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ABSTRACT DC microgrid systems have been increasingly employed in recent years to address the need
for reducing fossil fuel use in electricity generation. Distributed generations (DGs), primarily DC sources,
play a crucial role in efficient microgrid energy management. Energy storage systems (ESSs), though vital
for enhancing microgrid stability and reliability, currently lack cost-effectiveness. Each ESS technology
serves a specific purpose, suggesting that hybridizing these technologies can improve microgrid stability and
reliability while extending the ESS’s lifespan. This paper proposes an optimization of the capacity and cost of
a hybrid ESS, comprising a battery and a supercapacitor, in a standalone DC microgrid. This optimization is
achieved by calculating the cut-off frequency of a low-pass filter (LPF). The supercapacitor supplies the high
fluctuation component of renewable power generation and load demand, while the battery caters to the low
fluctuation component. To minimize the designed objective function, including the total net present value
(NPV) and replacement cost of the hybrid ESS, a meta-heuristic strategy called the Whale optimization
algorithm (WOA) is employed within a MATLAB environment. The optimization takes into account real
PV power, wind turbine power and load demand. The results show that reducing power fluctuation for the
battery can lower the cost of the hybrid ESS. Compared to a battery-only microgrid system with an NPV,
of $6,153,059, the hybrid ESS has an NPV, of $5,413,846. Thus, the hybrid ESS can reduce the total cost
of the entire project by 12.01% compared to the system with only a battery. Consequently, the hybrid ESS’s
total system life-cycle cost is lower than that of a system using only a battery.

INDEX TERMS Battery energy storage system, hybrid energy storage system, low-pass filter, battery,
supercapacitor, whale optimization algorithm.
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Current position vector.
Position vector of the best solution.

Random position vector.

Rate of self-discharge of supercapacitor.
Constant coefficient used to define the spi-
ral pattern.

Cost per energy of battery.

Initial installation cost of battery.
Operation and maintenance cost of battery.
Cost per power of battery.

Initial installation cost of hybrid ESS.
Cost per energy of supercapacitor.

Initial installation cost of supercapacitor.
Operation and maintenance cost of super-
capacitor.

Cost per power of supercapacitor.
Discount rate.

Usable energy capacity of battery.

Rated energy capacity of battery.

Battery energy capacity.

Usable energy capacity of supercapacitor.
Rated supercapacitor energy capacity.
Supercapacitor energy capacity.

Cut-off frequency of low-pass filter.
Random number between [0,1].

Cycle life of battery.

Cycle life of project.

Cycle life of supercapacitor.

Number of battery replacement.

Number of supercapacitor replacement.
Net present value of battery operation and
maintenance cost.

Net present value of battery replacement.
Net present value of the operation and
maintenance cost throughout the project.
Net present value of hybrid ESS replace-
ment.

Net present value of supercapacitor opera-
tion and maintenance cost.

Net present value of supercapacitor
replacement.

Net present value of total cost of

hybrid ESS.

Battery charged active power.

Battery discharged active power.

Rated battery active power.

Active power reference of battery.
Reference active power of hybrid ESS.
Active power of load demand.

Active power of PV system.
Supercapacitor charged active power.
Supercapacitor discharged active power.
Rated supercapacitor active power.

Active power reference of supercapacitor.
Active power of WT system.

rrand ~ Random vector in [0,1].

SoC,  Battery state of charge.

SoCs.  Supercapacitor state of charge.
T Maximum iteration.

t Current iteration.

Ty Time constant of low-pass filter.
T, Sampling interval value.

