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ABSTRACT Rock burst is a sudden disaster that is influenced by various factors. Accurately identifying
and predicting rock burst risks is of great significance for improving mine safety. In order to improve the
accuracy of rock burst prediction from the perspective of data structure, this paper constructs a two-level
prediction model based on six rock burst features. The first-level model uses Box-Cox, Yeo-Johnson, and
uniform transformations for data scaling and extends the data using the CTGAN architecture, followed
by feature dimension optimization. The second-level model uses the K-Means algorithm to reconstruct
labels and enhance inter-class differences, and visualizes clustering effects using ISOMAP. At the algorithm
optimization level, an ensemble model stacked with 8 algorithms and a deep forest are used for prediction.
The results show that data transformation, increasing model complexity, and appropriate feature expansion
can effectively improve prediction accuracy. The single model achieved a maximum accuracy of 81.25%,
and the established two-level model outperformed a single machine learning method, with an accuracy
improvement of 17.3%. Feature dimension optimization had the highest accuracy improvement of 6.3%.
Through comparison, it was found that the deep forest has a prediction accuracy of 98.6%, which is superior
to other models such as Gradient Boosting and Multilayer Perceptron. In addition, the SHAP value and
7 evaluation indicators were used to evaluate the model and further explain the prediction results. The
proposed two-level rock burst prediction model provides a certain reference value for accurately predicting
rock bursts.

INDEX TERMS Rock burst, two-level prediction model, Yeo-Johnson, Box-Cox, uniform transformation,
CTGAN, K-means, ISOMAP, deep forest, SHAP value.

I. INTRODUCTION

Rockburst is a common sudden disaster, manifested by the
spalling, ejection, and large deformation of the underground
space structure and accompanied by damage noise, in the
deep engineering excavation process, mostly occurring in
high-stress areas [1], [2]. It is generally believed that the
rock’s high strength and the fact that it is harder, brittle,
and more elastic are the main causes of the rock explosion
phenomenon [3]. As the rock is disturbed, causing the
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original rock stress to be redistributed to form a stress
concentration region, the elastic strain energy accumulated
inside the rock is rapidly released, causing the deep space
near the high-stress region to be dynamically unstable,
resulting in a rock burst [4], [5], [6]. This has caused
great damage to countries and regions including the USA,
South Africa, Germany, Canada, and China [7], [8]. Rock
explosions have become a major challenge threatening the
safety of underground spaces [9], [10], [11], and advanced
identification, risk prediction, and evaluation are major
requirements to risk prediction and evaluation are major
requirements to ensure the safety of personnel and equipment.
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Most of the traditional means of rockburst prediction are
based on physical methods that analyze the mechanistic
properties [12], [13] and many scholars have used the
physical properties of rocks to characterize the rupture
evolution of rocks to achieve control over rockburst. Pre-
viously, Zhao et al. [14] experimentally explored changes in
the rockburst propensity index in a coal-rock complex and
applied DHPB to structurally realize the energy transfer of
a rockburst to reduce high-stress accumulation. Moreover,
Wang et al. [15] experimentally explored the deformation
characteristics of granite combined with the acoustic emis-
sion characteristic index to construct a prediction model
to reveal the rock crack expansion law during a rock-
burst. Liu et al. [16] revealed the microscopic evolution
of self-potential (SP) by studying the internal electrical
point discharge characteristics of the rock damage process.
Jiang et al. [17] used a microseismic detection system (MS) to
study the mining stress rock fracture.Pattern and fracture zone
distance of a strong impact on a coal seam when subjected to
mining stress near the coal seam, which plays a role in coal
mine waterproofing, as based on the MS visualization results.

However, due to the complex characterization indicators
and numerous features associated with rock bursts, as well
as the highly nonlinear relationships between potential
triggering factors, traditional prediction methods based
on mechanism properties are unable to provide reliable
prediction accuracy [18]. Moreover, a general understanding
of the mechanism behind rock burst occurrences has yet to be
established.

