
Received 23 May 2023, accepted 8 June 2023, date of publication 27 June 2023, date of current version 6 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289922

Toward the Automatic Network Resource
Management of Robot Operating System in
Programmable Mobile Networks
GÉZA SZABÓ , (Senior Member, IEEE)
Ericsson Hungary Ltd., 1117 Budapest, Hungary

e-mail: geza.szabo@ericsson.com

ABSTRACT This paper explores the potential for making the use of 3rd Generation Partnership Project
(3GPP) Service Enabler Architecture Layer (SEAL) TS 23.434 even easier and more automatic in various
industry verticals applying Robot Operating System 2 (ROS2) for their operation. The proposed solution
involves implementing a mapping node that converts ROS2 settings to 3GPP SEAL requests and an
information collecting proxy node. We evaluate the proposed method in various scenarios and deployments,
including a novel deployment option that improves the network’s action radius and an aid to overcome
some limitations of current network deployments. We cover three SEAL functionalities: group management,
network resource management (NRM), network monitoring and provide a solution that automatically maps
ROS2 application layer information elements to SEAL requests, requiring the ROS2 application developer
need only to tag the ROS2 topics for the special Quality of Service (QoS) handling. We demonstrate the
feasibility and light-weight nature of the proposed solution. The code of ROS2 nodes is open-sourced and can
be found at: (https://github.com/Ericsson/ros2-3gppSA6-mapper). The demo video of the proposed system
in action can be seen at: (https://youtu.be/JXGAHvDSU4o).

INDEX TERMS Robot Operating System 2, 3GPP service enabler architecture layer, network resource
management.

I. INTRODUCTION
The 5G networks are designed to support new use
cases beyond consumer-oriented mobile broadband: critical
Machine Type Communication (MTC), and massive MTC.
Critical MTC use cases require very low bounded latency
and high reliability, while Massive MTC favors enhanced
coverage and long device battery lifetime for sensor type use
cases involving massive amounts of devices. A single 5G
network can support the diverse service quality requirements
of mobile broadband, critical MTC and massive MTC use
cases.

The 3GPP [3] Service-Based Architecture (SBA) for
5G core (5GC) specifies a functional architecture and
standardized interfaces as 5GC control plane Network

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Khawaja .

Functions (NFs) expose Service Based Interfaces (SBIs). The
NFs register their services in the Network Exposure Function
(NEF) [4] and services can then be discovered by other NFs.
This enables flexible deployment, where every NF allows the
other authorized NFs to access the services, which provides
possibilities for external third parties to use the services and
capabilities provided by 5GC. It is expected that 5GC will
be deployed on software-defined infrastructure, however, the
choice of implementation rests with the operator or vendor.

The traditional way of configuring cellular networks is
via their Operations and Maintenance (O&M) interfaces
which are command-line tools or based on NetConf [5].
These interfaces can be used by network operators only,
hence the factory needs to issue a customer service request
(CSR) to the Communications Service Provider (CSP) for
each change. Handling of CSRs typically involves several
manual steps and hence it is a time-consuming procedure.

65934
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0553-6958
https://orcid.org/0000-0003-1537-5502


G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

Some simpler configuration steps can be automated by the
factory using the NEF Application Programming Interfaces
(APIs). These are specified by the 3GPP in Technical
Specification (TS) 23.501 [6], 23.502 [7] and 29.522 [4].
While NEF provides a low-level programmability of the
network, there was room to improve its user or application
developer-friendliness and the common set of capabilities
for the 5G verticals was identified and the SEAL 3GPP
TS 23.434 [8] is introduced. SEAL exposure interface
demonstrated a drastically simplified system integration
of industrial 5G devices [9]. The motivation during the
development of programmable mobile networks and related
standards is to provide the vertical application developers
an easy-to-use API set that is an enabler to access common
network functions for various industrial applications without
deep network knowledge.

A. THE MAIN CONTRIBUTIONS OF THE PAPER
Our motivation is the same in this paper and we take
one step further and investigate the feasibility to apply
SEAL for the industry verticals in an even easier and more
automatic way than it is defined in current 3GPP standards.
To reach out to a widespread community we design a
solution for the users of the ROS2. We implement our
solution for ROS2 and FastDDS and evaluate our method in
various scenarios and deployments. Our proposed solution
consists of an information collecting proxy node and a
node performing the mapping from ROS2 settings to 3GPP
SEAL requests. We can deploy these components in three
significantly different ways, a mode supporting that 1) the
vertical application is the consumer of network exposure,
2) the network as the consumer of application exposure and
3) a tunnel mode. The second deployment option is a novel
concept to improve the action radius of the network. The third
deployment option is an aid to overcome some limitations of
current network deployments with support on the application
side.

We cover three SEAL functionalities: group management,
network resource management and connection monitoring.
We provide a solution to map the ROS2 application layer
information elements automatically to these requests. The
ROS2 application developer’s only job is to tag the ROS2
topics that need special 3GPP QoS handling. We prove that
our proposed solution is feasible and lightweight. The code
is available as a ROS2 package in [1]. The demo video of the
proposed system in action can be seen at [2].

B. THE STRUCTURE OF THE PAPER
The rest of the paper is organized as follows. Section II
gives a brief overview on network exposure, NRM and
ROS2. Section III discusses the base setup when the
vertical application is the consumer of network exposure.
Section IV introduces the concept of network as a consumer
of application exposure. Section V discusses the deployment
of the proposed components in a tunnel mode. Section VI

evaluates the proposed components and architectures in
detail. Section VII concludes the paper.

II. RELATED WORK
The analysis of Industrial Internet of Things (IIoT) use cases
and the definition of the requirements of the Operational
Technology (OT) industry on 5G network have been done
in the 5G Alliance for Connected Industries and Automation
(5G-ACIA), with broad participation from the OT and
telecommunication industries. The results are documented
in a whitepaper [10], which describes the detailed require-
ments related to device management use cases, network
management use cases, and security aspects. The whitepaper
serves as an input to standardization efforts in the 3GPP.
The ongoing specification work in 3GPP is targeting a
generic approach so that other industrial verticals can also
use the exposed capabilities. These include automotive,
rail-bound mass transit, electric power distribution, central
power generation, health care, and smart cities.

A. SERVICE ENABLER ARCHITECTURE LAYER FOR
VERTICALS
To allow factories (and other verticals) to automate the system
integration and 5G network configuration tasks, 3GPP intro-
duced the Service Enabler Architecture Layer for Verticals
(SEAL) in 3GPP Release 16. 3GPP TS 23.434 [8] specifies
APIs for provisioning, connection management, device
management, connection monitoring, group management,
user profile retrieval, identity and key management, location
reporting, events, and network resource management.

One of the first documented prototype is built and
discussed in [11] to verify the exposure capabilities of a
real private 5G network via a cloud-based digital automation
ecosystem. Authors investigate how a commercially available
5G non-public network can be extended with exposure
capabilities to automate its operational configuration and
customization from an industrial automation system. They
demonstrated in practice an interoperable and easy-to-use
environment for managing and monitoring 5G connectivity
of networked industrial devices.

B. NETWORK RESOURCE MANAGEMENT
Network resource management has three operation modes
discussed in the following section.

1) STATIC NRM
The above APIs are used to set up a certain production cell
for a normal operation. If the production cell is reconfigured,
then the existing communication resources are deleted and
re-initiated. The operation does not require reconfiguration
of the resources dynamically.

2) DYNAMIC NRM USE CASES
An examination of a Cyber-Physical Production System
(CPPS) for a simulated robot with simulated network effects
was published by the authors of [12]. The concept of a

VOLUME 11, 2023 65935



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

wireless resource allocation approach that is Quality of
Control (QoC)-aware (QoCa) was presented. The method is
based on classifying the robotic arm’s movement phases into
those that require high and low QoC. The arm movements
that do not require high precision are those requiring low
QoC. For instance, getting to a position where a robotic arm
needs to do a task should not require extreme precision.
Contrarily, arm movements necessitating high QoC are those
where precise joint movements are necessary in order to
successfully complete the necessary tasks. The proposed
approach was compared against the locally controlled-based
solution from the Agile Robotics for Industrial Automation
Competition in a simulation environment (ARIAC). The
analysis shows that, on average, 54% of the radio time can
be saved without reducing the robot cell’s productivity.

3) ARTIFICIAL INTELLIGENCE-BASED ADAPTIVE NRM SETUP
While the previous use case required dynamic NRM setup,
it cannot adapt to a changing radio environment. Deploying
a complex production cell ends up creating unintended
peaks during the radio resource usage. Changing radio
environments can be handled with agile NRM in which
Artificial Intelligence (AI) is a key component. The purpose
of introducing such an architecture in [13] is to enable
autonomous network resource management. While preserv-
ing the robot cell’s production Key Performance Indicators
(KPIs), its aim is to use radio resources as little as possible.
To accomplish this, we use Reinforcement Learning (RL) in
a simulated environment to quickly explore the environment,
while the Digital Twin (DT) makes sure that the learnt policy
can be used in both the simulated and physical environments.
We demonstrated that while preserving the precision of
real-world robot control, the requests for Ultra Reliable
Low Latency Communication (URLLC) connections may be
reduced to roughly 30% of the entire radio time.

Going up in the protocol layer, the Vertical Application
Layer (VAL) – the term defined by 3GPP System Aspects
(SA) 6 – includes the operation of the ROS.

C. ROBOT OPERATING SYSTEM 2
A collection of software libraries and tools called the
Robot Operating System (ROS) are used to create robot
applications. ROS contains the open-source resources that are
needed for any upcoming robotics project, including drivers,
cutting-edge algorithms, and robust development tools. The
robotics and ROS communities have undergone significant
development since the founding of ROS in 2007. By utilizing
what worked well in ROS 1 and enhancing what is not, the
ROS 2 [14] project hopes to adjust to these developments.

A wide range of QoS policies are available in ROS 2 and
let the developer fine-tune node connectivity.With the correct
combination of QoS settings, ROS 2 can have a wide range
of potential states, ranging from best-effort User Datagram
Protocol (UDP) to Transmission Control Protocol (TCP)-like
reliability. ROS2 selected Data Distribution Service (DDS)

FIGURE 1. The closed-loop control model of the network resource
management.

for transport protocol driven by its maturity, real-time
capabilities, scalability, interoperability, and wide adoption
in various industries.

III. VERTICAL APPLICATIONS AS CONSUMER OF
NETWORKS EXPOSURE
Exposure consumers are the IIoT applications, which are
software entities that use the 5G exposure interfaces’ services,
whereas exposure producers are the 5G functions that provide
the services that are exposed to consumers.

In IEEE P2940 Standard for Measuring Robot Agility,
the modeling of the production cell is introduced as a
closed loop control (see Fig. 1) with the ten agility aspects
involved in the specific components [15]. The industrial
process is considered as a system-in-a-system way, thus the
network components i.e., the links between the boxes are
considered also as a closed-loop system. The components
of this closed-loop system are discussed in the following
sections.