I. INTRODUCTION
At present time, microgrid systems, in which the DGs are
heavily integrated into the power grids, are gaining more
attention from researchers and system operators. In Thailand,
the most widely used DGs are solar PV and wind tur-
bine (WT) power generations [1]. Grid-connected renew-
able energy resources (RESs) are viable solutions to meet
rapidly growing demands in microgrid systems. However,
the intermittent and volatile nature of the RESs hinders their
performance and prevents them from being used efficiently.
It is a common practise to combine the RESs with an efficient
battery energy storage system (BESS). Lead-acid batteries
play an important role in stationary ESS. Recently, lithium-
ion battery (Li-ion) technology has been developed, and its
price has continued to decrease [2]. A technological and
economic analysis of the Li-ion and lead-acid batteries inte-
grated into grid-connected power networks and PV systems
was conducted by considering commercial load profiles [3].
The performance of the mentioned battery technologies is
also greatly affected by the rate of charge and discharge,
which in turn gradually decreases their capacity. Thus, the
employed battery required optimal sizing of the entire system
to maximize its efficient utilization. Therefore, both types of
batteries are viable options in the microgrid system [3], [4].
At present, ESSs come in many forms, sizes and features.
The most widely used ESS in the microgrid system is the
battery because it can store a large amount of energy. Also,
the battery has a fast response time, is easy to control, and
has many types and sizes available on the market. A battery
can support charging and discharging with constant charac-
teristics according to electrochemical and chemical reactions.
Therefore, the constant charging and discharging character-
istics of current can extend the battery’s lifetime. However,
electricity generation from the RESs and load demands in
power systems are characterized by inconsistency due to
rapid increases or decreases, resulting in high fluctuations in
the current charging or discharging of the battery. Therefore,
other technologies of the ESSs are necessary for enhancement
of system efficiency [5], [6], [7]. Hybrid ESS combines the
advantages of different ES technologies. The common use
of hybrid ESSs is between batteries and supercapacitors,
in which the supercapacitor is suitable due toA its ability
to respond to charge and discharge many times faster than
batteries. However, the supercapacitor has a small energy
capacity and is suitable for supplying or receiving power in
the form of surges in a short time with less heat than a battery
because of its low internal resistance [8]. Using hybrid ESS

65497



IEEE Access

T. Boonraksa et al.: Optimal Capacity and Cost Analysis of Hybrid ESS in Standalone DC Microgrid

between battery and supercapacitor can increase power sys-
tem stability and reliability and prolong the battery’s lifetime.

A microgrid system is a key component in extending mod-
ern electricity services to power consumers. A detailed cost
analysis of battery in a microgrid can provide the high per-
formance of a Li-ion or lead-acid battery and minimize total
cost [9]. The analysis and application of hybrid ESSs in small
standalone DC microgrids for remote areas have attracted
widespread attention [10]. The volatile nature of wind energy
produces large fluctuations in power generation, which in turn
can have serious consequences for the battery’s lifetime [11].
The uncertainty of the RESs has inspired researchers to com-
bine different technologies for the energy sources, including
energy storage devices, to ensure the reliability of the micro-
grid. Intelligent energy management systems (EMS) are used
to define the energy flow between hybrid renewable energy
systems, energy storage, and the power grid [12]. High-
capacity lithium-ion battery and high-power supercapacitor
are the ideal ESS for a DC microgrid. It is important to
have a power management strategy that increases bus voltage
feedback compensation and can keep the bus voltage within
a reasonable range due to load fluctuations [13]. Energy
exchanged between energy storage devices (ESDs) by uti-
lizing a low-pass filter (LPF) can reduce the size of the
ESS without negatively impacting the battery lifetime [14],
[15]. The operating cost of a battery is determined by the
depth of discharge (DOD) over time. Optimal battery sizing
using the Firefly algorithm (FA) was applied, which can
reduce the cost of the microgrid and achieve optimal battery
sizing [16], [17].

However, combining renewable energy sources with bat-
teries can cause high fluctuations in battery charging and
discharging, leading to a shorter battery lifetime and a higher
replacement cost. Therefore, this paper proposes a tech-
nique for optimizing the capacity and cost of the hybrid
ESS combining battery and supercapacitor in a standalone
DC microgrid. A low-pass filter is used to separate the
low-frequency power needed to charge and discharge the
battery and the high-frequency part is allocated to the
supercapacitor. Several techniques are currently used for
optimization tasks, including Particle Swarm Optimization
(PSO) and Firefly Algorithm (FA) and Whale Optimiza-
tion Algorithm (WOA). Each optimization technique has a
different solution, parameters, and performance. The WOA
technique is relatively unique since it is able to obtain a quick
solution by using a small number of iterations [18], [19].
Moreover, the WOA has the ability to maintain the balance
between exploration and exploitation during the search pro-
cess and has no velocity tracking for each individual in the
population, thus reducing computational overhead compared
to the PSO-based approach. It is found that there are no
studies using the WOA technique for optimal capacity and
cost analysis of hybrid ESS in DC microgrids. Therefore,
this paper applies the WOA method to the optimization of
the capacity and cost of a hybrid ESS combining battery and
supercapacitor in a standalone DC microgrid.
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The salient features of the paper are summarized as
follows:

1) This paper proposes a method for optimal capacity and
cost analysis of the hybrid ESS with a battery and a
supercapacitor in a standalone DC microgrid. A filter-
based approach is employed to separate different
frequency components of microgrid active powers and
allocate them to the hybrid ESS. The high-frequency
component of the active power is supplied by the super-
capacitor, while the low frequency component of the
active power is provided by the battery. Thus, fre-
quent charge and discharge of the battery is decreased,
extending battery lifetime and reducing battery replace-
ment costs.

