations,
the importance of the output of individual data points, and the
feature attributions of the model outputs [41].

The application of ANN-based control for microgrids is
not common as manifested from the usage of ANN as an
observer layer in an AC microgrid in [27] and in reference
tracking applications for DC microgrids in [28]. Also, the
explainability of AI-based methods and the resilience of con-
trol designs against noise in the signals are not provided. The
research motivation for this paper is based on the following
observations from the literature:

• The application of ANN-based control of microgrids
to take corrective actions to maintain stability under
anomalies is not ubiquitous.

• The explainability of AI-based methods in the context
of microgrids is not available.

• Resilience verification of the AI-based control design
under a noisy signal environment in the context of
microgrids is needed.

To bridge this research gap, we proposed a novel nonlinear
autoregressive exogenous model (NARX ANN) as a resilient
secondary control layer in a multi-DG AC microgrid. Such
ANNs are nonparametric models and provide improved per-
formance in forecasting applications based on time-series
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FIGURE 1. Illustration of the control mechanisms for the proposed controller in a typical microgrid setup. Cyber anomalies were injected into the
communication network’s voltages and frequency signals.

data in microgrids as evidenced in [42]. In order to evaluate
the impact of different inputs on the model’s performance,
this paper also provides an explainable framework for the
proposed ANN-based controller utilizing the partial depen-
dence function, which displays the marginal effect of input
features on the predicted output of the ANN model. There
are several advantages of using such intelligent anomaly mit-
igation controls such as early detection of anomalies before
they can cause significant damage or disruption to the sys-
tem, less manual intervention, and enhanced understanding of
the system to identify areas for improvement. The proposed
control technique utilizes an advanced AI-based tool tailored
to mitigate the data-driven cyber anomalies targeting the
communication network of the microgrid. Also, it is scalable
and depicted improved performance under complex real-time
test scenarios. The main contributions of this research are
summarized as follows:

• A resilient ANN-based secondary control technique is
proposed to mitigate cyber anomalies. Such anomalies
are introduced through the communication links to ver-
ify that the proposed control technique maintained the
desired operation of the system.

• The proposed control technique does not depend on
an estimator or an observer layer for cyber anomaly
detection.

• The resilience of the proposed ANN-based control tech-
nique is tested under a noisy environment by adding
white Gaussian noise to the voltage and frequency inputs
of ANN.

• The proposed method can be expandable for a large-
scale microgrid. This is accomplished by designing
ANN-based control using a connection matrix allowing
the integration of multiple DGs without compromising
the microgrid’s operation.

• An explainable framework is provided using PDP
to identify the most critical node in the microgrid
by evaluating the control decisions under extreme
scenarios.

Performance comparisons of the proposed ANN-based
control strategy with the existing PI-based distributed sec-
ondary control method are also presented in this paper.
The control performance is also validated in real-time by
simulating an AC microgrid, on the real-time digital simu-
lator OPAL-RT. The results obtained in various case studies
have verified the effectiveness of the proposed ANN-based
secondary control for AC microgrids. The mean absolute
percentage error (MAPE) and the voltage and frequency reg-
ulation are used as a benchmark to evaluate the performance
of the trained ANNs.

The rest of the paper is organized as follows. Section II
describes the ACmicrogrid used in this workwith the types of
cyber anomalies. The structure of ANN is given in section III.
In section IV, the design of ANN-based secondary voltage
and frequency control is presented. The explainable frame-
work for ANN is discussed in section V. In section VI, the
results obtained from real-time simulations performed on the
test microgrid are discussed. Finally, this paper is concluded
in section VII.
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II. SYSTEM DESCRIPTION
The AC microgrid used in this study consists of a physical
layer and a cyber layer. The physical layer is composed of
multiple DGswith various loads. The cyber layer contains the
communication protocols for voltage and frequency informa-
tion exchange in a distributed cooperative control architecture
as illustrated in Fig. 1. The primary controller is implemented
locally at each of the DG using a conventional droop control
technique that provides a relationship between the frequency
ωi, the reactive powerQi, the active powerPi, and the voltages
vo. The voltage and frequency droop characteristics are given
by: {