A. SENSOR – CONNECTION MONITORING
We need to collect information from the ROS2 application to
make it feasible to define the network requirements. Fig. 2
shows the various layers in the network stack that can be
utilized to collect the necessary information elements for
the network exposure requests. The figure shows the part of
the 3GPP SA6 architecture discussed in the paper with the
ROS2 application stack. (Each box is discussed in detail in
the further sections.)

We start from the application layer and discuss the
options going down in the protocol stack layer by layer.
The network requirements are the consequence of the
application-level settings of the application developer and the
channel characteristics. The first can be set up and queried
directly at both the publisher and subscriber side, while the
channel characteristics need to be measured on various layers
of the protocol stack.

1) NETWORK REQUIREMENTS SET BY THE APPLICATION
DEVELOPER
The application’s bandwidth and packet inter arrival time
(IAT) is the consequence of the ROS2 topics’ message type,
packets’ size, the publishing rate and sampling interval.

a: NETWORK REQUIREMENTS OF THE APPLICATION
The ROS2 application developer defines the behavior of the
publisher and the subscriber. This behavior is only valid on

65936 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 2. The ROS2 protocol stack on top of a 3GPP network from SA6 perspective /gray boxes show the network
statistics modules/.

the publisher site. It is important to note that the DDS layer
has a feature to support filtering data on a DDS topic [16],
though it is not exposed for the ROS2 layer. The issue with
this feature is that the filtering is happening at the subscriber.
This means all topic datamust be transmitted first on the radio
channel. After everything arrives successfully, the DDS layer
can filter the content of the topic with various string-matching
methods and provide to the ROS2 application only the
filtered content. This can reduce the load on the ROS2
application – though performance-wise it is also user-space
code; thus, it is more convenient for the application developer
rather than any performance gain –, but it does not provide
any gain on the radio channel.

b: ROS2 QUALITY OF SERVICE SETTINGS
A wide range of QoS policies are available in ROS2 and
let the user fine-tune node connectivity. With the correct
combination of QoS settings, ROS2 can have a wide
range of potential states, ranging from best-effort UDP
to TCP-like reliability. ROS2 leverages the flexibility of
the DDS transport it utilizes, which proves advantageous
in scenarios characterized by unreliable wireless networks,
where a ‘‘best effort’’ approach ismore suitable. It also proves
beneficial in real-time computing setups that demand specific
QoS profiles to ensure timely completion of tasks [17].

2) MEASURED CONNECTION RELATED KPIs
Essential information in terms of network statistics and the
QoS of the connection are latency, jitter and packet loss.
While in the previous section the network flow statistics can
be collected on the publisher side to estimate the bandwidth
of the application, the influence of the subscriber’s setting and
the transmission channel needs to be measured.

Fig. 2 shows the ROS2 protocol stack on top of a 3GPP
network from SA6 perspective. The gray boxes highlight the
possible approaches to gather network statistics in various
layers of the system. The information collection method in
the specific layers is discussed in the following paragraphs.

a: USERLAND CODE
An option to measure the ROS network statistics can be
done in the userland code. This can be done by reading
out the settings that the application developer set up for
the application. As it is not a generally applicable solution,
we aimed to perform the network statistics collection which
is transparent for the application developer. We need the ROS
topics bandwidth and publishing rate which can be similarly
extracted as the command line ROS topic tools, the hz, bw
operates [18]. The statistics collection is done by summing up
the message sizes and their interarrival time in the subscriber.

VOLUME 11, 2023 65937



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

The tool developed to perform the collection of required
information is discussed in Section III-B1 in detail.

b: ROS CLIENT LIBRARY API
The integrated statistics measurement for messages received
by any subscription is provided by ROS2 via a statistics
topic [19]. Allowing users to get subscription statistics gives
them the ability to assess the system’s performance or help
with problem identification. The received message age and
received message period are provided by the measurements.

Topic Statistics measures are disabled by default. Both
the received message age and the received message period
measures are enabled for that particular subscription once this
feature has been activated for a certain node via the subscrip-
tion configuration options. Data age can be calculated for
those subscriptions which message type contains timestamp
in the header field, otherwise empty data is published. Only
C++ is currently supported for this capability in ROS2
Humble (rclcpp).

The benefit of this approach is that we are in the user space
application, and this method measures the same QoS KPIs
as the application would perceive. The main issue with this
approach is that it is not a transparent solution. It requires the
user to modify its code by enabling the subscription feature
and forcing them to use time stamped messages.

We tried many designs to use this feature in the Unique
Flow Topic Relay (UFTR) (see Section III-B1 in detail).
The difficult part is that the subscription node must have
a predefined message type during compilation. We checked
the examples of the statistical library which made format
checking by templates still in the compilation time. We also
examined the source code of ‘‘RelayField’’ from ROS2
‘‘topic tools’’ [20] which showed that the message type
is still a rigid requirement just not in compilation time as
it is in Python. We were thinking about applying Deep
Packet Inspection (DPI) and parsing the headers of the
messages as if there were timestamps. We decided that this
could give misleading results and dropped the idea. All in
all, this solution does not seem to be a viable candidate
to include in UFTR as it cannot support general message
types.

c: DDS
A C++ library called eProsima Fast DDS Statistics
Backend [21] enables users to gather and retrieve perfor-
mance statistics from a Fast DDS network, such as the
topology of the DDS network and the configuration of
each DDS entity (i.e., QoS). Additionally, it has a Fast
DDS statistics module that enables data collection from the
DDS layer and dissemination under certain DDS subjects.
This library provides detailed statistics on the DDS level
communication: latency, throughput, re-sent packets, sub-
messages, meta-traffic packets, discovery time can be directly
collected. The statistics module’s built-in DataWriters are
used to publish the collected data using DDS across certain

topics. As a result, Fast DDS does not compile this
module by default, because doing so could slow down the
application. To enable it in the ROS2 applications, the Fast
DDS needs to be recompiled with a CMake configuration
step’s -DFASTDDS STATISTICS=ON switch. After the
successful compilation, the ROS2 abstract DDS API needs
to be pointed from the default binary package install to the
compiled version.

The advantage of this approach is its detailed KPIs and
accuracy. The drawback is the number of steps required to
enable this module. Also, full deployment is needed of these
modules as during the interaction with other ROS2 nodes,
which do not use the statistics enabled DDS version, will not
provide any statistical data.

In our experiences, compilation of Fast DDS and modify-
ing the abstract DDS layer does not work with all the ROS
packages. Some of them have a dependency on the binary
packaged DDS. The whole recompilation of ROS2 is a safe
solution, but it takes a long time.

d: TRANSPORT NETWORK
There are three message types in TS 23.434 on retrieving
information about the connectivity status. The common way
is to subscribe for QoS monitoring and the network pushes
down monitoring information periodically. TS 23.434 [8]
§14.3.2.22 ‘‘Unicast QoS monitoring notification’’ is the
information flow for unicast QoS monitoring notification
from the NRM server to the VAL server. QoS monitoring
data is an aggregate of QoS measurements obtained from
the 5G System (5GS). TS 29.549 [22] §7.4.2.4.2.3 describes
the measurement data. It consists of the following attributes:
1) downlink packet delay in milliseconds, 2) uplink packet
delay in milliseconds, 3) round-trip packet delay in mil-
liseconds, 4) average packet loss rate, 5) average data rate,
6) maximum data rate, 7) average traffic volume for downlink
in bytes, 8) average traffic volume for uplink in bytes.

The following two messages are event notifications from
the network. TS 23.434 [8] §14.3.2.15 ‘‘QoS downgrade
indication’’ is a message from the NRM client to the NRM
server. The report includes the expected or actual QoS
or Quality of Experience (QoE) parameters which were
downgraded (i.e., latency, throughput, reliability, jitter).

TS 23.434 [8] §14.3.2.16 ‘‘Application QoS change
notification’’ is a message from the NRM client to the NRM
server. It contains information on the updated or requested
QoS parameters for the end-to-end session based on the QoS
change on one or both links involved in the network-assisted
end-to-end communication.

Note that the way the network retrieves the information
is not defined in TS 23.434 [8]. It is possible to involve the
Network Data Analytics Function (NWDAF) [23] or make
active probing on the established connections.

The advantage of this approach is that it is generally
applicable on the 5G network. The drawback is that
these measurements refer to the whole connection and not
application, ROS2 node specific.

65938 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

B. PROPOSED ROS2 DATA COLLECTION NODE –
IMPLEMENTATION OF THE SENSOR
In this section we discuss the proposed proxy node that is
capable of collecting the necessary information from the
ROS2 and transport layers for the SEAL request.

1) THE METHOD TO RETRIEVE THE 5-TUPLE IDENTIFIER OF
THE ROS2 TOPIC
To fill in the Internet Protocol (IP) address field of the
API, or a more detailed 5-tuple identifier (transport protocol,
source IP, source port, destination IP, destination port) of the
IP flow on which the QoS management request is valid we
need to obtain the ROS2 topic flow identifiers. Reference [24]
discusses the issue of the default ROS2 topics. The same
flow identifiers (5-tuple or 3-tuple) are used by all publishers
and subscriptions in communication nodes. This prevents
communication nodes from explicitly differentiating network
QoS for publishers and subscriptions. Thus, only the same
network QoS can be assigned to publishers and subscriptions
in communicating nodes.

a: SOURCE IP, PORT
Since ROS2 Galactic, the ‘‘Support for unique network
flows’’ is among the features [25]. To enable QoS speci-
fications for these IP streams in network architectures that
support such a feature, like 5G networks, applications may
now demand that UDP or TCP and IP-based ROSMiddleware
(RMW) implementations provide unique network flows
i.e., unique Differentiated Services Code Points (DSCP)
and/or unique IPv6 Flow Labels and/or unique ports in IP
packet headers.

A further feature connected with the setting up of
unique network flows is a related getter interface for
the RMW. ROS2 Galactic provides an API called
get_network_flow_endpoints() for publishers and
subscriptions to understand ports and IP addresses assigned
for their messages by the RMW implementation. Note
that Network Flow Endpoints (NFEs) established only on
the publisher-side are represented by the NFEs supplied
by get_network_flow_endpoints() for a publisher
(local). It does not include details on NFEs for matching
subscriptions. Similarly, the NFEs for a subscription returned
by the getter function are localized and lack information
about matched publishers. This is a design choice for ROS2.

b: DESTINATION IP, PORT
The missing information elements from the 5-tuple identifier
can be obtained in a FastDDS specific way. The DDS layer is
aware of the destination IP and ports, it is just not exposed
towards the ROS2 layer. ROS2 topics consist of 1) DDS
topics with the rt/ namespace, 2) a topic transporting
meta traffic information and 3) a topic providing statistical
information if it is enabled. The meta traffic topic is used by
ROS2 for discovery and configuration purposes. During the
DDS subscriber discovery, the SubscriberEvent [26]

FIGURE 3. Unique Flow Topic Relay (UFTR).

can be queried for the destination IP address and ports.
We check the DDS topics and collect the 5-tuple data
when the ReaderDiscoveryInfo changes regarding
those topics which are indicated by the user to special QoS
handling.