2) Due to its simplicity of implementation, the Whale
optimization algorithm (WOA) is applied to optimize
the cut-off frequency of the low-pass filter and obtain
the optimal sizing of the hybrid ESS using yearly real
data on load demand, wind turbine and PV power
generations. Compared to the only-battery case study,
the total cost of the hybrid ESS throughout the entire
project is reduced by 12.01% compared to the only-
battery case.

The rest of this paper is structured as follows. Section II
explains the microgrid. Section III introduces hybrid energy
storage systems. The theory of the Whale optimization
algorithm is given in Section IV. Section V provides the
methodology of this work, whereas Section VI verifies the
performance of the proposed strategy. Finally, Section VII
concludes the paper.

Il. DESCRIPTION OF DC MICROGRID

A microgrid is a small LV power system, consisting of
small scale DGs and loads. Typically, the DGs in the micro-
grids are mainly from renewable energy sources such as
PV and WT systems. In the microgrid system, there are
several load types classified based on user types, such as
household sectors, commercial building sectors, industrial
plants, and various agencies [20]. As mentioned earlier,
the ESS is an important part of the energy management

¢ Renewable Energy Sources
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FIGURE 1. Typical components of a DC microgrid system.
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system in the microgrid system. The microgrid systems can
be classified into DC and AC systems and be operated in
two modes: grid-connected and islanded modes. The DC
microgrid has been gaining more attention in recent years due
to various advantages such as higher conversion efficiency,
lower costs of power converters and simpler controllability
(as thre is no concern of reactive power, frequency and phase
unbalance) [21]. The grid-connected mode of microgrid is
stable and able to supply electricity back to the main power
grid. In the islanded mode, the microgrid is completely dis-
connected from the main grid. Therefore, the power used in
the standalone microgrid is entirely supplied by the internal
power sources. The standalone microgrid is suitable for rural
or remote areas. The concept of the standalone microgrid
is to generate enough electricity to be used in the control
and management systems. The disadvantage of renewable
power generation is that it fluctuates and cannot be con-
trolled to meet the load. Therefore, the ESSs are important
in the standalone DC microgrid [22], [23]. Figure 1 shows
the components of a typical DC microgrid system. DC-DC
and DC-AC power converters are crucial parts of the DC
microgrid system. The microgrid can be either connected
to or disconnected from the main grid. In the DC micro-
grid system, there are small-scale DG units and local loads.
A diesel generator can be used for backup or emergency
power generation. The ESS is an essential part of effective
energy management within the power system.

1IIl. HYBRID ENERGY STORAGE SYSTEM

Due to the short service life of battery systems, new installa-
tions increase costs. This paper explores a hybrid ESS that
uses supercapacitors to help extend battery life and uses
battery life as an efficiency factor. In this section, the hybrid
energy storage system combining a battery and superca-
pacitor installed in the standalone DC microgrid is briefly
explained.

A. BATTERY MODEL

The battery is a high-energy, low-power source and a rela-
tively expensive component of the microgrid system. Thus,
battery life is an important economic and reliability factor.
The lifespan of the battery needs to be studied and various
operating factors that affect its lifespan should be taken into
account. The service life of a battery is typically depleted
when its current capacity is reduced to 80% of its initial rated
capacity. The service life of the battery can be considered in
two ways:

e Battery life cycle: It is the loss of life caused by the use of
the battery. When the battery is operated, it deteriorates
depending on the nature of the discharge or charge, the
depth of discharge (DoD) and the temperature.

o Calendar life: It is the battery’s deterioration over time,
called aging in calendar years, and it is also affected
by temperature. For example, the battery can be used
as a backup or emergency power storage device without
being used at all. [24].
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The mathematical model describing the characteristics of
the battery can be defined as,

Ep(t + At) = Ep(t) + [Po_cn(t)np_cn] At, (D

Ep(t + At) = Ep(t) + [Pp_ais(Onp_ais| AL, )

SoCy(t) = ﬂ, 3)
b_rated

SoCy(t + At) = SoCp(1)(1 — B)
[Pb_chb_ch — Pb_disNb_dis) At
Eb_rated

+ N C))
where E, is the capacity of the battery; Pj,_-4(¢) is the charging
power of the battery at time ¢; Pp_gis(¢) is the discharging
power of the battery at time ¢; np,_, is the charging efficiency
of the battery; n;,_qis is the discharge efficiency of the battery;
Ep_rarea 1s the rated capacity of the battery; At is the cycle
time; SoCp(¢) is the battery state of charge at time ¢ and 8 is
the rate of self-discharge of the battery.