In recent years, with the development of artificial intel-
ligence, intelligent algorithms have facilitated solutions to
rock blast problems [19], and machine learning and deep
learning have been widely used in engineering application
scenarios, such as signal recognition processing, anomaly
detection, image processing, digital modeling, long- and
short-term rock blast prediction, and hazard evaluation.
Yang et al. [20] used the K-mean algorithm to identify
and detect weak tectonic signals to characterize six types
of non-tectonic source noise field signals. Wang et al. [21]
utilized deep learning network frameworks to recognize
and process precursor time series signals of rockburst,
thus intelligently capturing hazard information for rockburst
prevention. Li et al. [22] used fully convolutional neural
networks to construct 3D mathematical models of CT
(Computed Tomography) images and reconstructed metrics
such as mean curvature and porosity to compare the accuracy
of the constructed models from a microscopic perspective,
and the advent of these methods has largely reduced the
“empirical threshold”” and made the decision-making process
more scientific.

In terms of rock burst prediction, machine learning
(as shown in Figure 1) has strong capabilities in dealing
with nonlinear problems [23], [24], relying on data-driven
methods to make autonomous decisions about classification
boundaries [25]. Scholars have used machine learning
algorithms to develop prediction methods in order to obtain
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FIGURE 1. Machine learning foundation classification chart.

the best prediction models. Zhou et al. [26] compared ten
single-model supervised learning methods and selected the
best prediction model based on different metrics. In addition,
the ensemble strategy of combining multiple basic algorithm
models has been increasingly applied to rock burst prediction.
Li et al. [27], [28] constructed an ensemble learning
framework based on models such as random forests and
gradient boosting, using three combination methods: voting,
stacking, and bagging, all of which showed better prediction
results than single models. They also applied the deep forest
model, which combines the characteristics of deep learning
and ensemble models, to rock burst prediction, achieving
even more outstanding prediction capabilities. Although
scholars have made certain achievements in using machine
learning methods to study rock burst prediction, there are still
many problems in this area:

1) Data level: Machine learning algorithms are highly
dependent on data, but there are many challenges in collecting
and organizing data for rockburst prediction in practical
scenarios, such as difficulties in data acquisition, data
missing, poor data quality, imbalanced data types, and limited
precursor information parameters under different working
conditions, leading to poor performance of machine learning
algorithms in prediction.

2) Model level: The improvement of prediction perfor-
mance depends on model complexity and hyperparameter
selection. Machine learning algorithms often rely on expe-
rience and require a large amount of computing resources
to optimize parameters. The prediction results brought by
different algorithm combination strategies are difficult to
control, which brings great challenges to the application of
algorithms.

3) Algorithm level: Different decision-making logic of
machine learning algorithms affects the accuracy, speed,
stability, and interpretability of machine learning decisions.
Different algorithms have different sensitivity to data, which
may cause problems of accuracy reduction during training.

4) Interpretability level: Machine learning algorithms have
black box characteristics and are difficult to interpret. The
prediction process and results are difficult to visualize, so the
discrimination mechanism inside the model is not clear
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enough, affecting the credibility and reliability of the model
application.

In summary, this paper builds upon previous research
to investigate long-term prediction of rockburst. Through
literature analysis, 300 sets of original rockburst data were
collected, containing six sets of rockburst characteristics.
To address the dependency of machine learning algorithms
on data, which can affect the final prediction results, three
non-linear transformation methods and the CTGAN [29]
(Conditional Tabular GAN) architecture were selected to
construct five data sets at the data level, addressing the issue
of inter-class dispersion and the presence of outliers in the
original data. In addition, the rockburst characteristics were
extended at the feature level by constructing a secondary
model to increase model complexity. The prediction model’s
accuracy, precision, F1 score, recall rate, and other metrics
were evaluated. To address the issue of model interpretability,
the SHAP (Shapley Additive Explanations) explainer was
used to explain the model’s decision logic. The findings of
this study enrich the results of rockburst prediction and pro-
vide useful guidance for practical engineering applications.