2) UNIQUE FLOW TOPIC RELAY (UFTR)
The required features are collected and realized in our
tool called ‘‘Unique Flow Topic Relay’’. Fig. 3 shows the
architecture and information flow of the node. This tool is the
extension of ‘‘ros topic tools’’ [20]. ‘‘ROS topic tools’’ are
tools for meta-level guiding, throttling, choosing, and other
manipulation of ROS2 topics. These utilities work on generic
binary data utilizing rclcpp’s GenericPublisher [27]
and GenericSubscription [28], rather than serializing
the streams that are being manipulated. The tools in the
package are offered as composable ROS2 component nodes,
which enables them to be launched from launch files, initiated
from the command line, or spawned into an already running
process. We extended the ‘‘relay’’ command line tool. The
ROS2 ‘‘Relay’’ node subscribes to a topic and publishes
all incoming data to another topic. It is compatible with all
message types.

Our extension for the relay node is that the re-published
topics are created with the enabled unique flow option,
resulting in that these topics are no longer multiplexed on
the same 5-tuple as the other and we can request the 5-tuple
identifier of these topics.

The intended usage of the node is that the user configures
its launch file by tagging those topics that require QoS
handling by our mechanism. The user can add a ‘‘_QoS’’ tag
to the original topics of the application, and the relay node
subscribes for these topics then re-publishes them, removing
the tag as well. An option for the application developer is
to simply remap the existing topic names with the added
‘‘_QoS’’ tag. In this case there is no need for anymodification
to the original ROS2 application.

The 5-tuple related information for each QoS handled topic
is published on the ‘‘unique_network_flow’’ topic, while the
network statistics related information is published on the
‘‘unique_network_flow_stats’’.

VOLUME 11, 2023 65939



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

The method that provides more detailed network statistics
requiring different ROS2 connection architecture is discussed
in Section V and VI-A3.b.

C. CONTROLLER – NETWORK RESOURCE MANAGEMENT
We need to map the sensor information from Section III-A to
a control process.

TS 23.434 [8] §14.3.2.13 defines the ‘‘end-to-end QoS
management request’’ from the NRM client to the NRM
server. The essential information elements are the ‘‘list of
VAL User Equipment (UE)’’ for whom the end-to-end QoS
management occurs, the ‘‘IP address’’ of the VALUE and the
‘‘end-to-end QoS requirements’’ of the application including
latency, error rate, etc. for the end-to-end session. Note that
the Rel-17 definitions enable the UE-level setup of the QoS
parameters. To make it future-proof with further releases, and
to follow the recommendations given in [10] §4.2.3 Note 2,3
to support multiple IP flows, we provide UDP/IP-flow level
identification of the ROS2 topics.

1) THE ‘HELLO WORLD’ IN ROS2, TURTLESIM
A simple simulator for learningROS2 is called Turtlesim [29].
It gives the user an overview of what ROS2 accomplishes
at its most fundamental level so that they can subsequently
use a real robot or a robot simulation. Fig. 4 shows the
basic architecture of Turtlesim with an external controller
connected via 5G. The use case is that we spawn a turtle, and
it is controlled via closed-loop control by an external control
node to move along a circle. In this basic setup there are two
unidirectional topics established between the controller and
the Turtlesim. Turtlesim publishes the position information;
the controller subscribes to this topic (‘‘/turtle2/pose’’).
Meanwhile the controller publishes the velocity command
topic (‘‘/turtle2/cmd_vel’’) and the Turtlesim subscribes to
it.

Fig. 5 shows the extension of the basic use case with
the UFTR nodes that enables the QoS handling of both
the position and the velocity topics. The following section
discusses the orange box in the figure.

2) THE METHOD TO DEFINE QOS OUT OF THE
CONNECTION MONITORING DATA
Until now, we identified the flow identifier of the topic which
needs QoS handling. In the following steps we discuss how
the QoS handling is achieved.

3GPP TS 23.203 [30] Table 6.1.7 enumerates the stan-
dardized QoS Class Identifier (QCI) characteristics in terms
of Resource Type (RT), Priority Level (PL), Packet Delay
Budget (PDB), Packet Error Loss Rate (PELR), Maximum
Data Burst Volume (MDBV) and Data Rate Averaging
Window (DRAW) with given example services also. The
mapping of a QCI for a certain input parameter set is given
by the table. This step is indicated by ‘‘QoS mapper’’ in
Fig. 5. The open question remains how to set up the input
parameters based on the available connection information.

FIGURE 4. ROS2 Turtlesim with an external controller connected via 5G.

LISTING 1. QoS mapping code.

Listing 1 shows the important part of the QoS mapping code
that we discuss in detail.

‘‘Topic watcher’’ subscribes to both the ‘‘unique_flow’’
and ‘‘unique_flow_stat’’ topics (see Fig. 5). The topic
‘‘unique_flow’’ provides information in case a new topic
becomes active or if it has ceased to exist i.e., there are
no more publishers or subscribers for the topic. In case
these events occur, an update is published with the 5-tuple
identifier of the topic’s IP flow. A dictionary stores the list of
active topics. The ‘‘unique_flow_stat’’ topic receives network
statistics data on the active topics in every 10 secs. The 5-tuple
for the active topic and the statistic from the previous window
is retrieved from the dictionary.

65940 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 5. ROS2 Turtlesim with UFTR deployment.

The PELR ismapped from the ROS2QoS reliability. ROS2
have two QoS reliability settings:

• Best effort: make an effort to deliver samples, but if the
network is not reliable, they could be lost.

• Reliable: provides a delivery assurance and several
retries.

3GPP TS 23.203 [30] Table 6.1.7-B has QCI values for
automation in which the most reliable values are in 10−5,
which is given for the reliable ROS2 topics and 10−2 is
considered for the best effort ROS2 topics.

PDP is set directly by the measured packet generating
frequency of the ROS2 application. The lifespan duration
set by ROS2 QoS policy is the longest period that can
pass from the time a message is published and when it
is received without the message being considered stale or
expired (expired messages are silently dropped and are
effectively never received).We give awarning if themeasured
PDP is higher than the lifespan duration as it means that the
ROS2 application considers them as expired.

We compare the data sending rate of the ROS2 topic in the
current and previous measurement window. If their difference
is within 10% we consider the topic as Guaranteed Bitrate
(GBR) otherwise as a Non-GBR topic which is set to the
Resource Type (RT) for the QCI mapping.

The DRAW has to be at least 2000 ms according to 3GPP
TS 23.203 [30] Table 6.1.7-B. If the measurement window is
smaller than that we pop up a warning.

The MDBV is estimated from the average packet size in
the measurement window. Extending the statistics message
could directly provide this information. 3GPP TS 23.203 [30]
Table 6.1.7-B use it rarely. Basically, two types of MDBV
packets are considered: one for small packets below
255 bytes, and one with Maximum Transferable Unit (MTU)
with 1354 bytes.

An optional information that can be used is the lease
duration of the ROS2 topics to provide indication to the
publisher that it is alive before the system considers it to
have lost liveliness. Losing liveliness could be an indication
of a failure. A callback is triggered by the ROS2 system
in case the maximum time of the lease duration is reached
(see [31] as an example). The 3GPP system can utilize
this to remove the flow related requests of the ROS2
topic e.g., NRM requests, network monitoring subscriptions
explicitly. It is done automatically by the 3GPP system, but in
large deployments, it can reduce the load on the 3GPP nodes.

The rest of the algorithm goes through the 3GPP
TS 23.203 [30] Table 6.1.7 as a set of conditional switches.
Note that the rest of the ROS2 QoS parameters are DDS

VOLUME 11, 2023 65941



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

specific or ROS2 application specific (e.g., deadline) and
have no relevance in the radio transport network setup. The
following ROS2 QoS policies are not considered: 1) history:
the strategy how the samples are stored, 2) depth: the number
of samples to be stored, 3) durability: check if the publisher
is the responsible for persisting samples for ‘‘late-joining’’
subscriptions, 4) deadline: the maximum time that should
pass between posting new messages to a topic. Finally, the
stats are updated in the dictionary.

D. THE CONFIGURATION STEPS OF THE 5G NETWORK
AND ROS NODES
In this sectionwe describe the required network configuration
steps during the ROS2 nodes operational phases. We assume
the following network setup. Wireless connectivity is pro-
vided by a 5G Non-Standalone (NSA) Mobile Private
Network that can be deployed on the factory premises,
also termed as Non-Public Network (NPN). This private 5G
network comes with an integrated edge cloud, which the
enterprise can use to run IoT application instances on. In our
setup, the ‘‘topic watcher’’ and the controllers of the turtles
run in a persistent Virtual Machine (VM) in the edge cloud.

The following subsections describe the steps of setting
the ROS2 environment into work and the associated network
configuration tasks.

1) DEVICE PROVISIONING AND ONBOARDING
To let the network know about the existence of the modular
devices, their identities and credentials have to be provisioned
into the subscriber database of the 5G network. The device
is pre-configured with a vendor certificate (or other type
of credential) that allows successful identification and
authentication of the device by the 5G network. Our devices
are pre-configured with a Subscriber Identity Module (SIM)
card and an NPN identity. The 5G NPN is configured with
subscription profiles for numerous services, including the
3GPP network access authentication. The UE plugged into
the execution environment of the ROS2 application instances
is equipped with a SIM card, that holds the identities and the
authentication keys needed to authenticate the device in the
5G NPN.

As part of this provisioning step, 5G NPN needs to be
provided with the Generic Public Subscription Identifier
(GPSI) of the UEs among other information, so that it can
authenticate these UEs and devices.

The 5G NPN provides a default logical network (typically
used for application-level device onboarding purposes),
which provides best-effort connectivity, and for security
reasons is isolated from the other logical networks used for
production. The logical networks are also known as device
groups, according to the SEAL terminologies.

When the device is turned on, it successfully connects to
the default logical network (bootstrap device group). The 5G
network has to let the IoT application know about the newly
connected device by sending an event notification. The IP

address is also provided so that the IoT application can
address the device.

2) SETUP ROS2 NETWORK
The first step is the launching of TurtleSim, the main process
that requires control. Note that the launch phase in ROS2
does not guarantee the exact order of the execution of the
commands that are defined in the launch file. This setup phase
should be considered transient, while all the nodes start and
the topics are published, subscribed.