B. SUPERCAPACITOR MODEL

A supercapacitor (SC) is a low-energy and high power source
that is typically used in small power grids. The SC is com-
monly used as a complement to the battery system. High
fluctuations in RESs can cause the battery to operate at a
high energy rate (depth cycle), shortening its lifespan. The
battery may be considered in conjunction with the SC, which
can operate at higher power ratings, have more charge and
discharge cycles than the battery, and operate at higher tem-
peratures. This increases system reliability and prolongs the
service life of the battery in terms of investment.

The SC can operate at high DOD, so it is unnecessary
to replace it over its lifetime. The operation of the SC is
chemically inert, even at high DoD. Therefore, the high fluc-
tuations in the RESs have no effect on its life. In general,
the voltage and temperature of the SC are controllable factors
and are constant within the scope of application [25]. Hence,
the effect of temperature and voltage on the SC’s life can
be ignored. In this work, the lifetime of the SC is set to be
equal to the calendar year. Similar to the battery, the SC is
a bidirectional power source. The mathematical model that
described the characteristics of the SC can be defined as,

Eso(t + At) = Ege(t) + [Pse_ch(ONse_cn] At (5)
Es(t + At) = Eg (1) + [Psc_dis(t)nsc_dis]Atv 6)
Eq (1)
SoCyc(t) = ; @)
sc_rated

SoCse(t + At) = SoCysc(1)(1 — 0)
[P sc_chMsc_ch — P sc_disnsc_dis]

At, (8)
Esc_rated

where Ej. is the capacity of the SC; Py, (¢) is the charging
power of the SC at time #; Py _4is() is the discharging power
of the SC at time ¢; 4. _cp 1s the charging efficiency of the SC;
Nsc_dis 1 the discharging efficiency of the SC, E¢ r4zeq 1s the
rated capacity of the SC; SoCj.(¢) is the SC state of charge at
time ¢ and o is the rate of self-discharge of the SC.

65499



IEEE Access

T. Boonraksa et al.: Optimal Capacity and Cost Analysis of Hybrid ESS in Standalone DC Microgrid

\} 2 Prey (&
g~ E E
3. =@ %
3 ,,,J\) S (23
. Y v 2 N
Spiral b\ﬁﬁble—net attac . A 1 \:\
a D N, X
S *) :
] ; .
‘ ; i

0.5 -1 1 i

FIGURE 2. lllustration of the WOA-based method.

IV. WHALE OPTIMIZATION ALGORITHM

The whale optimization algorithm (WOA) is a meta-heuristic
algorithm [26]. The WOA technique is applied in this study
owing to its simplicity and fast approach. The humpback
whale’s social hunting behavior was applied as an algorithm.
Humpback whales are gifted with locomotion in search of
food and attack prey with bubble nets. In this way, foraging
carried out by humpback whales creates unique bubbles in
a circular path. Figure 2 shows Humpback whales breathe
underwater and produce bubbles in the form of clouds and
pillars. These large groups of bubbles connect to each other
and gather bait or schools of fish together. Then, the whales
continuously create more bubbles and move to the surface
by inhaling and exhaling. The target shrinks by narrowing
the bubble circle as it approaches the prey. This hunting
of prey appears to aid in finding or capturing the prey by
surrounding or immobilizing them. Also, this behavior can
hide predators from the prey. The humpback whales can
predict the location of their prey so that they can surround
it with air bubbles. The whale starts by identifying the best
search agent, and then the position of the other search agents
is updated using the best search agent. The new search
agent location for global search is determined by a randomly
selected search agent [27]. Based on the nature of the hunting
behavior of humpback whales, the WOA technique employs
the hunting behavior that involves encircling prey, bubble-
net attacks and random search, as presented in the following
sections [28], [29].

A. ENCIRCLING PREY

Humpback whale prey surrounds begin with each whale rep-
resenting a search. Each individual’s position in the search
area represents a food source. It is assumed that the current
optimal location is the food source or target prey. All search
agents in the group will move to the optimal position to
surround the prey [30]. Thus, this behavior can be mathemat-
ically written as,

— — ——
X@e+D= ngest(t) —AD, 9
—> — > -
D = |C X gpest(t) — X (1)], (10)

where A and C are the coefficient vectors; ¢ is the current
iteration; X gpey(¢) is the position vector of the best solution
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. . . = .. ..
obtained at the #-th iteration and X (7) is the current position
vector.