vo = v∗ − nQiQi,
wi = w∗

− mPiPi,
(1)

where v∗, ω∗ are the primary voltage and frequency reference
values, and mPi , nQi are the active and reactive power droop
coefficients, respectively. At the secondary level, distributed
cooperative control is utilized to reduce the voltage and fre-
quency error when compared to the nominal values generated
by the primary control. As demonstrated in Fig. 1, the relevant
control protocols are implemented over a distributed com-
munication network. The secondary control sets a reference
for the primary control such that the voltage and frequency
of each DG are synchronized with their respective reference
values (v∗ and w∗):{

limt→∞

∥∥vo − v∗
∥∥ = 0,

limt→∞

∥∥wi − w∗
∥∥ = 0.

(2)

For a given DG, the distributed cooperative secondary voltage
and frequency regulation requires its own information as well
as that of the neighboring DGs to collaboratively achieve the
control objectives. The power controller utilizes the droop
control techniques and the voltage and current controllers
generate the reference for the inverters. The communication
network of a multiagent cooperative system can be modeled
by a directed graph (digraph) with nodes and edges rep-
resenting DGs and communication links in the microgrid,
respectively. Based on the digraph communication protocol,
the nth DG, in the microgrid may need to share their voltage
information over the communication network. Assuming that
only one DG has access to the reference v∗, by a weight factor
known as pinning gain bi, the cooperative control objective
in terms of local neighborhood tracking error (ven) is as
follows:

ven =

∑
j∈Sn

aij(vi − vj) + bi(vi − v∗), (3)

where Sn represents the set of neighboring DGs of the nth DG,
aij represents the elements of the adjacency matrix, and only
one DG has a nonzero bi. Similarly, for distributed secondary
cooperative frequency control, the auxiliary control input ui

is as follows:

ui = −cg(
∑
j∈Sn

aij(ωi − ωj) + bi(ωi − ω∗)

+

∑
j∈Sn

aij(mPiPi − mPjPj), (4)

where cg is the coupling gain. In [4], more information
about distributed cooperative control architecture is provided.
Description of the cyber anomalies investigated in this paper
is given in the next subsection.

A. CYBER ANOMALIES
Cyber anomalies target the microgrid’s communication layer
by injecting false data or compromising the network’s
information exchange. FDI attack targets the voltage and
frequency information of neighboring DGs on the commu-
nication graph. A distributed secondary controller’s feedback
signal can be characterized as:

x(un(t)) = un(t) + ψn(t), (5)

where x(un(t)) is the feedback signal after the attacker injects
false data ψn(t) into the controller’s nth normal feedback
signal [28]. Following are the five types of FDI attacks based
on various ψn(t):
Type 1 - Stationary attack: A stationary attack is non-

periodic in nature and is launched by injecting a constant
multiple γ of the desired signal un(t) into x(un(t)) at
a certain time to throughout the system’s operation,
as follows:

x(un(t)) =

{
un(t), when t < to,
un(t) + γ ∗ ui(t), when t > to.

(6)

Type 2 - Reinforcement attack: During a reinforcement
attack, the system is compelled to follow the incorrect
set of reference points by fully replacing the desired
reference value with false data. The attacker replaces the
intended signal un(t) entirely with its multiple, resulting
in:

x(un(t)) =

{
un(t), when t < to,
γ ∗ un(t), when t > to.

(7)

Type 3 - Time-varying attack: The periodic time-varying
attack is initiated by injecting a periodic sinusoidal
signal with time period (ωt) and amplitude ξ into the
normal signal un, as follows:

ψn(t) =

{
0, when t < to,
ξsin(ωt) ∗ un(t), when t > to.

(8)

Type 4 - Manifold attack: A manifold attack is composed
of both stationary and time-varying attacks. This attack
is initiated with the injection of false information, both
periodic and non-periodic, as follows:

ψn(t) =

{
0, when t < to,
γ ∗ un(t)+ξsin(ωt) ∗ un(t), when t > to.

(9)
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FIGURE 2. The architecture of a NARX ANN with 1 input layer with
13 nodes, 1 hidden layer with 10 nodes, and an output layer with 4 nodes
is shown.