Networks where multicast traffic has issues, or with large
numbers of participants, even the discovery of the new nodes
can take considerable time. In addition to the 5G Radio
Access Network (RAN) characteristics, the 5G system (5GS)
offers solutions for Ethernet networking and URLLC in the
core network (CN). Native Ethernet protocol data unit (PDU)
sessions are supported by the 5G CN [7]. In such cases the
discovery server is not needed. The above feature requires
such UEs as well. To relax this requirement, we applied
the discovery server-based setup [32]. The Client-Server
Architecture offered by the Fast DDS Discovery Server
enables nodes to connect with one another through a middle
server. Every node performs the role of a discovery client,
sending information to one or more discovery servers and
receiving information back from them. This minimizes
network bandwidth associated with discovery and does not
need multicasting capabilities.

After TurtleSim has spawned, its related ‘‘Unique Flow
Topic Relay for TurtleSim’’ node subscribes for the ‘‘/tur-
tle1/pos_qos’’ topic that is published by TurtleSim. Note
that the topic names contain the ‘‘_qos’’ tag, which will
be removed later. The ‘‘Turtle 1 Controller’’ is spawned to
provide control for the TurtleSim. The controller subscribes
to the commands published by the controller, intended
for the TurtleSim. The ‘‘Unique Flow Topic Relay for
Turtle 1 Controller’’ is launched, and it subscribes to
the ‘‘/turtle1/velocity_qos’’ topic. ‘‘Turtle 1 Controller’’
requires the position information of the ‘‘turtle1’’ via
‘‘/turtle1/pose’’. This topic is published by ‘‘UFTR for
TurtleSim’’. TurtleSim requires the velocity commands from
the ‘‘Turtle 1 Controller’’, which is published by the ‘‘UFTR
Turtle 1 Controller’’ via the ‘‘/turtle1/velocity’’ topic. Note
that the ‘‘_qos’’ tag is removed from this topic.

3) ROS2 NODES ARE OPERATIONAL
When the ROS2 nodes become operational, the ‘‘topic
watcher’’ node is spawned, and it sends a message
to the SEAL server on group creation with the DDS
domain identifier (ID). The DDS domain ID can be
queried from a ROS2 node via rclpy.get_default
_context().get_domain_id() function call. The
ROS2 nodes belonging to the same domain ID can be isolated
in their own logical network in the 5G NPN. These logical
networks have to be created in the form of device groups
with the following attributes: name, communication type

65942 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 6. The communication steps between the ROS2 and SEAL nodes.

(IP or Ethernet), VLAN ID (Virtual Local Area Network
Identifier), and default QoS parameters for prospective device
connections to this group (see TS 23.434 [8] §10.3.2.1 Group
creation request). The device group management service
provides the 5G Local Area Network (5GLAN) group data
to the 5G system and replies with an external group identifier
for the 5GLAN group. Once the device group is ready, the
execution environments of the ROS2 nodes – each identified
with a GPSI – require membership in the newly created
5GLAN device group identified with the external group
identifier. As a result, logical networks (device groups) are

created for each execution environment of the ROS2 nodes,
and the UEs are entitled to establish user plane connections
to their device group.

‘‘Topic watcher’’ subscribes for both ‘‘unique_network
_flow’’ topics published by the ‘‘UFTR for Turtlesim’’ and
the ‘‘UFTR for Turtle 1 Controller’’. Beside the flow data,
flow statistics are published on the ‘‘unique_network_flow
_stats’’ topic, which is not drawn on Fig. 6 to make the
sequence diagram more comprehensible. ‘‘Topic watcher’’
calculates the required QoS and sends ‘‘e2e QoS Manage-
ment requests’’ to the SEAL server. The SEAL server can

VOLUME 11, 2023 65943



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 7. The control loops in the ‘‘vertical application as consumer of
network exposure’’ (Section III) vs ‘‘the network as consumer of
application exposure’’ (Section IV).

respond with an ‘‘Application QoS change notification’’ if
the request can be fulfilled. It is possible to request on
demand or subscribe to connectivity monitoring via the
‘‘QoS monitoring request’’. The SEAL server can send a
‘‘unicast QoS monitoring notification’’ periodically for the
subscription.

4) SHUT DOWN
After the ROS2 tasks are executed successfully the network
and the edge cloud are requested to release the resources and
go back into the initial phase. It consists of procedures such
as unsubscribing the ‘‘topic watcher’’ from QoS monitoring
and the deletion of the group.

IV. THE NETWORK AS CONSUMER OF APPLICATION
EXPOSURE
The current design of 3GPP SEAL provides both information
and control on the network towards the vertical application,
but eventually to be able to provide smart network solutions,
the other way of information and control is a desired state
in the future. In this way the exposure consumer is the
5G network, whereas exposure producers are the vertical
application functions that provide the services that are
exposed to consumers (see Fig. 7).

In another interpretation, the previous section discussed
rigid VAL applications and adaptive networks, while this
section extends the capabilities of VAL applications with
adaptive behavior in cooperation with the network.

The NRM requested by the VAL application worked in
an open-loop manner so far. We had no sensor to check
the effects of the NRM request on the VAL application
performance. In this section our goal is to close this control-
loop.

In this section we introduce the Vertical Application
Service Enabling Architecture Layer (VASEAL) that exposes
the vertical application layer towards the network. Fig. 8
shows the concept. Similarly, as in SEAL, VASEAL has
four main components: VASEAL Service Server and Client
and their respective network side nodes, the Network Layer
Service Server and Client. VASEAL Service Server runs
next to the Vertical Application Server hosting the Resource
Management Server and Event Monitoring for the production
cell or other VAL application. VASEAL Service Client runs

next to the Vertical Application client running the GUI for the
data collection of the event monitoring. The Network Layer
Service Client runs next to the SEAL Client. The Network
Layer Service Server runs next to the SEAL Service Server.

In connection with P2940 the VAL process, like the
Turtlesim, is considered as a closed-loop control process in
which the certain elements are discussed in the following
sections.

A. SENSOR – ROS2 PROCESS RELATED KPIS
The main idea to reduce the needed infrastructure can be
the assumption that if the product does not have significant
quality impact due to the looser network requirements (see
mentioned examples), then significant cost savings can be
achieved by relaxing some QoS parameters of the network.

The strict communication requirements demanded by the
manufacturing processes are to meet a mostly binary defined
satisfactory level: acceptable or unacceptable of the final
product. ARIAC [33] proves that, during the evaluation
of an agile production cell with pick-and-place tasks for
on-demand orders, the performance metric of the production
cell can be a non-binary metric, resulting in a fine-grained
score to make it possible to rank competitors.

Telecommunications introduced a fine-grained Mean
Opinion Score (MOS) in the 2000s [34] to measure the
human-judged overall quality of an event or experience.
In typical telecommunication services, MOS is a ranking of
the quality of voice and video sessions. Most often judged
on a scale of 1 (bad) to 5 (excellent), MOS is the average of
several individual human-scored parameters. Although MOS
originally was derived from surveys of expert observers,
today MOS is often produced by an objective measurement
method approximating a human ranking, called Estimated
MOS (EMOS). QoE KPIs such as video buffering time,
or missing video frames are directly correlated with MOS.
QoE is affected by end-to-end QoS settings such as average
bandwidth or packet drop on a certain network link.

Our intention in this section is to pursue the track that has
been used for decades already in Mobile BroadBand (MBB)
to evaluate the perceived quality of a service of the user,
extend this to the industrial and manufacturing area, and
analyze a yet unexplored case how network QoS affects the
quality of robotic sanding. This principle can be applied
in other industrial areas where precision and process-speed
requirements allow a broader range. These fields could be for
example, painting, spraying, enameling, coating, iron casting,
bonding, and sealing, etc. To achieve this, we introduce an
interface, a ‘‘MOS’’ topic which can be populated in the
following two ways.

1) MEAN OPINION SCORE PROVIDED BY THE USER
We intend to demonstrate in this paper that industrial
processes can be examined one-by-one based on their
network performance requirements, and their performance
can be evaluated by fast expert opinion leaving out the

65944 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 8. The architecture of the ROS2 Turtlesim with UFTR with throttle and MOS deployment.

tedious low-level process specific KPI measurements. This
option involves a human expert in the evaluation. The
‘‘Mean Opinion Scoring’’ node hosts a web server which
communicates with a browser via websocket. The user is
provided with an interface on which all the topics relayed by
the UFTR in the system are enumerated. The user can group
the topics by a self-defined ID which represents that a set of
topics is responsible for a certain perceived MOS. After the
grouping of the topics, the user can set a MOS value for the
process on a scale 1-5. The websocket sends back the selected
value associatedwith the list of topics and the ‘‘MeanOpinion
Scoring’’ node publishes it on the ‘‘MOS’’ topic.

2) APPLICATION WITH BUILT-IN MOS ESTIMATION
Beside the human focused mean opinion scoring, it is also
common to estimate the MOS automatically to provide high
level feedback to the content provider based on measured
network QoS related KPIs e.g., [35], [36]. As a demonstration
we included an automatic estimation for the controlled turtles
in the Turtlesim. We extended Turtlesim with a function to
compare the Proportional-Integral-Derivative (PID) error or
movement resolution of the two controlled turtles. After every
10 Hz difference in the control loop of the two turtles, the
MOS score of the slower control loop is reduced by 1 unit.
This is calculated in the background and published on the
‘‘MOS’’ topic.

In case both the human expert mean opinion scoring and
automatic MOS estimation publishes on the MOS topic, the

human-based is considered only. The ‘‘MOS’’ topic publisher
has an identifier field to signal whether it comes from the
human scoring system or from the automatic one.

B. CONTROLLER – APPLICATION BEHAVIOR
INFLUENCING INTERFACE
As we got inspired by telecommunications to describe the
perceived quality of transmitted voice and video by a simple
MOS score, we can take one step further in terms of the
control or the influence of the quality of the audio and video.
3GPP TS 26.247 [37] describes the working mechanism
of Progressive Download and Dynamic Adaptive Streaming
over Hypertext Transfer Protocol (HTTP) (3GP-DASH).
§11.2.4.1 tells that the DASH client keeps consuming the
media content after the presentation has begun by repeatedly
requesting Media Segments or parts of Media Segments and
playing content in accordance with the media presentation
timeline. With latest information from its environment, such
as a change in observed throughput, the client may alter
Representations. In a simple implementation, the client may
change to a different Representation with any request for a
Media Segment that begins with a stream access point. One
Adaptation Set’s Representations represent the same media
content elements, hence all the media streams it contains are
thought to be perceptually comparable. An Adaptation set
contains various attributes out of which the following three
types influence the QoE: 1) min and max bandwidth, 2) min
and max Width and Height of the frames, and 3) min and

VOLUME 11, 2023 65945



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 9. The communication steps between the ROS2 and SEAL nodes when communication resources are depleted.

max frame rate. From an application’s i.e., a robot controller’s
perspective, the bandwidth is a consequence of the control
packet size. While in audio and video encoding there are
various codecs and compression rates which significantly
alter the required bandwidth, in terms of control messages
e.g., ROS2 standard twist message there are two vectors only
which is difficult to compress further. The resolution can
refer directly to the control frequency e.g., a haptic device
has higher control frequency or resolution than an industrial
heavy duty robotic arm. The frame rate in video codecs
requires various playback speeds for the specific frame rate.
In case there is inadequate network bandwidth to download
the 50 Frames Per Second (FPS) video in real-time then
playing out with 25 FPS frame rate makes more room for
the network to buffer with the doubled play-out time. We can
interpret this from the VAL applications point of view as
slowing down the application till there is no significant
degradation of production KPIs, e.g., cycle time can relax
the network requirements. Assuming the VAL application
can work similarly to the DASH client, it would mean that
the VAL application adapts to the network characteristics.
This behavior is only required if the network’s resources are
depleted. To achieve this the network requires clean interfaces
on the VAL application for which the VASEAL architecture
provides an approach.