Il. ALGORITHMIC FRAMEWORK AND UNDERLYING
THEORY

A. NONLINEAR TRANSFORMATIONS

The appropriate replacement or removal of outliers will
enhance data consistency but, from the perspective of the
structure of the data, will interfere with the objective
distribution of the data, causing a loss of feature information.
The appropriate introduction of noise can enhance model
robustness [30]. In this study, three nonlinear mapping meth-
ods were used to improve the data structure by reasonably
deflating the data, the original data information is shown in
Table 2.

Since original data often have long-tailed features and
cluttered stacking, distribution features generally lack signif-
icant features, reducing the performance of many machine
learning predictions and slowing down the convergence
of gradient-based learners, and the normal nature of the
probability distribution helps to improve the performance of
the classifiers [31].

The Yeo-Johnson algorithm [32], Box-Cox transformation,
and quantile uniform distribution mapping are commonly
used nonlinear transformation methods to map data to a
Gaussian distribution, reduce the heteroscedasticity of data
features, minimize bias, and improve the normality of data.
Among them, the quantile uniform distribution mapping
method (Equation 1) can smooth out anomalous distributions,
correct skewness and kurtosis, and is more robust, which
can reduce the impact of outliers on the results by mapping
the data according to the cumulative probability density
function. The Box-Cox transformation is a generalized power
transformation method (Equation 2), which can be adjusted
by the parameter lambda to improve the normality and
homoscedasticity of the data. The Yeo-Johnson algorithm
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(Equation 3) introduces an offset parameter based on the Box-
Cox transformation, which can handle positive and negative
numerical values and zero values. The lambda values in the
latter two transformations can be determined by maximizing
the likelihood function, making the transformed data more
consistent with the assumption of normal distribution.

0 else
f(x)zil/(b—a)ifasxgb )

wherea,b denote boundary value, f (x) represents the proba-
bility density function of a uniform distribution.

y_[{xk—l}/x ifA #0

log (x) ifA=0 @

where A is the transformation parameter and x is the original
dependent variable.

{A+y)*—1}/p ifr #0520
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where y; is the feature data, A is a tunable parameter.

B. CONDITIONAL TABULAR GAN

Conditional Tabular GAN (CTGAN) [33] is a type of
generative adversarial network used to generate synthetic data
with a similar structure to a given dataset. Its main principle is
to use the conditional GAN approach to learn the underlying
distribution of the original dataset and then generate synthetic
data based on that distribution. The generator of CTGAN
consists of two sub-networks, an embedding network to
learn the distribution and patterns of the input data, and
a generator network to transform the learned embedding
into synthetic data. During the learning process, CTGAN
introduces a conditioning mechanism to use conditional
attributes to generate synthetic data, ensuring consistency
between the generated data and the original data on the
conditional attributes.

The goal of CTGAN is to minimize the GAN loss function,
which includes the losses of the generator and discriminator.
The generator loss measures the degree to which the generator
misleads the discriminator, while the discriminator loss
measures the degree of difference between the generated data
and the original data. Through iterative training, the generator
of CTGAN gradually learns the distribution and features of
the data and generates synthetic data, while the discriminator
gradually learns the features of the data and makes more
accurate judgments of the generated data.

In addition, CTGAN uses the cross-entropy between the
conditional vector and the new sample as the loss term
and adds the PacGAN [34] (Progressive Attentional Context
GAN)
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FIGURE 2. CTGAN schematic.

discriminator architecture to improve pattern stability and
data quality. The CTGAN model is shown in Figure 2, and
the key steps of the algorithm implementation are as follows:

1) The generator of CTGAN uses maximum likelihood
estimation as the loss function, where the similarity between
the samples generated by the generator and the original
dataset is measured by the KL divergence. The formula for
the loss function is:

IRRS P, (xHl P(JI 4
—N;]; m(x,»)ogpd(p )

where N is the batch size, M is the number of features, Pm(x]? )

is the probability of the generator generating the sample xJ’-'
under the current condition, and Pd(xjf) is the probability of
XJl in the original dataset.