FIGURE 3. The NARX ANN configurations are shown. (a) Parallel
configuration. (b) Series parallel configuration.

Type 5 - Coordinated attack: In a coordinated attack sce-
nario, the adversary injects false data into all of the DGs
in the system to launch a large-scale attack, such that:

[x(un(t))]4×1 =

{
[un(t)]4×1, when t < to,
[un(t)]4×1 + χ, when t > to,

(10)

where χ is the false data being injected to all the four
DGs of the microgrid system when t > to.

III. NONLINEAR AUTO-REGRESSIVE EXOGENOUS
ARTIFICIAL NEURAL NETWORKS
NARX ANN (used as ANN for brevity in manuscript) is a
special class of recurrent neural networks best suited for time
series data prediction, input-output modeling of nonlinear
dynamical systems, and cyber attack detection in micro-
grids [26], [42]. In this paper, we have deployed a single-layer
ANN to generate the reference for the primary controllers.
The embedded memory in ANN will help improve gradient
descent, converge faster, and can be deployed for nonlin-
ear systems. This ANN can model dynamic systems with
arbitrary accuracy making them very suitable for time-series
applications [43]. The trained ANN-based controller replaces
the state-of-the-art PI-based controller in the secondary layer
of distributed cooperative control as shown in Fig. 1. The
input layer has 13 nodes for voltage and frequency informa-
tion, and the output has 4 nodes for corresponding reference
output at each DG. There are 10 nodes in the hidden layer.
This structure is optimized after multiple trainings and found
best suited for this work. The preceding batch of output and
input, y(k − i) and x(k − i), respectively, establish the ANN’s
output y(k) that constructs an autoregressive model to predict
the current value of the dynamical system. These delayed

output values act as pseudo-states to extract system dynamics
from time series data. This characteristic makes NARXANN
a promising choice for nonlinear dynamical system modeling
in applications like intelligent control [44]. The mathematical
model of ANN is given as follows:

y(k + 1) =f [x(k − n), . . . , x(k − dx − n+ 1), y(k),

. . . , y(k − dy + 1)], (11)

where y(k) is the model output, x(k) is the model input at
discrete time interval k , dx is input memory order, and dy is
output memory order. Assuming delay term k = 0, the model
takes the form as follows:

y(k + 1) = f [x(k), . . . , x(k − dx + 1), y(k)

, . . . , y(k − dy + 1)], (12)

which can be expressed in vector form as follows:

y(k + 1) = f [Y (k);X (k)], (13)

where the boldface letters represent vectors, such that, Y (k)
and X (k) represent the output and input, respectively. The
nonlinear mapping f (.) can be approximated by a standard
multilayer perceptron network. The architecture of a single-
layer ANN is shown in Fig. 2. Its training can be carried out
in the following two configurations:
1) Parallel Configuration: The parallel configuration is

shown in Fig. 3 such that the estimated output of the
network is fed back into the ANN input as follows:

ŷ(k + 1) = f̂ [x(k), . . . , x(k − dx + 1), ŷ(k),

. . . , ŷ(k − dy + 1)], (14)

2) Series Parallel Configuration: This configuration is
depicted in Fig. 3b, wherein, actual output values are
used without feedback. The estimated output ŷ is given
by:

ŷ(k + 1) = f̂ [x(k), . . . , x(k − dx + 1), y(k),

. . . , y(k − dy + 1)]. (15)

Since the real output is accessible from microgrid operation,
the series-parallel configuration is used for the training and
operation of ANN. The design of the proposed ANN-based
secondary control layer is discussed in the next section.

IV. ANN-BASED DISTRIBUTED SECONDARY CONTROL
DESIGN
The training of ANN models is crucial to result in an optimal
performance. The reference for the primary control level
at each inverter is generated by the secondary distributed
cooperative control [4]. As a result, each DG includes its own
ANN-based resilient secondary voltage controller to generate
the reference for the primary controller. The control objective
is to maintain the output voltage and current within a pre-
defined bound. The proposed control structure is explained
below:
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A. ANN-BASED SECONDARY VOLTAGE CONTROL
Offline simulations of the test microgrid are performed to
collect data for the ANN training. The data is generated while
the microgrid is under normal operating conditions with three
set reference voltages as well as under load step changes in
order to generate a complete training dataset.