C. NETWORK RESOURCES ARE DEPLETED
TS 23.434 [8] §14.3.2.16 ‘‘Application QoS change notifica-
tion’’ types of messages can arrive from the NRM client to
the NRM server.

1) ROS2 IMPLEMENTATION
Fig. 9 shows the communication steps between the ROS2
and SEAL nodes when notification events occur from

the network. In case the network resources get depleted,
the SEAL server sends ‘‘QoS downgrade notification’’ to
the ‘‘topic watcher’’. The ‘‘topic watcher’’ notifies the
‘‘MOS/QoS ratio maximizer’’ node to spur into action
which opens a topic ‘‘/application_adaptation_request’’ for
which the ‘‘Turtle 1 Controller’’ subscribes. The ‘‘MOS/QoS
ratio maximizer’’ node subscribes to the ‘‘/MOS’’ topic on
which the ‘‘Turtle 1 Controller’’ publishes estimated MOS
values automatically without human interaction. The ‘‘Mean
Opinion Scoring node’’ is launched which also publishes
on the ‘‘/MOS’’ topic for which the ‘‘MOS/QoS ratio
maximizer’’ node subscribes. TheseMOS scores are set up by
human experts. The ‘‘MOS/QoS ratio maximizer’’ calculates
actions on keeping the MOS acceptable but reducing the
requested QoS and the ‘‘e2e QoS management requests’’ are
sent towards the SEAL server.

There are two outcomes of these requests. One, the SEAL
server can fulfill the requested QoS and responds with
‘‘Application QoS change notification’’. In this case we
reached a new operation point. Or the second case, when
the QoS requests still cannot be fulfilled and a further ‘‘QoS
downgrade notification’’ arrives from the SEAL server. In this
case the ‘‘MOS/QoS ratio maximizer’’ node publishes an
adaptation request towards the ‘‘Turtle 1 Controller’’ via the
‘‘/application_adaptation_request’’ topic to slow down and
lower the frequency of the control loop.

2) THE MOS/QOS RATIO MAXIMIZER IN THE VASEAL
ARCHITECTURE
The right middle brown box represents the MOS/QoS ratio
maximizer in the VASEAL architecture in Fig. 8. It is hosted
in the VAL server, but it is also possible to implement as a
NF. The node has access to the event monitoring and resource
management features of the SEAL and VASEAL servers.

65946 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 10. ROS2 architecture with tunnel.

In this way it can collect information and have control of
both the VAL and SEAL servers. An implementation of the
MOS/QoS ratio maximizer is discussed in Section VI-A3.

V. TUNNEL MODE
In this section we describe a third architectural concept and a
further operation mode of the UFTR. The two main features
why we introduced this architecture are 1) to support the
detailed network KPI measurements in the userland code and
2) to provide enhanced dynamic QoS handling for the ROS2
applications. We need to measure latency, jitter and packet
drop on any general message type. We examined the code of
ROSBag [38] as its recorded data would make it possible for
an offline evaluation in terms of the QoS KPIs of the topics’
traffic. The command line utility ‘‘ros2 bag’’ is used to record
data published on subjects in the ROS2 system. It compiles
the information shared on a variety of subjects and stores it
in a database by extending the topic messages with a header
containing a timestamp. After that, the user can replay the
data to get the same outcomes as they test and experiment.

A. UNIQUE FLOW TOPIC RELAY WITH TUNNEL
Our design choice was to extend and modify the original
functionality of UFTR. We connect the UFTRs’ of the ROS2
application instances then the UFTRs publish the relayed
topics to another UFTR instance which subscribes to it
creating a tunnel between the two (see Fig. 10). This design
choice allows us to extend the transferred messages with

FIGURE 11. Unique Flow Topic Relay with Tunnel.

custom headers, as if we make an encapsulation of the
original topics with ROS2 message headers.

Fig. 11 shows the extended architecture of the UFTR.
There are two modes of operation of the subscriber and
publisher based on the function of the ROS topic. The
function of the ROS topic is indicated with an additional
tag (beside the _qos tag that identifies the flows needed
for the unique flow relay features). The additional tag
represents the user intended direction of the topic. First, the

VOLUME 11, 2023 65947



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

application publishes a topic tagged with _qos_out. The
UFTR subscribes to it with a general subscriber meaning that
no message type is needed to be set, as it is not parsed by this
node. Second, compared to the way rosbag works – in which
the compiled message type library is dynamically loaded to
parse the message content –, a publisher is initiated with
a custom message type including a timestamp, a message
counter, and a binary field. The timestamp is filled with the
clock, the message counter is an ever-increasing integer, and
the binary data is the whole message received on the general
subscriber topic. Note that there is no parsing happening in
this case, thus it is message type agnostic, an encapsulation
occurred only. In this operation mode of the publisher,
the topic is transmitted via QoS handling, thus the unique
network flow endpoint option is set.

The same UFTR has the second operation mode, in which
it subscribes to the encapsulated topic. As this topic
has a timestamped header, the TopicStatistics (see
Section III-A2.b) feature can be enabled. The header is
parsed, and the binary data stream is forwarded through a
general publisher. This step is indicated in the topics naming
with a _qos_in tag that this topic is decapsulated and can
be forwarded towards the application.

Time synchronization is crucial in the estimation of
message age. We used chrony [39], which is a Network Time
Protocol implementation (NTP). Chrony provides features to
make the system clock be synchronized using NTP servers,
reference clocks, like a Global Positioning System (GPS)
receiver, or just manually entered time using a wristwatch
and a keyboard. In order to offer a time service to other
computers on the network, it can also function as an NTPv4
(RFC 5905 [40]) server and peer. It is built to function well
under a variety of circumstances, including erratic network
connections, overloaded networks, changing temperatures
(regular computer clocks are sensitive to temperature),
and systems that do not run continuously or on virtual
machines.

B. QOS HANDLING SUPPORT
QoS handling can be done with packet marking or in separate
tunnels. Section VI-A2 discusses in detail why this mode of
operation is required to support a fully dynamic NRM setup.

1) TUNNEL WITH PRIORITY BITS
Creating the tunnels and encapsulating the original topic
makes it possible to add extra headers that can ease the QoS
handling.

One such approach is to set up the diffserv [41] values of
the packets. Differentiated Services (DS) is a QoS design that
is frequently used in IP networks. In the 6-bit DS Code Point
(DSCP) sub-field of the 8-bit DS field in the IP packet header,
the application specifies the necessary DS-based QoS. For
instance, the DSCP setting of 0 × 2E says that the desired
QoS is expedited forwarding. Real-time data like audio and
video is forwarded through expedited methods.

a: IT IS POSSIBLE TO UTILIZE DIFFSERV IN THE RADIO
NETWORK AS WE DID AS WELL IN AN EARLIER WORK IN [42]
The core operation of the idea is that a packet filter is assigned
to a dedicated bearer based on a DSCP value. It makes it
possible to assign the packet forwarding strategy per packet
based on DSCP marking of the application data. This method
has short convergence time, but the bearer switching can
result in temporary packet reordering. In the radio scheduler
each bearer has its own queue and at switching to dedicated
bearer the packet queued by default bearer can be taken
over by newly arrived packets. The packet reordering can
result in out-of-order sensor and control data, which may
cause glitches in robot operations. Packet reordering can be
handled easily by the UFTR itself by applying a simple and
effective packet handling strategy that drops all older packets
compared to the packet with the highest sequence number
which has arrived already. The second strategy is to apply
a hold-and-buffer strategy as in the Time Sensitive Network
(TSN) handling in 3GPP TS 23.501 [6] and make reordering
during the buffering period. Also, packet reordering can
be avoided by advanced queue management. The queue
management in the base station can do packet forwarding
between the queues of the bearers to keep in-sequence
delivery of packets.

Another option is to apply the diffserv values directly as
QCI parameters. In order to reconcile the marking recom-
mendations made by the 3GPP and the IETF and maintain
a consistent QoS treatment between cellular networks and
the Internet, [43] specifies a set of 3GPP QCI and 5G QoS
Identifiers (5QIs) to DSCP mappings. Note that this option
provides limited benefits as QCI update is a slower process
compared to the fast reaction time of a packet router altering
its packet queuing on-the-fly based on the diffserv fields.

b: APPLICATION OF DIFFSERV IN ROS2
For diffserv-based QoS for publishers and subscriptions,
ROS2 does not provide an API. There are long discussions
on this topic in various ROS2 forums e.g., [44]. The current
approach of the ROS2 middleware working group is that
diffserv is a transport protocol specific feature and if they
expose it to the ROS2middleware then several transport layer
implementations may lack this feature. Currently, the DDS
traffic generated by ROS2 Humble has DSCP value set to
0 × 00 in their flows. Independently from ROS2, FastDDS
itself has no API to set up diffserv values. This means that
the network must provide default QoS treatment for these
flows. A further issue apart from setting the diffserv value
is that intermediary routers can reset or change the DSCP
value within flows making it risky to use DS-based QoS.
The careful configuration of intermediary routers to preserve
DSCP indications from incoming to outgoing traffic is one
approach.

A tailor-made priority field in the custom ROS2 tunnel
header is a feasible solution for the setup phase. It is only an
issue during the parsing phase to prepare e.g., the base station
to parse into the ROS2 topic header to look for the headers.

65948 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

2) MULTIPLE TUNNELS
The UFTR can be extended with onemore feature as it is used
in topic tools ‘‘mux’’ [20]. First, the application publishes
a topic tagged with _qos_out. The UFTR subscribes to
it with a general subscriber (see Fig. 11). Second, several
publishers are initiated functioning as the tunnel start-point.
The topic messages are encapsulated in a new message
header. In this operation mode of each publisher the topics are
transmitted via QoS handling, thus the unique network flow
endpoint option is set. The published topic tunnels are tagged
with the priority level or QCI value ‘‘_QCI_8’’. The UFTR
receives from the publisher either via an external control
plane topic when to enter certain traffic priority handling
modes and the UFTR sends the incoming topic messages
to the specific outgoing topic with the unique flow id and
QCI tagging. The QoS mapper establishes dedicated bearers
with NRM requests to the known 5-tuples, thus proper QoS
handling is ensured for the QCI tagged topics (see Fig. 10).
The same UFTR has the second operation mode, in which

it subscribes to all the encapsulated topics with the various
‘‘_QCI’’ tags. The header is parsed, and the binary data
stream is forwarded through a general publisher. This step
is indicated in the topics naming with a _qos_in tag that
this topic is decapsulated and can be forwarded towards the
application.