— —
The vectors A and C can be calculated as,

A =23 rrana — @ (1)
2t
-
=2 —, 12
d T (12)
—
C =2 rand, (13)

where 74,4 represents the random vector in [0,1]; 7 indi-
cates a convergence factor that linearly decreases from 2 to
0 as the number of iterations increases; 7' is the maximum
iteration and 7 is the current iteration.

B. BUBBLE-NET ATTACKS

For the whale bubble-net attack pattern, it moves upward in a
spiral and continuously decreases the circle size, as shown in
Figure 2. The humpback whale’s prey attack pattern is split
into two parts to simulate bubble net behaviors.

o Shrinking Encircling Mechanism: This behavior is
achieved by reducing the vector from 2 to 0 in (12). The
search agent’s new location can be set between the cur-
rent location and the prey’s location. This demonstrates
the whale’s ability to locate local prey.

e Spiral Updating Position: Position improvements are
made by calculating the sample between each whale’s
position and the current optimal position of its prey
and then simulating the humpback whale’s spiral motion
to get closer to the best answer. This behavior can be
written as,

%
Xt +1) =D cos@rl) + X ghest(t).  (14)
= = —
D" = X(t) - ngest(t) s (15)

where D* represents the distance between the i-th whale
and the current optimal position; b is the constant coefficient
used to define the spiral pattern and / is a random number
between [0,1].

The whale can swim towards its prey in a spiral shape
during hunting while reducing the size of the closed circle.
Thus, to model this behavior a probability of 0.5 was set as
the criterion to determine how the whale’s position should be
improved, which can be defined as,

— —— )

X ghest(t) — A D, if p <0.5,

e bl - .

D*e” cos(2nl) + X gpest(t), ifp >0.5.
(16)

—
X(t+1)={

C. RANDOM SEARCH

Random search requires vector A to have a random value
greater than 1 or less than -1, and p less than 0.5. The system
selects a random search agent to guide the search and increase
the searchability of the algorithm. The mathematical model
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FIGURE 3. Schematic diagram of the standalone DC microgrid with
energy management system. In the microgrid system, there are two
power sources, namely PV and WT sources, and load demand connected
to the common DC bus. A hybrid ESS is responsible for minimizing the
active power mismatch between power generation and load demand.

A low-pass filter is employed to separate different frequency components
of the mismatched active powers.

for this step is determined by,
— - = —
D=\CX,(1)—-X@®)], (17)
- - ——
Xt+1)=X,0t)— AD, (18)

= . -
where X ,(¢) is the random position vector.

V. METHODOLOGY

In this section, the standalone DC microgrid used as a test sys-
tem in this paper is introduced. Based on the test system, the
objective function is proposed and then solved by employing
the WOA optimization technique explained in the previous
section.

A. STANDALONE DC MICROGRID
A standalone DC microgrid shown in Figure 3 is considered
in this paper. In the microgrid system, a residential load, a PV
system and a WT system are installed. A hybrid ESS with a
battery and SC is also installed to efficiently improve energy
management in the system. The main aim of this paper is to
optimize the cut-off frequency of the low-pass filter of the
hybrid ESS in order to extend battery lifetime under high
fluctuations of the RESs and local load demand.

Under standalone DC microgrid operating conditions, the
reference active power of the hybrid ESS can be calculated
as,

PH_ref(t):PLoad(t)_PPV(t)_PWT(t)v (19)

where Py _.r is the reference active power of the hybrid ESS;
Proaa 1s the active power of the load demand; Ppy is the active
power of PV generation system and Py is the active power
of WT generation system.

In the case of a hybrid ESS, the reference active power
required from the ESS is divided into two parts. The refer-
ence active powers are allocated to the battery and the SC
using the first-order low-pass filter. It is widely used for
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active power sharing in hybrid ESS [31], [32]. The smooth or
low-frequency component of microgrid active power is fed
to the battery, and the high-frequency portion of microgrid
active power is supplied by the SC. The power allocation of
the hybrid ESS in the s-domain is given by,

Pp_ref (8) = PH_ref (5) X (20)

1+ STf ’
ch_ref(s) = PH_ref(S) - Pb_ref(s)s (21)

where Ty = %fc and 0 < f, < 2LTS; Pp_rer 1s the reference
power of the battery; Py s is the reference power of the
supercapacitor; Ty is the time constant of the frequency filter
circuit; f; is the cut-off frequency of the low-pass filter and 7
is the sampling period.