B. DATA GENERATION
Based on the communication graph in Fig. 6, each DG shares
voltage information with the two neighboring DGs. For data
generation, the following scenarios are considered:

1) Data is collected under normal operating conditions:
a. DG’s own voltage information vnn where n ∈

(1, 2, 3, 4), b. voltage information from neighbors of
DG1 v1i and DG3 v3i, where i ∈ (2, 4), c. voltage infor-
mation from neighbors of DG2 v2j and DG4 v4j where
j ∈ (1, 3), d. secondary control reference voltage v∗ and
the primary control reference voltage output generated
by each DG v∗n.

2) Test microgrid is simulated under 5 load step changes
and 3 different sets of reference voltages. This results
in a total of 15 distinct microgrid events, each with a
simulation run time of 2 s. Having a sampling rate of
1 ms for data collection results in 15,000 data points
for training the ANN model. The data sampling and
simulation run times are selected such that the microgrid
is back in steady-state following a load change.

Let P be the training data input for ANN. P is obtained
through multiple simulations of the test microgrid, where,
P = [vnn, v1i, v3i, v2j, v4j, v∗]13×1. The target for the training
of ANNs is T , where T = [v∗n]4×1. To optimize the weights
for offline training, both P and T are generated by executing
various scenarios of simulations. The attack vector for the
DGs aimed at secondary voltage control information sharing
is as follows:

Vij = Vijactual + χattackVij, (16)

such that Vij is the compromised information input to the
secondary voltage controller of DGn, Vijactual is the vector
of real measurements, and χattack represents the attack cases
from section II-A. Because of the compromised information
exchange, the control objectives may be disrupted, resulting
in synchronization loss or divergence from the required ref-
erence voltage value.
Remark 1: The FDI attack is initiated at time to and the

output voltage follows the reference values before the attack
at (t − to) but the output deviates from the desired reference
after the attack at (t+ to). The difference between v̂∗n and v

∗
n is∣∣v̂n−v∗n∣∣ = µv, where, v̂n is the output voltage of the nth DG

under attack and v∗n is the reference output voltage for each
DG unit. ANN-based secondary voltage control attempts to
decrease this error as follows:

lim
t→∞

µv = 0. (17)

Remark 2: ANN learns the system’s dynamics through
offline training. The trained ANN model operates for the
system having the same control mechanism used in the train-
ing phase for the online implementation [28]. Therefore, the
trained ANN can now act as a distributed secondary control
layer for the microgrid under investigation.

C. TRAINING OF ANN-BASED SECONDARY VOLTAGE
CONTROL
The architecture of the ANNmodel selected for the secondary
voltage controller is based on the following relationship:

0 1 1 0 1 . . a1j
0 1 1 1 0 . . a2j
1 0 1 1 1 . . a3j
0 1 0 1 1 . . a4j
. . . . . . . .

. . . . . . . .

ai1 ai2 ai3 ai4 . . . aij


︸ ︷︷ ︸

A



v∗

v1
v2
v3
v4
.

.

vn


︸ ︷︷ ︸
X

=



v∗1
v∗2
v∗3
v∗4
.

.

v∗n


,

︸ ︷︷ ︸
B

(18)

where A is the microgrid’s connection matrix and aij ∈ (0, 1),
where 1 or 0 depicts if a connection among adjacent DGs
exists or not, respectively. X is the voltage information for
all DGs at the secondary control level, and B is the reference
voltages generated by each DG and fed to each primary level
controller. For this case study with a 4 DGs microgrid, the
dimensions in (18) are A4×5 × X5×1 = B4×1. However, the
structure of A can have a higher dimension if the number of
DGs increases.

As shown in Fig. 4, the following are the steps taken to
train the ANN model:

1) The weights of the ANN are optimized during the offline
training process by taking the feature vector for training
and testing the ANN model from past data.