VI. EVALUATION
As described in Section III-C1 the use case on which we
tested the proposed method is a simple simulator for learning
ROS2 is called Turtlesim [29].

A. MAIN OPERATION MODES
There are three operation mode of the proposed method that
we can evaluate:

• static NRM: The ROS2 nodes initialize, the topic
watcher node performs the NRM request towards the
3GPP right at the beginning. The QoS of the channel
is intact until the end of the session.

• dynamic NRM: There is a periodic or event triggered
recurrent remapping of the ROS2 QoS to the 3GPP
QCI. (Both static and dynamic NRM are discussed in
Section III).

• AI-enhanced dynamic NRM: The QoS requested by
the application is optimized by an AI-agent to relax
the 3GPP QCI requests even further while maintaining
the application-level performance KPIs of the ROS2
application. (See Section IV.)

1) STATIC NRM
The static NRM case is well supported by both the ROS2
applications and both 3GPP NRM. It is a common practice to
over-provision the network resource requests to ensure that
the traffic of the application fits in the requested resources
in case of high network load. Also, it is easier from the
application developer’s perspective to over-provision the

requested network resources than to search for the minimal
required resources.

2) DYNAMIC NRM
a: THE DESIGN OF ROS2
As ROS1 was not designed with QoS in mind, the QoS
policies of ROS2 were a huge step toward feasible setup of
more complex network settings. As the ROS2 design article
summarizes, there was no commonmethod of overridingQoS
settings while constructing a node prior to ROS2 Foxy [45].
Reusing nodes that other people have created is popular
in the ROS2 ecosystem, and in many use cases allowing
QoS profiles to be altered makes sense. However, there are
major issues with QoS reconfiguration during run-time. The
main one is that only when the publisher and the subscriber
QoS profiles are compatible can a link between a publisher
and a subscription be established. A ‘‘Request vs. Offered’’
model is used to determine whether two QoS profiles are
compatible. Publishers supply a QoS profile that is the
‘‘maximum quality’’ they can provide, while subscriptions
want a QoS profile that is the ‘‘minimum quality’’ they
are prepared to accept. Connections are only established if
no requested QoS profile policy is stricter than any offered
QoS profile policy. Publishers and subscribers need to have
compatible QoS settings otherwise they either cannot publish
or cannot subscribe. Overriding QoS settings run-time can
end up losing the connection. In ROS2 Galactic, developers
agreed on a way to support QoS overriding which is done
via the QoSOverridingOptions [46] class that can
be setup during initialization, run-time and have a callback
function if it is running. There are a fewwell-known examples
in the ROS2 community using QoS overriding. The most
common one is ros2bag [38], but there can be more upcoming
as the latest ROS2 releases become more widespread in the
community.

The other requirement of a feasible dynamic NRM
use case on ROS2 is the possibility of creating execu-
tors [47] with varying wake up frequency. ROS2 is designed
to initialize executors with given frequency through the
rclcpp::Rate object, but it is certainly possible to
overcome the limitations by e.g., specifying multiple rate
objects for the same executor and switching between them.

b: THE 5G NETWORK
A common method to implement a QoS for a certain flow
for the NRM request in 5G is to establish a dedicated bearer
with the requested QCI between the UE and the base station
then make a routing rule to route a certain flow through the
established bearer. In this concept, updating the QCI triggers
a new bearer establishment and a new routing rule to route
the flow through the newly established bearer. Establishing
a new bearer takes time in a magnitude of a few seconds.
Rerouting happens within 1 second. Updating a bearer means
a tear down and a new bearer establishment. Though it is
important to note that some default bearers are always present

VOLUME 11, 2023 65949



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 12. The architecture of the MOS/QoS ratio maximizer.

while connectivity is provided to the UE, connection outage
does not happen during the bearer switching.

This means that NRM updates can be dynamic in a few
seconds granularity. However, as current design patterns for
both ROS2 and 3GPP SEAL are formed to make the NRM
at the connection initialization and do not modify it during
the lifetime of the connection, this is a low granularity NRM
(even without in-band signaling).

c: THE PROPOSED METHOD TRANSPARENTLY SUPPORTS
THIS TYPE OF OPERATION
The main point is to have a ROS2 application that has a topic
for a sensor e.g., camera, lidar, or controller that supports
dynamic data sending rate of its content.

In this case the application itself may still over-provision
the required network resources if the automatic NRM
process estimates the required network resource based on
the published raw data of the application. E.g., the raw data
from the sensor is transmitted through the network, though
the speed of perception or the processing of the raw sensor
data is slower than the raw data rate. Another common issue
is that the actuator has magnitudes of lower control frequency
than the sensor or the other way around, thus some part of
the control-loop is over-represented in the network traffic and
irrelevant in the final performance of the use case.

3) AI-ENHANCED DYNAMIC NRM
The case of over-provisioning by the application devel-
oper (see Section VI-A1) or by the application (see
Section VI-A2), but it is not considered how the use case
performs from the user’s point of view in these cases.
To search for the minimal required network resources that can
still work well for the user, the MOS/QoS ratio maximizer is
a key component (see Section IV-C2 for the concept).

a: MOS/QOS RATIO MAXIMIZER
The implementation of theMOS/QoS ratiomaximizer is done
as a ROS2 node.

Fig. 12 shows the architecture of the proposed system.
The proposed solution is a reinforcement learning based
solution. We implemented our solution using Ray 2.2.0 with
RLlib [48]. Ray is a general-purpose and universal distributed
compute framework to flexibly run any compute-intensive
Python workload including distributed training, hyperpa-
rameter tuning or deep reinforcement learning. RLlib is an
open-source library for reinforcement learning supporting

highly distributed RL workloads. Within RLlib we used a
multi-agent environment. The policy graph optimizer used
the Proximal Policy Optimization (PPO) algorithm. The
output of the system is optimized policy graphs for the ROS2
topic controlling agents.

RLlib supports environments for external agents and appli-
cations [49]. It is frequently unnecessary for an environment
to be ‘‘stepped’’ by RLlib. For instance, it makes more sense
for an agent to query a service that serves policy decisions and
for that service to grow via experience over time if a policy is
to be employed in a web serving system. This situation also
occurs with external simulators that operate freely outside of
RLlib’s control but may still need to use RLlib for training.
The ExternalEnv class from RLlib serves this function.
ExternalEnv has its own control thread, in contrast to other
environments. Agents on that thread are always able to query
the current policy for decisions via self.get_action()
and report rewards, done-dictionaries, and other information
elements viaself.log_returns(). This is also possible
for multiple concurrent episodes.

Every topic that is handled by the UFTR has an associated
AI-agent, a rollout worker in RLlib terms. The external
environment is the ROS2 setup. The observation space is
collected by subscribing to various ROS2 topics: bandwidth
and jitter values of the flow statistics, MOS, latency, dropped
packet and control speed.

The action space of the agents consists of the increasing
or decreasing the latency, dropped packet, control speed with
one minor step in the specific value set. The decided action
of the agent is published through the above ROS2 topics.

Besides AI, many other types of controllers and heuristics
could be used. Our aim is to prove the viability of the concept
and give a universal solution that can be fine-tuned easily
in an application specific way. With this RL-agent it is as
simple as providing the application-specific MOS-scores and
fine-tuning the weights in the reward function.

In the observation space, the reward is the function that
enforces the learning algorithm to optimize onto it. The
reward should contain information elements on those parts
that can be influenced from the action space, everything else
should go into the observation space. The weights on the
reward elements influence the learning rate speed. If we set up
the weights biased, then the learning rate could slow down so
much that we do not see the convergence. Thus, the learning
rate influences the success of learning in the end. The reward
function for each topic is the following:

rewardtopic = w1 ∗ mos+ latencytopic − droptopic, (1)

where
• w1 is selected to be 200 in our measurements,
• mos is score is defined as the square error between the
desired position and current position of the turtle scaled
with the process speed,

• latencytopic is considered as the number of times the
‘‘UFTR with Throttle’’ delays the packet. Its effect
depends on the topic update rate.

65950 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 13. Architecture and information flow diagram of the Unique
Flow Topic Relay with Throttle function.

• droptopic means that ‘‘UFTR with Throttle’’ drops every
nth packet of the topic. A higher value results in less
drop.

Note that the reward function does not contain the VAL
process speed. It is included in the MOS score provided by
the custom turtle controller.

b: UFTR WITH THROTTLE
An option to collect the network statistics in userland code
if the relay node itself adds the network effects to the
topic. We aimed at extending UFTR to provide two new
features: 1) introduce drop in the topic as it is done in topic
tools ‘‘throttle’’ and ‘‘drop’’ [20] and 2) introduce network
delay. With these features the relay node is aware of the
introduced drop and delay, thus it is possible to know the
degradation of the network statistics compared to the existing
connection features. Obviously, this approach cannot enhance
the network connection by any means.

Fig. 13 shows the architecture and information flow
diagram of the UFTR with Throttle function. The throttle
function has an external interface to control the drop rate and
delay length. Note that as much as the UFTR is a sensor to
collect network statistics, it also becomes a controller with the
introduced throttle mechanism. This capability is exploited
by the AI-agent to influence the traffic characteristics of the
topic.

c: LEARNING PHASE
The PPO is configured in the following way. We set the
no_done_at_end to true to keep the same simulation
environment running and do not reset or exit. This induced
the soft_horizon setting to true as well while the horizon
size is 128. Detailed description of these parameters can be
found in [50].

Fig. 14 shows the training process. The episode reward
mean shows the achieved average reward of the policy across
all the agents. In the first few hundred steps as the agents
start to explore it drops significantly but soon performs better.
At about 15k steps it achieves its maximum value during the
training and at 20k steps the entropy shows that no further

FIGURE 14. The training process.

FIGURE 15. The final setup for each topic after learning.

information can be learnt from the available action space.
The policy loss function correlates to how much the policy
(process for deciding actions) is changing. These values
oscillate during training, but they usually fall below 1.0.
The entropy shows how random the decisions of the model
are. It should slowly decrease during a successful training
process. The values in the figure show successful learning.
Note that though each topic has a different rollout worker,
the policy for all the agents is common. Therefore, it is the
performance of the common policy that can be tracked on
Fig. 14.

d: INFERENCE PHASE
Fig. 15 shows the final setup for each topic that the agents
decided to apply after learning. Note that the two controllers
of the turtles ended up in different strategies.

Turtle 1 halved its original speed (default speed value
is represented with 1, the control speed values should be
considered relative to this value) and decided to take only
minor packet loss and minor latency achieving higher MOS
score than Turtle 2 which took bigger packet loss and latency
but doubled the speed of the turtle. These two turtles represent
different use cases.