The power allocation depends on the cut-off frequency of
the filter (20), which is the parameter to be optimized so
that battery lifetime can be extended by decreasing frequent
charges and discharges. The cut-off frequency is bounded by
the Nyquist principle, i.e., not more than half of the sampling
frequency or the Nyquist frequency according to (21).

The reference power of the ESS is used to determine the
actual operating power of the hybrid ESS. The operating
power of the battery and supercapacitor is obtained by,

Pp_rer () /Mi_dis»  Pb_ref (1) > 0,
Pp(t) = 1 Po_rer () /Mb_ch,  Pp_rer(t) <0, (22)
| 0, Pp_rer(t) =0,
Psc_ref (1) /Nsc_diss  Psc_ref(t) > 0,
Psc(t) = 3 Psc_ref(1)/Nsc_ch»  Psc_ref(t) <0, (23)
0, Pyc_ref (1) = 0,

where Pp, is the battery’s active power and P, is the
supercapacitor’s active power. The positive values denote
discharging, the negative value charging, and zero the standby
state.

The magnitude of the rated power of batteries and super-
capacitors can be calculated from the absolute value of the
maximum power as,A

Pp_rateq = max(|Pp(1)]), (24)
ch_ruted = max(|Ps.(2)]), (25)

where Pj,_ 4104 1S the rated power of the battery and Pse 4104
is the rated power of the supercapacitor.

The ESS is controlled to operate within the specified DoD
for safety and to increase its service life. For this reason,
the acceptable DoD is less than 100% and more than 0%.
Therefore, when considering the range of DoD, the rated
capacity of the battery and supercapacitor are larger than the
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baseline capacity and are given as,

Eh based
E = = s 26
b_rated Do Db_max — DODb_min ( )
Esc based
E = = R 27
serated DoDg: max — DoDg¢ min @7)
Ep_pasea = max(Ep(t)) — min(Ep(t)), (28)
Esc_pased = max(Esc(t)) — min(Eg(1)), (29)

where Ejp paseq 1S the baseline battery capacity; Eg: pased 1S
the baseline SC capacity; DoDj, max and DoDp_min are the
upper and lower bounds of the battery depth of discharge;
DoDy: max and DoDy, pip are the upper and lower bounds of
the SC depth of discharge.

B. OBJECTIVE FUNCTION

Objective function is developed in this subsection. The total
cost of implementing an ESS in a microgrid system is an
important metric for project planning and optimization. This
paper uses the total cost of hybrid ESS as an objective func-
tion. The cut-off frequency of the low-pass filter is calculated
to determine the optimal size of the battery and supercapaci-
tor. The objective function is defined by,

min(NPViorat) = Cinstail + NP Vieplace + NPVo&n, (30)

where NPV, is the net present value of the total cost of the
hybrid ESS; Cingran is the initial installation cost; NPV epiace
is the net present value of the replacement cost throughout the
project and NPV,&., is the net present value of the operation
and maintenance costs throughout the project.

The net present value of the total cost of the hybrid ESS is
obtained as the sum of the initial installation cost, the replace-
ment costs and the operation and maintenance costs. Where
the initial installation cost of the hybrid ESS is obtained by the
sum of the initial installation of the battery and supercapacitor
as,

Cinstall - Cb_insmll + Csc_inxtalla (31)
beinsmll = (P b_rated beP) + (Ebfrated beE ), (32)
Csc_insmll = (P sc_rated Csc_P) + (Esc_rated Csc_E)s (33)

where Cj,_p is the cost per power of the battery; Cj g is the
cost per energy of the battery; Cy. p is the cost per power
of the supercapacitor and C;. g is the cost per energy of the
supercapacitor.

As ESS is used, it will deteriorate over time. Replacement
costs of battery and supercapacitor can be defined as,

NPVreplace = NPVb_replace + NPVsc_repluce’ (34)
Nhire

NPVb_replace = Z

m=1
N, sc_re

NPVsc_replace = Z

n=1

Cb_install

(I+d)b” 4>

Csc_inxtall

A+ b G0

where N}, . is the number of battery replacements (Lp/Lp —
1); Ngc e is the number of supercapacitor replacements
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(Lp/Ls. — 1); Ly is the cycle life of the battery; L. is the
cycle life of the supercapacitor and d is the discount rate.