2) Supervised learning method is chosen for ANN model
training in order to maximize training to accomplish the
control objective with known inputs P and output T .

3) The generated data is divided into training, testing, and
validation with 70 %, 15 %, and 15 %, respectively.

4) The Levenberg-Marquardt training algorithm is used for
training that terminates when maximum generalization
is achieved, as indicated by the lowest mean square error
(MSE) of the validation data. The maximum number of
epochs is set to 1000 and the lowest MSE of 2.32×10−3

for validation data was obtained after 374 iterations.
5) After numerous training sessions, the design of the

ANN, including hidden layers and the number of neu-
rons, is determined to be optimal. This architecture has
one input layer, one output layer, and one hidden layer
with ten neurons, and it was found suitable for this
application. The hidden layer’s activation function is
tansig, while the output layer’s activation function is
purelin. This architecture has been employed in time-
series data prediction applications for microgrids [28].
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FIGURE 4. Flow chart with the steps involved in the training of the ANN model.

6) During the offline training of ANN, the bias vector b and
the weight matrix w is optimized. This trained model is
then tested against an unknown test data set to ensure
that it performs as expected by measuring the output
voltages and currents of the microgrid.

D. ANN-BASED SECONDARY FREQUENCY CONTROL
DESIGN
A distributed secondary frequency control layer is included
in the test microgrid for the coordinated operation of its mul-
tiple DGs under different operational conditions, as shown
in Fig. 1. The operation of the microgrid is extremely sen-
sitive to the changes in frequency information, and any FDI
attack aimed against the frequency information links between
DGs may destabilize the microgrid [5]. As a result, the
ANN model is applied at the microgrid’s secondary fre-
quency control layer to mitigate the impact of an FDI attack.
For the test microgrid, DG1 and DG3 are chosen as the
leading nodes to implement the cooperative control objec-
tives given in (4). Following a similar process, as given in
sections IV-A and IV-C, the training data of the ANN-based
secondary frequency controller are generated such that the
training input is P = [ωnn, ω2j, ω4j]6×1, where j ∈ (1, 3)
such that, ωnn is the frequency information of DG2 and DG4,
ω2j, ω2j are the frequency information from the neighbors
of DG2 and DG4, respectively. The training target is T =

[ω∗
n]2×1,where n ∈ (2, 4) and ω∗

n represents the primary level
reference frequency generated by DG2 and DG4. Various
scenarios are implemented to measure the performance of the
trained ANN model, as follows.

E. TRAINING AND TEST SCENARIOS
The following scenarios are included in the time series simu-
lations of the microgrid shown in Fig. 5:

Scenario 1: Step load change: Lk , where k ∈

{4, .., 8} kW .
Scenario 2: Target of FDI attack:in the cyber layer of

all DGs, the voltage and frequency information
exchange channels are targeted for inserting false
data to cause cyber anomalies.

Scenario 3: Type of FDI attack: various types of FDI
attacks are applied as described in section II-A.

Scenario 4: Reference voltage: three different values are
used for secondary level reference set voltage, i.e.,
[300, 325, 350]V .

The performance of the trained ANN model is evaluated
using the mean absolute percentage error (MAPE), given as:

MAPE =
1
m

m∑
k=1

∣∣yp − y
∣∣

y
× 100, (19)

where, m represents total number of cases, y is the actual
output, and yp is the predicted output. The trainedANNmodel
is also evaluated by adding white Gaussian noise into the
measurements. To achieve the signal-to-noise ratio (SNR)
with three distinct noise levels: i) 30 dB, ii) 35 dB, and iii)
40 dB, the white Gaussian noise is added into the test data
input [45]. The results of this case study are given in Table 1.
As observed from the data, adding noise to the input has a
negligible effect on performance. In each case (30 dB, 35 dB,
and 40 dB), theMAPEvalue is compared to the one at 0 dB, as
shown in Table 1. This signifies that the proposed technique
is resilient under distorted measurements.