B. NUMBER OF LINES OF CODE (LOF) FOR
CONFIGURATION
In Section III-C we discussed what are the required
information elements and how to collect them. The estimated
LOF per SEAL function can be seen in Fig. 16 with the
corresponding LOF ratio. TS 23.434 [8] §14.3.2.13 defines
the ‘‘end-to-end QoS management request’’ from the NRM
client to the NRM server. The request contains mandatory
and optional information elements. Though to create a valid
API call, only the mandatory elements are required, but as

VOLUME 11, 2023 65951



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

FIGURE 16. Estimated Lines of Code for the SEAL functions.

the end-to-end QoS requirement field defines the requested
QoS and it is optional, a meaningful NRM request needs an
optional field as well. The following 4 information elements
need to be set: list of VAL UEs, user ID, IP address, end-to-
end QoS requirements. We can assume that each information
element requires at least one LOF to collect. An HTTP
handling library needs to be imported to make the API call.
The POST messages need to be set up in proper JavaScript
Object Notation (JSON) format. Also, the responses need to
be parsed or event-based callbacks need to be implemented.

If connection monitoring and group management are
important for a certain use case, they require at least one API
call per function towards the SEAL server whose response
needs to be parsed. Usually, authentication is also required
towards these servers, which is at least one more API call.

The proposed method’s QoS mapper node executes the
mapping results via an abstract class which makes it possible
to connect various API’s by implementing various API
calls for the same request, thus making SEAL API calls
exchangeable for e.g., NEF APIs calls (TS 23.501 [6],
23.502 [7] and 29.522 [4]) easily. The SEAL API handler
for the above functions is implemented in approx. 200 LOF.
The proposed method provides the described functionalities
with a few extra characters onto the existing code at the topic
names, or a few lines to remap the topic names in a launch
file or command line.

C. PROCESSING OVERHEAD OF THE ADDED NODES ON
THE SYSTEM
We discuss three main components with their performance
analysis. Other components not discussed here are more like
a few lines of code without any considerable performance
impact.

a: UNIQUE FLOW TOPIC RELAY
The relay nodes are responsible for handling the majority
of information gathering tasks. These nodes can be affected
by the trespassing traffic, which requires specific quality of
service (QoS) management.

We compiled our node with debug symbols to make a
detailed call stack analysis with the perf [51] tool. Fig. 17
shows the ratio of Central ProcessingUnit (CPU) cycles spent

FIGURE 17. CPU cycles on certain functions in the Unique Flow Topic
Relay (UFTR).

FIGURE 18. CPU load on the system of the Unique Flow Topic Relay
(UFTR) node with various input topics.

in various functions of the UFTR. The decisions connected to
new DDS topic events and the network statistics calculations
cost 14.8% of the total CPU cycles. The subscription on
the DDS topic and the republishing of the received topic
messages cost 5.76% CPU cycles each. The node spends a
37.7% of CPU cycles in network busy wait, while and other
36% of the CPU cycles are spent on other ROS2 related
system calls.

We did performance load tests on the UFTR node.
We repeated the tests with the streamed camera video as it
is done in the ROS2 documentation for lossy network traffic
test [52]. The camera was set up in various resolutions to
cause various loads on the UFTR node. Fig. 18 shows the
CPU load on the system of the UFTR node with various
input topics. Note that ROS2 nodes running locally on the
same machine can utilize various optimizations of FastDDS.
FastDDS employs fast intra-process communication solu-
tions [53] like shared memory (SHM) [54], data sharing
delivery [55] or zero-copy communication [56] in a local
machine. The two most beneficial features of SHM for our
use case are the following. First, it reduces the number
of memory copies by using SHM transport, which allows
all target endpoints to share a single memory buffer when
transmitting the same message to many endpoints. Other
protocols demand that each endpoint receive a single copy
of the message. Second, it causes less operating system
overhead: compared to the other protocols, shared memory
transfers require significantly fewer system calls when initial
setup is finished. As a result, employing SHM improves
performance and time consumption.

We switched off the optimized message communications
of FastDDS to check for the worst-case scenario. The results

65952 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

shown in Fig. 18 like 9%, 14% and 27% CPU load (Intel i7
9700k) for 320 × 240, 640 × 480 Standard Definition (SD)
and 1280 × 720 High Definition (HD) camera resolutions
can be lower if the specific ROS2 setup can employ any of
the FastDDS optimizations. For performance test results, how
these solutions optimize CPU load see the latency [57] and
throughput [58] performance tests.

We argue that the relay node is not a significant overhead
to utilize. Instead of the original direction of the topic towards
the network stack, the topics are routed through the relay
nodes, leveraging optimized inter-process communication
within the local machine.

b: QOS MAPPER
QoS mapper runs in case new network statistics data is
received on the ‘‘unique_network_flow_stats’’ topic. The
period of the network data calculation can be set up by the
user. The related calculations for determining the required
QCI are not significant. Defining the HTTP requests with the
proper JSON parameters requires several string operations.
The number of callbacks is in the function of the newly
created and destroyed topics. In current robotics use cases the
topic is created mostly during the system initialization, and
they are static for the rest of the lifetime. We expect that the
QoS mapper does not create a significant load on the system.

c: MOS/QOS RATIO MAXIMIZER
The MOS related scoring and throttling of applications have
one component only that can have significant computation
load. That is the MOS/QoS ratio maximizer node with
its AI agent utilizing RLlib [59]. After collecting some
observations, it starts to optimize a policy which can
utilize some CPU. This CPU consumption can be relaxed
by utilizing the Graphical Processing Unit (GPU) instead,
making the policy optimization off-line or on an external
machine. Once the policy is considered ready, the inference
phase of the AI-component does not cause any significant
system load. Further, the AI-component is an example for the
demonstration of the concept and can be exchanged with a
more use case optimized algorithm.

D. EXECUTION SPEED OF THE NETWORK EXPOSURE
REQUESTS
To evaluate the execution speed of the network exposure
requests we need to discuss how the bearer management
occurs based on TS 23.501 [6] and TS 23.434 [8].

Initially, a default bearer with a certain QCI, e.g., QCI 83 is
created. The terminal and the base station become connected.
When a new NRM request is performed with a different QoS
requirement, the network establishes a new dedicated bearer
towards the UE. Update of an existing unicast resource is
not supported by Rel-17 SEAL, there are create and delete
procedures defined only. To overcome this, the UFTR tunnel
mode can be used to set up all the possible bearers during
the lifetime of the ROS2 application and the tunnel mode

FIGURE 19. The cumulative execution time of the operational phases.

emulates the QoS updates by switching between the various
tunnels.

Fig. 19 shows the comparison of the cumulative execution
time of the operational phases when the basic UFTR mode
and when UFTR with tunnel mode is applied. We performed
the measurements in a private 5G NSA network without any
background traffic or load on the system apart from the tested
UE. The NRM update is performed by a unicast resource
deletion followed by a unicast resource creation procedure.
Section III-D describes the required steps in detail. Fig. 19
shows that in the initial setup phase the two modes require
the same time to execute a NRM update, but after the UFTR
with tunnel creating all the required bearers during the initial
setup, it does not perform any further bearer or IP routing
reconfiguration. The QoS updates are managed by the UFTR
itself with in-app routing in the ROS2 layer. The required
time for the NRM switch is sub-second level while the bearer
setup requires several seconds. Note that the exact values are
terminal and network dependent, the magnitude of duration
is the most important factor that we should consider.

VII. CONCLUSION AND FURTHER WORK
This paper proposes a solution to make the use of SEAL
even easier and more automatic for industry verticals by
introducing a mapping node and an information collecting
proxy node. We demonstrate the feasibility and light-weight
nature of the proposed solution, which covers three SEAL
functionalities and can automatically map ROS2 application
layer information elements to 3GPP SEAL requests. This
solution offers novel deployment options like the VASEAL
and tunneling mode that improves the network’s action
radius and provides an aid to overcome some limitations of
current network deployments. Overall, this solution offers
a convenient way to apply SEAL in various scenarios and
deployments, with minimal input required from the ROS2
application developer.

The proposed method is evaluated in terms of LOF for
configuration, the processing overhead of the information
collecting node, the mapper node and the MOS/QoS ratio
maximizer node. The required extra configuration efforts of
the ROS2 user are as minimal as adding a few extra characters
to the topic to be treated with QoS on the radio. The UFTR

VOLUME 11, 2023 65953



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

node adds an extra 27% load on the CPU with a HD camera
stream, but significantly lower for any control or feedback
topic. We also proposed an AI-agent that can influence the
application layer controller and application execution speed
and resolution to maintain the quality of experience of the
process for the user but reducing the required QoS of ROS2
topics.We also evaluated the NRM in terms of execution time
and showed the tunnel mode of the UFTR can speed up the
network resource adaptation in case of frequent requests for
change.

The proposed method can be extended to further SEAL
functionalities not used in this work, including provisioning,
connection management, device management, user profile
retrieval, identity and key management, location reporting.
It is also possible to integrate other VAL services and
connect with other 3GPP SA6 standards like V2X, EdgeApp,
Uncrewed Aerial Systems. In this paper we utilized the
unicast flow management of SEAL. The TSN and multicast
features of the SEAL NRM functions are good candidates for
further work as well.

ACKNOWLEDGMENT
The author would like to extend his sincere gratitude to his
colleagues József Petö, Áron Szabó, and Gergely Seres for
their invaluable support and insightful discussions throughout
this project.

REFERENCES
[1] (2023). Implementation of the Proposed System. [Online]. Available:

https://github.com/Ericsson/ros2-3gppSA6-mapper
[2] (2023).Demo Video of the Proposed System in Action. [Online]. Available:

https://youtu.be/JXGAHvDSU4o
[3] (2021). The 3rd Generation Partnership Project. [Online]. Available:

https://www.3gpp.org/
[4] 5G System; Network Exposure Function Northbound APIs; Stage

3, document 3GPP TS 29.522, Jun. 2021. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/29_series/29.522/29522-h20.zip

[5] (Jun. 2011). Network Configuration Protocol (NETCONF). [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6241

[6] System Architecture for the 5G System (5GS), document 3GPP TS
23.501, Jun. 2021. [Online]. Available: https://www.3gpp.org/ftp/Specs/
archive/23_series/23.501/23501-h11.zip

[7] Procedures for the 5G System (5GS), document 3GPP TS 23.502,
Jun. 2021. [Online]. Available: https://www.3gpp.org/ftp/Specs/
archive/23_series/23.502/23502-h10.zip

[8] Service Enabler Architecture Layer for Verticals (SEAL);
Functional Architecture and Information Flows, 3GPP TS 23.434,
Jun. 2021. [Online]. Available: https://www.3gpp.org/ftp/Specs/
archive/23_series/23.434/23434-h20.zip

[9] G. Szabó, G. Seres, M. L. Mikecz, M. Hortobágyi, S. Rácz, J. Peto, and
T. Cinkler, ‘‘Assessment of the efficiency of 5G network exposure for the
industrial Internet of Things,’’ in Proc. IEEE Conf. Standards Commun.
Netw. (CSCN), Dec. 2021, pp. 52–58.