The operation and maintenance costs are obtained
from (37), which is the sum of the operation and maintenance
costs of the battery and supercapacitor. This paper uses the net
present value estimation of the total cost over the life of the
project to convert the cost over time to its present value. The
uniform series worth factor (USW) equation was applied to
convert annual expenses to their present value. The NPVs can
be defined as,

NPVogm = NPVbJ}&m + NPVscfo&ma (37)
NPVjy_o&m = Cp_o&mEp ratedwa (38)
- - L, (1 +ad)k
(I4+dk —1
NP Vsc_o&m - Csc_o&mExc_mted (39)

L, - (1+d)’

where Cp,_o&m 1S the operation and maintenance cost of the
battery; Cy. o&m 1s the operation and maintenance cost of the
supercapacitor and L, is the life of the project.

The WOA optimization technique was applied to optimize
the cut-off frequency of the low-pass filter. In this paper,
we used a total of 100 search agents and a maximum of
30 iterations. The parameters are designed based on the work
in [33].

Figure 4 shows the procedure for obtaining the cut-off
frequency for the hybrid ESS in the standalone DC microgrid.
Determination of the optimum cut-off frequency begins with
obtaining the powers of load demand, PV and WT systems.
The reference power of the hybrid ESS is then calculated.
This reference power is fed to the low-pass filter to obtain
the reference powers of the battery and supercapacitor. Also,
the rated power and energy of the hybrid ESS are calculated.
Then, the battery life and the NPV total cost of the system
over the project life are calculated. The iteration is checked,
and finally the optimum cut-off frequency is obtained.

VI. SIMULATION RESULTS

The results in this paper are verified using MATLAB running
on a MacBook Air (Early 2015), 1.6 GHz Dual-Core Intel
Core i5, RAM 8 GB 1600 MHz DDR3. In this study, we used
one-year data of load demand, PV and WT systems, as shown
in Figures 5, 6 and 7 respectively, for analysis of the entire
project life.

Table 1 shows the setup parameters of the hybrid ESS used
in this study. The data in the table is taken from [35]. This
paper considers a 20-year operation and analyzes the total
cost of the hybrid ESS combining a battery and a supercapac-
itor. A lithium-ion battery was chosen for the analysis due to
its widespread use at the present time.

The data of load demand, PV power and WT power
generations over 24 hours on 18 June extracted from
Figures 5, 6 and 7 are illustrated in Figure 9. The hybrid
ESS is responsible for minimizing the active power mismatch
between power generation and load demand. Figure 10 shows
an example of the active power reference of the hybrid ESS
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FIGURE 4. Flowchart of the proposed strategy for obtaining an optimal
cut-off frequency of the low-pass filter and sizes of the hybrid ESS in the
standalone DC microgrid.
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FIGURE 5. One-year of load demand data that was used for verification
of the proposed method. The data was provided by Suranaree University
of Technology, Thailand.

over 24 hours. As it can be seen in the figure, the reference
active power of the hybrid ESS contains a high-frequency
component. This component can cause frequent charging
and discharging of the battery, resulting in a shorter lifetime
and a high cost of battery replacement. Thus, hybridization
of different technologies of ESSs, such as a battery and a
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FIGURE 6. One-year active power data of the PV system that was used for
verification of the proposed method. The data was provided by Suranaree
University of Technology, Thailand.
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FIGURE 7. One-year active power data of the WT system that was used
for verification of the proposed method, taken from [34].

TABLE 1. Setup parameters for verification of the proposed strategy.

Parameter Value Unit

Cy p 1200 $/kW

Cv B 600 $/kWh
Csc_p 300 $/kW

Cs c_E 2000 $/kWh
Ch_o&em 19.77 $/kWh/year
Csc_o&em 10 $/kWh/year
Ly 2640 cycles

Lsc 5 years
[SoCh min> S0Ch_max] [20,80] %
[SoCsc_min, S0Csc_max] [10,90] %
[DoCh_min, DoDp_max] (80,20] %
[Docscimim DODscimax} [90,10] %

b 90/90 %

MNsc 95/95 %

d 5 %

Lp 20 years

o 1.8 Yolday

B 0.13 %lday

Ts 120 seconds

supercapacitor, can prolong battery lifetime and minimize
total cost of the entire project.