V. EXPLAINABLE ANN MODEL
Partial dependence plots (PDP) are one of the methods for
global interpretability of ANN models that helps understand
the model’s response over a complete data set [46]. PDPs are
plotted for the trained ANN model, proposed in this paper, to
see the impacts on various DGs in the microgrid during cyber
anomalies. The predictive response’s partial dependence is
computed on a subset of predictor features by marginalizing
the other features. Based on (18), consider a subset vns such
that v1s = [v11, v12, v13] and n ∈ (1, 2, 3, 4) represents the
four DGs in the test microgrid. Let vnc be the complementary
set of vns, such that vnc = {vij ∈ Vn : vij ̸∈ vns}, where vij
represents the voltage information from neighboringDGs and
Vn is the set containing voltage information of all four DGs in
the microgrid. The predicted output v∗n of trained ANNmodel
f (.) depends on all the features in Vn, given as:

f (Vn) = f (vns, vnc). (20)

The predicted output v∗n is the primary reference voltage gen-
erated by each DG in the microgrid and its partial dependence
on vns is given by the expectation of the predicted output with
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TABLE 1. The MAPE performance of the trained ANN model with
distorted input data is presented.

FIGURE 5. Four DGs based microgrid system.

respect to vnc, as follows:

fs(vns) = E[f (vns, vnc)] =

∫
f (vns, vnc)pnc(vnc)d(vnc),

(21)

where pnc(vnc) is the marginal probability of vnc, given as:

pnc(vnc) =

∫
f (vns, vnc)d(vns). (22)

Assuming that the correlation between vns and vnc is not
strong, the partial dependence is estimated using the observed
model’s responses as follows:

fs(vns) =
1
m

j=1∑
m

f (vns, vncj ), (23)

where j is the number of trained model responses and vncj =

(vns, vnc) is the jth response. The performance of the proposed
ANN-based secondary control is validated by executing real-
time scenarios on the real-time digital simulator OPAL-RT
under cyber anomalies after training the ANN, and the results
are reported in the following section.

VI. SIMULATION RESULTS
The performance of the proposed ANN-based secondary con-
trol is evaluated using the test microgrid system and real-time
simulations as illustrated in Fig. 5. The four DG voltage
source inverters are coupled through RL lines to provide AC
power to two-three phase RL loads, denoted by load1 and
load2 in Fig. 5. The four DGs of the test microgrid share
their voltage and frequency information over the communi-
cation network as shown in Fig. 6. For our use case, the
microgrid is designed in OPAL-RT’s software simulation

FIGURE 6. Communication graph for the four DGs.

tool, i.e., RT-LAB. Then using MATLAB/Simulink coder,
the trained ANN is implemented in RT-LAB to generate
output for the designed microgrid. The trained ANN-based
controller applies lessons acquired from multiple simulations
to interpret anomalies and respond in real-time. Table 2,
lists the parameters of the test microgrid system and the
real-time simulator setup is shown in Fig. 14. Real-time
digital simulator OPAL-RT facilitates the integration of real
hardware into the simulation environment and consists of a
communication interface, an FPGA-based input/output (I/O)
subsystem, and a real-time simulation engine. OP5600 Series
is a complete simulation system, that contains a powerful
target computer, a reconfigurable FPGA, and signal condi-
tioning for up to 256 I/Os. The front of the chassis provides
access to the target computer’s standard connectors, and
monitoring interfaces and connectors, while the back of the
chassis provides access to the I/O connectors, power cable,
andmain power switch. The lower part of the chassis contains
a powerful target computer that is used to run simulations
built with OPAL-RT’s RT-LAB software simulation platform.
The upper section contains the high-speed FPGA Xilinx
Artix 7 FPGA 200T, that’s programmable from the target
computer. The FPGA is used to execute models designed
with RT-LAB and manage the I/O lines. It can exchange data
with the real-time simulations being executed on the target
computer [47]. The cyber anomalies are introduced in the
test microgrid system after the model is built in the real-time
target, as explained in the following sections.