[10] 5G-ACIA. (2021). Exposure of 5G Capabilities for Connected
Industries and Automation Applications. [Online]. Available:
https://5g-acia.org/whitepapers/exposure-of-5g-capabilities-for-
connected-industries-and-automation-applications/

[11] A. Karaagac, O. Dobrijevic, D. Schulz, G. Seres, A. Nazari, H. Przybysz,
and J. Sachs, ‘‘Managing 5G non-public networks from industrial
automation systems,’’ inProc. IEEE 19th Int. Conf. Factory Commun. Syst.
(WFCS), Apr. 2023, pp. 1–8.

[12] G. Szabó, S. Rácz, N. Reider, J. Pető, and R. R. Aschoff, ‘‘Quality of
control-aware resource allocation in 5G wireless access networks,’’ in
Proc. IEEE 19th Int. Symp. World Wireless, Mobile Multimedia Netw.
(WoWMoM), Jun. 2018, pp. 1–6.

[13] G. Szabo, J. Peto, L. Nemeth, and A. Vidacs, ‘‘Information gain regulation
in reinforcement learning with the digital twins’ level of realism,’’ in
Proc. IEEE 31st Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.,
Aug./Sep. 2020, pp. 1–7.

[14] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, ‘‘Robot
operating system 2: Design, architecture, and uses in the wild,’’ Sci.
Robot., vol. 7, no. 66, May 2022, Art. no. eabm6074. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

[15] (2021). Ten Agility Aspects in a Closed Loop Control Modelling. [Online].
Available: https://ieee-sa.imeetcentral.com/p/aQAAAAAEz9vp

[16] (May 2023). FastDDS Filtering Data on a Topic. [Online]. Avail-
able: https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/
contentFilteredTopic/createContentFilteredTopic.html

[17] (May 2021). ROS 2 Design, About Quality of Service settings. [Online].
Available: https://docs.ros.org/en/rolling/Concepts/About-Quality-of-
Service-Settings.html

[18] (May 2022). ROS 2 Topic Hz. [Online]. Available: https://docs.
ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-
Topics/Understanding-ROS2-Topics.html#ros2-topic-hz

[19] (May 2022). ROS2, About Topic Statistics. [Online]. Available:
https://docs.ros.org/en/humble/Concepts/About-Topic-Statistics.html

[20] (Oct. 2022).ROS2 Topic Tools. [Online]. Available: https://github.com/ros-
tooling/topic_tools

[21] (Nov. 2022). eProsima Fast DDS Statistics Backend. [Online]. Available:
https://www.eprosima.com/index.php/products-all/tools/eprosima-fast-
dds-statistics-backend

[22] Service Enabler Architecture Layer for Verticals (SEAL);
Application Programming Interface (API) Specification;
Stage 3, 3GPP TS 29.549, Sep. 2022. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/29_series/29.549/29549-h60.zip

[23] 5G Security Assurance Specification (SCAS);Network Data Analytics
Function (NWDAF), 3GPP TS 33.521, Jun. 2022. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/33_series/33.521/33521-h20.zip

[24] (May 2021). Ananya Muddukrishna: ROS2 Design, Unique
Network Flows. [Online]. Available: https://design.ros2.org/articles/
unique_network_flows.html

[25] (May 2021). Support for Unique Network Flows. [Online].
Available: https://docs.ros.org/en/galactic/Releases/Release-Galactic-
Geochelone.html#support-for-unique-network-flows

[26] (Nov. 2022). FastDDS DomainParticipantListener. [Online].
Available: https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_
layer/domain/domainParticipantListener/domainParticipantListener.html

[27] (May 2023). rclcpp: GenericPublisher Class Reference. [Online].
Available: https://docs.ros2.org/galactic/api/rclcpp/classrclcpp_
1_1GenericPublisher.html

[28] (May 2023). rclcpp: GenericSubscription Class Reference. [Online].
Available: https://docs.ros2.org/galactic/api/rclcpp/classrclcpp_
1_1GenericSubscription.html

[29] (May 2022). Turtlesim Package From Ros_Tutorials Repo. [Online].
Available: https://index.ros.org/p/turtlesim/github-ros-ros_tutorials/

[30] Policy and Charging Control Architecture, 3GPP TS 23.203,
Dec. 2021. [Online]. Available: https://www.3gpp.org/ftp/Specs/
archive/23_series/23.203/23203-h20.zip

[31] (Jan. 2023). ROS2 Quality of Service Demo. [Online]. Available: https:
//github.com/ros2/demos/blob/master/quality_of_service_demo/rclpy/
quality_of_service_demo_py/liveliness.py

[32] (Oct. 2022). Using Fast DDS Discovery Server as Discovery
Protocol. [Online]. Available: https://docs.ros.org/en/humble/
Tutorials/Advanced/Discovery-Server/Discovery-Server.html

[33] A. Downs, Z. Kootbally, W. Harrison, P. Pilliptchak, B. Antonishek,
M. Aksu, C. Schlenoff, and S. K. Gupta, ‘‘Assessing industrial robot agility
through international competitions,’’ Robot. Comput.-Integr. Manuf.,
vol. 70, Aug. 2021, Art. no. 102113.

[34] P.800.1: Mean Opinion Score (MOS) Terminology. Accessed: Dec. 2022.
[Online]. Available: https://www.itu.int/rec/T-REC-P.800.1-200303-S/en

[35] D. Minovski, C. Åhlund, K. Mitra, and P. Johansson, ‘‘Analysis and
estimation of video QoE in wireless cellular networks using machine
learning,’’ in Proc. 11th Int. Conf. Quality Multimedia Exp. (QoMEX),
Jun. 2019, pp. 1–6.

[36] M. Eckert, T. M. Knoll, and F. Schlegel, ‘‘Advanced MOS calculation
for network based QoE estimation of TCP streamed video services,’’ in
Proc. 7th Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Dec. 2013,
pp. 1–9.

65954 VOLUME 11, 2023



G. Szabó: Toward the Automatic Network Resource Management of Robot Operating System

[37] Transparent End-to-End Packet-Switched Streaming Service (PSS); Pro-
gressive Download and Dynamic Adaptive Streaming Over HTTP (3GP-
DASH), document 3GPP TS 26.247, Jun. 2022. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/26_series/26.247/26247-h10.zip

[38] (May 2022).ROS2, Recording and Playing BackData. [Online]. Available:
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-
And-Playing-Back-Data/Recording-And-Playing-Back-Data.html

[39] (Nov. 2022). Chronyc. [Online]. Available: https://chrony.tuxfamily.
org/index.html

[40] Network Time Protocol Version 4: Protocol and Algorithms Specification,
document RFC 5905, Jun. 2010. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc5905

[41] New Terminology and Clarifications for Diffserv, RFC 3260, Apr. 2002.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc3260

[42] G. Szabo, S. Racz, S. Malomsoky, and A. Bolle, ‘‘Potential gains of
reactive video QoE enhancement by app agnostic QoE deduction,’’ inProc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[43] (Oct. 2020). Diffserv to QCI Mapping, Expired Internet-Draft (Indi-
vidual). [Online]. Available: https://datatracker.ietf.org/doc/draft-henry-
tsvwg-diffserv-to-qci/

[44] (Aug. 2020). Transport Priority QoS Policy to Solve IP Flow
Ambiguity While Requesting 5G Network QoS. [Online]. Available:
https://discourse.ros.org/t/transport-priority-qos-policy-to-solve-ip-flow-
ambiguity-while-requesting-5g-network-qos/15332

[45] (Nov. 2020). External Configurability of QoS Policies. [Online]. Available:
http://design.ros2.org/articles/qos_configurability.html

[46] (Nov. 2022). QoS Overriding Options in Rclpy. [Online]. Available:
https://github.com/ros2/rclpy/blob/rolling/rclpy/rclpy/qos_overriding_
options.py

[47] (Jan. 2023). ROS2Executors. [Online]. Available: https://docs.ros.
org/en/rolling/Concepts/About-Executors.html

[48] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez,
K. Goldberg, and I. Stoica, ‘‘RLLib: A composable and scalable reinforce-
ment learning library,’’ 2017, arXiv:1712.09381.

[49] (Dec. 2022). External Agents and Applications. [Online]. Available:
https://docs.ray.io/en/latest/rllib/rllib-env.html#external-agents-and-
applications

[50] (Dec. 2022). Specifying Rollout Workers. [Online]. Available:
https://docs.ray.io/en/latest/rllib/rllib-training.html

[51] (Nov. 2022). Perf: Linux Profiling With Performance Counters. [Online].
Available: https://perf.wiki.kernel.org/index.php/Main_Page

[52] (Nov. 2022). Using Quality-of-Service Settings for Lossy Networks.
[Online]. Available: https://docs.ros.org/en/humble/Tutorials/Demos/
Quality-of-Service.html

[53] (Feb. 2021). eProsima Fast DDS: From Shared Memory to ZERO
COPY. [Online]. Available: https://discourse.ros.org/t/eprosima
-fast-dds-from-shared-memory-to-zero-copy/18877

[54] (Oct. 2022). FastDDS Shared Memory Transport. [Online].
Available: https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/
shared_memory/shared_memory.html

[55] (Nov. 2022). FastDDS Data-Sharing Delivery. [Online]. Available: https:
//fast-dds.docs.eprosima.com/en/latest/fastdds/transport/datasharing.html

[56] (Nov. 2022). FastDDS Zero-Copy Communication. [Online].
Available: https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/
zero_copy/zero_copy.html#

[57] (Feb. 2021). Fast DDS V2.2.0 Latency Performance. [Online]. Available:
https://discourse.ros.org/t/fast-dds-v2-2-0-latency-performance/18989

[58] (Mar. 2021). Fast DDS V2.2.0 Throughput Performance. [Online]. Avail-
able: https://discourse.ros.org/t/fast-dds-v2-2-0-throughput-performance/
19218/1

[59] (Nov. 2022). RLlib: Industry-Grade Reinforcement Learning With
TF and Torch. [Online]. Available: https://github.com/ray-project/
ray/tree/master/rllib

GÉZA SZABÓ (Senior Member, IEEE) joined
Ericsson Research as an undergraduate student in
2005. He wrote the M.Sc. thesis about comparing
various application traffic classification methods
in 2006. He holds a Ph.D. degree in informatics
since 2011. Since 2017, he works in the field
of Industrial 4.0 and evolves robot cells into
cyber-physical production systems via the help
of 5G and AI. He was a delegate in 3GPP SA6
in 2021-2022 and the vice-chair of IEEE P2940
standardization group.

VOLUME 11, 2023 65955