Figure 8 shows the convergence characteristics of the
WOA-based and PSO-based methods. It is clearly seen
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FIGURE 8. Performance convergence curves of the PSO- and WOA-based
methods.
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FIGURE 9. lllustration of active powers of load demand, PV power and
WT power generations over 24 hours on 18 June extracted from
Figures 5, 6 and 7.

from the convergence characteristic curves that the proposed
WOA-based method converges to the optimal value of the
total net present value faster than the result obtained by
the PSO-based method. The WOA-based method required
15 iterations and 611 seconds to converge to the optimal
net present value, whereas the PSO-based method required
21 iterations and 671 seconds.

Table 2 shows the obtained results, including cut-off
frequency, rated power and energy of the battery and super-
capacitor, respectively. Comparing to using only battery in
the microgrid system, the capacity of the battery with hybrid
ESS was almost the same at 705.22kWh and 705.23kWh
for only battery and hybrid ESS respectively. The simulation
results showed that a cut-off frequency of 1.1725mHz is
the optimal value for the considered microgrid system. The
optimal capacities of the battery and the supercapacitor are
705.23kWh and 3.583kWh respectively.

Figure 11 shows the active power allocation of the bat-
tery with a cut-off frequency of 1.1725mHz over 24 hours
on 18 June. The battery operated in charging and discharg-
ing modes with a smoothed curve. The supercapacitor was
responsible for the high-frequency component of the micro-
grid’s active power. Figure 12 depicts active power allocated
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based on PV and WT power generations and load demand in Figure 9,
over 24 hours on 18 June.
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FIGURE 11. lllustration of the active power allocated to the battery over
24 hours on 18 June, with a cut-off frequency of 1.1725mHz.

25

20+ B

Supercapacitor discharging

Power (kW)

-10 - - . B
Supercapacitor charging

J15F il

T T R R R N I I I
01 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24
Time (hours)

-20

FIGURE 12. An example of active power allocatded to the supercapacitor
over 24 hours on 18 June, with a cut-off frequency of 1.1725mHz.

to the supercapacitor over 24 hours on 18 June. It is evi-
dent that the supercapacitor is effective in responding to the
high-frequency component of the microgrid’s active power.
Table 3 shows the comparison of parameters and costs for
only battery and hybrid ESS. The only battery system has
a cycle life of 4.68 years with 4 cycles of battery replace-
ment over the project life, whereas the hybrid ESS has a
battery life of 4.74 years with 3 cycles of battery replacement
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TABLE 2. Optimization results of hybrid ESS.

Parameter Only Battery Hybrid ESS Unit

fe - 1.1725 mHz

Py roted 128.68 129.34 kW

Ey rated 705.22 705.23 kWh

Pgc rated - 3.583 kW

Esc rated - 0.522 kWh
TABLE 3. Comparison of the ESS parameters and costs.

Parameter Only Battery | Hybrid ESS Unit

ESS lifetime 4.68 4.74 years

ESS replacements 4 3 times

Initial O&M costs 1,879,659 1,881,970 $

Replacement cost 4,273,399 3,531,876 $

Total NPV cost 6,153,059 5,413,846 $

Total cost reduction | - 12.01* %

* Compared to only battery case study.

throughout the project life. Due to the high fluctuation of load
demand and PV and WT systems, the only battery case study
frequently charged and discharged its active power, leading
to high battery replacement costs. Therefore, employing a
hybrid ESS can reduce the total cost by 12.01% compared
to using only battery in the microgrid system.

VII. CONCLUSION

Employing battery storage systems in standalone DC micro-
grid systems can be cost-inefficient. This paper focused on
the optimal capacity and cost analysis of a hybrid ESS,
combining a battery and a supercapacitor, in a standalone
DC microgrid. The required hybrid ESS’ active power
was divided into low- and high-frequency components by
a low-pass filter. The low frequency of the active power
was supplied by the battery, while the high frequency of
active power was provided by the supercapacitor. The Whale
optimization algorithm was applied to obtain the optimal
cut-off frequency of the low-pass filter. The simulation
results showed that the battery life increased when the
high-frequency component of the active power was provided
by the supercapacitor. This is because the number of frequent
high-frequency charge/discharge cycles of the battery was
reduced, resulting in a smoothed profile. The hybrid ESS
reduced the total cost of the entire project by 12.01% com-
pared to the case of employing only the battery. The microgrid
system with only the battery has an NPV, of $6,153,059,
whereas the hybrid ESS has an NPV, of $5,413,846. As a
result, the total life-cycle cost of the hybrid ESS is lower than
the cost of the battery alone. However, the installed capacity
of the supercapacitor had to be increased.

Future work will consider deep neural network-based pre-
diction methods to forecast renewable energy generations and
load demands instead of using historical data. Also, a large
scale power system will be considered.
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