A. TYPE 1 - STATIONARY ATTACK
Based on (6), an adversary injects false data into the voltage
communication links of DGs. In this case, the target is DG1
link v11 such as at t = 2 s with γ = 1.5, an FDI attack is
initiated. The microgrid operates under normal conditions for
t < 2 s. After the FDI attack, the performance of the proposed
ANN-based secondary voltage control is compared to the
existing PI-based control and the results are shown in Fig. 7.
As illustrated in Fig. 7a and Fig. 7b, the proposed ANN-based
secondary voltage control showed improved reference track-
ing capability in comparison to the PI-based control which
was not able to maintain the desired reference value after
the FDI attack. Similarly, it can be seen that the ANN-based
voltage controller maintained the desired output voltage at the
output of DG1. In contrast, the PI-based controller suffered
distortions in the output voltage after the FDI attack as shown
in Fig. 7c.
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FIGURE 7. Type 1: The performance comparison in terms of reference tracking and the output voltage at DG1.

FIGURE 8. Type 2: The performance comparison in terms of reference tracking and the output voltage at DG2.

FIGURE 9. Type 3: The performance comparison in terms of reference tracking and the output voltage at DG3.

FIGURE 10. Type 4: The performance comparison in terms of reference tracking and the output voltage at DG4.

B. TYPE 2 - REINFORCEMENT ATTACK
This FDI attack is based on (7), in which false data is injected
into the DGs voltage communication links. For example, in
DG2’s communication link v22, the FDI attack is initiated at
t = 2 s with γ = 0.5. After the FDI attack, the proposed
ANN-based secondary voltage control is compared to the
PI-based control, with the results displayed in Fig. 8. The
proposed ANN-based secondary voltage control, as shown
in Fig. 8a and Fig. 8b, has demonstrated improved refer-
ence tracking capabilities compared to the PI-based control.
As illustrated in Fig. 8c, the ANN-based voltage controller
maintained the required output voltage at the output of DG2
after the FDI attack.

C. TYPE 3 - TIME-VARYING ATTACK
This FDI attack is based on (8) where the voltage communi-
cation of DGs is targeted. In this case, false data is injected

into DG3 voltage communication link, v33, at t = 2 s with
ξ = 0.5 and w = 2π60 rad/sec. The microgrid continues
to operate normally for t < 2 s. The designed ANN-based
secondary voltage control is compared to the PI-based control
after the FDI attack is initiated, with the results shown in
Fig. 9. The proposed ANN-based secondary voltage control,
performed better in reference tracking than the PI-based con-
trol as shown in Fig. 9a and Fig. 9b. After the FDI attack,
the ANN-based voltage controller maintained the specified
output voltage at the output of DG3 as depicted in Fig. 9c.

D. TYPE 4 - MANIFOLD ATTACK
This FDI attack is initiated by injecting false data into the
voltage communication connection, v44, of DG4 with γ =

0.5, ξ = 0.5, and w = 2π60 rad/sec at t = 2 s, based on (9).
The microgrid operates normally until t = 2 s. After the FDI
attack, the proposed ANN-based secondary voltage control
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FIGURE 11. Type 5: The performance comparison in terms of output
voltage and current at load1 of test microgrid system.

performance is compared to the PI-based control, with the
results shown in Fig. 10. The proposedANN-based secondary
voltage control, as illustrated in Fig. 10a and Fig. 10b, showed
improved performance in terms of reference tracking com-
pared to the PI-based control. Also, the ANN-based voltage
controller kept the stated output voltage at the output of DG4
after initiating the FDI attack, as shown in Fig. 10c.

E. TYPE 5 - COORDINATED ATTACK
Under a coordinated attack, the adversary targets all the DGs
present in the microgrid as given in (10). At t = 2 s, the volt-
age communication links of all four DGs are compromised by
injecting false data. This is a severe type of cyber anomaly due
to its widespread nature. The results of the proposed ANN-
based secondary voltage control are compared to the PI-based
control after an FDI attack in terms of output voltage and
current at load1 of test microgrid as shown in Fig. 11. The
designedANN-based controller maintained the power quality
by keeping the desired phase and amplitude of three phase
currents, whereas the PI-based controller did not withstand
the FDI attack as shown in Fig. 11a. Similarly, the desired
three phase voltages were maintained after the FDI attack
in the case of the proposed ANN-based control but the PI-
based control showed large deviations from the desired output
voltage as depicted in Fig. 11b.

F. FDI ATTACK TARGETING THE FREQUENCY
COMMUNICATION LINKS
Type 3, FDI attack is applied to target the frequency commu-
nication links of DG2 w22 and DG4 w44 with ξ = 0.5 and
w = 2π60 rad/sec based on (8). The proposed ANN-
based frequency control maintained the desired frequency
value after the FDI attack compared to the PI-based control,
as shown in Fig. 12. The FDI attack is initiated at t = 2 s at
DG2 andDG4 and it is evident from Fig. 12a and Fig. 12b that
the designed ANN-based frequency control kept the system
in normal operating condition with a little deviation after the

FIGURE 12. The performance comparison in terms of reference frequency
under FDI attack is shown.

FIGURE 13. The performance comparison of controllers under a step load
change and FDI attack is given.

FDI attack if compared with the PI-based control that showed
large deviations from the reference value.

G. VARIABLE OPERATING SETTINGS
To validate the performance of the proposed ANN-based
voltage control under varying operating conditions, a step
load change is applied and the results are given in Fig. 13.
A step-down load change is applied at t = 2 s and a
Type 2 FDI attack with γ = 0.5 is initiated at t = 2 s.
It can be observed in Fig. 13a, that the designed ANN-based
controller follows the expected response as PI-based control
with a decrease in current magnitude but after the FDI attack,
the PI-based control deviates from the desired current value.
Similarly, the designed ANN-based controller sustained the
desired voltage level after both a step-down load change and
FDI attack, whereas the PI-based control could not sustain
the effect of the FDI attack and showed distortion in the
output voltage as evident from Fig. 13b. This demonstrates
the robust performance of the proposed ANN-based control
under changing operating conditions of the test microgrid.
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TABLE 2. OPAL-RT real-time digital simulator and microgrid system parameters are given.

FIGURE 14. Real-time setup to evaluate the proposed resilient
ANN-based control design is shown.

FIGURE 15. The results obtained from an explainable framework of ANN
are shown. (a) Partial dependence plots of all the DGs. (b) The secondary
reference voltage generated by all the DGs.

H. PARTIAL DEPENDENCE PLOTS
The partial dependence plots (PDP) for each DG are esti-
mated with the objective of finding the impact of a cyber
anomaly on each DG. For this purpose, an FDI attack is
initiated and eachDG’s output voltage is selected individually
as shown in Fig. 15. It is evident that DG3 suffers the largest
impact by showing maximum deviations after the FDI attack.
This finding is in line with (3) as illustrated in Fig. 6 because
DG3 is the leading node based on the communication graph.
Next, the impact on predicted secondary control reference
voltage v∗n, where, n ∈ (1, 2, 3, 4) after spoofing all the
communication links of DG3 is shown in Fig. 15b. It can

be seen that the predicted voltages (in blue color) show
large deviations from the actual voltages (in red color) of the
system. These large deviations in predicted reference voltages
lead to reduced power quality and loss of synchronism in the
microgrid operation.

VII. CONCLUSION
An intelligent secondary cooperative control technique is
proposed to mitigate the effects of cyber anomalies in dis-
tributed cooperative-controlled microgrids. This technique
employs recurrent-type neural networks in the distributed
secondary voltage and frequency control layer of inverter-
based microgrid having multiple DGs. The training data
for ANNs was generated through time-series simulation of
microgrid under various operating conditions. The scalabil-
ity and resilience of the proposed ANN-based secondary
cooperative control are shown by constructing a connection
matrix and injecting noise to the input data. The structure
of the trained ANN model is explained by plotting partial
dependence plots. Various types of FDI attacks are consid-
ered to verify the effectiveness of the designed ANN-based
secondary control. The results are validated by compar-
ing it’s performance with the traditional distributed sec-
ondary control technique and interpreted using an explainable
framework. The proposed controller outperformed PI-based
secondary voltage regulation bymaintaining the normal oper-
ation of the microgrid under cyber anomalies. Real-time
cyber-attack scenarios are simulated in real-time digital sim-
ulator OPAL-RT to validate the proposed resilient control
strategy.
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