2) The discriminator’s loss function uses binary cross-
entropy, and the calculation formula for the loss function is:

1 N
— 2 llogD (i) +1og (1 =D (G @] (5)
i=1

where x; is a real sample from the original data set, z; is a
random vector from the noise distribution, G (z;) is a sample
generated by the generator using z; as a condition, and D (x;)
and D (G (z;)) are the discrimination probabilities of the
discriminator for x; and G (z;), respectively.

3) CTGAN uses a neural network to generate the
conditional vector, which takes the original dataset as input
and outputs a vector used as a condition for both the generator
and the discriminator.

C. ISOMETRIC MAPPING

ISOMAP [35] (Isometric Mapping) is a nonlinear manifold
learning algorithm that finds its low-dimensional embed-
ding for a given high-dimensional manifold so that the
nearest-neighbor structure on the high-dimensional manifold
is maintained in the low dimension, uses the minimum path
approximation geodesic distance to characterize the data
point spacing, and the essential dimensionality of the implied
low-dimensional embedding is determined by the residual
variance to ensure the stability and global optimality of the
results, which is achieved as follows:
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1) Construct a distance matrix for the points in the high-
dimensional space, keeping the points at a distance of their
k-neighborhood, and treating the other points as infinity.

2) Calculate the shortest path between point pairs, i.e.,
for all point pairs i—j, find the shorter path i—k—j for
substitution, which is expressed as follows:

dij = diy + djj (6)

where the above equation is satisfied when dj; > di + dy;,

k is the intermediate node.

3) The reconstructed distance matrix is combined with the
MDS (Multidimensional Scaling) algorithm for dimensional-
ity reduction, the correlation matrix B of the reduced vector
Z is calculated, and eigenvalue decomposition is performed
to obtain a larger number of eigenvalues and eigenvectors to
obtain Z.

bij = ——(dz——Zdz——Zd

B=UAUT = (Az UT) (Af UT) —777 8)

ZZ ANC)

1lj_

where U denotes the eigenvector, A denotes the eigenvalue,
b;j denotes the element in the intercorrelation matrix B, and
d;j denotes the ISOMAP distance metric.

D. K-MEANS CLUSTERING ALGORITHM
Clustering is a process of dividing a dataset into different
clusters according to specific criteria, making sure that the
data points within the same cluster have high similarity and
the clusters are separated by distinct boundaries. K-Means is
a classic unsupervised clustering algorithm. When using the
K-Means clustering algorithm, the first step is to determine
the number of clusters. Then, K initial centroids are randomly
chosen, and each data point is assigned to the cluster whose
centroid is the closest. After that, the centroids of each cluster
are recalculated, and the process is iterated until a certain
number of iterations or when the assignment of the data points
to clusters no longer changes. The steps are as follows:

1) Randomly select k centers and mark: ,u(l ), ,u(o) R [,L]((O),
k=0,1,2,.

2) Define the loss function:

J(c,pn) = mmz i — we; 2 ©)

where x; represents the ith sample, ¢; represents the cluster to
which x; belongs, ., represents the center of mass, and M
represents the total number of samples.

3) Assign the nearest center to x; and iterate:

< —argmin |x; — p, 2 (10)
4) Iterate over the class center k:
+1 . b

M;{t )< —argmin,, Zc':k llxi — el (11)

where r=0,1,2, ...
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FIGURE 3. Stacking schematic.

E. INTEGRATED STACKING

The upper prediction limit of a single model is often
difficult to improve further, and the dependence of a single
model on features affects the prediction accuracy. The base
combiner and learning combiner methods are the two core
methods of model fusion. The accuracy of the model can
be further improved by adjusting the model weights and
fusing multiple learner models for weighted optimization,
such as through stacking, model blending, and cascade
optimization.

Layer-by-layer processing, feature variation within the
model, and model complexity determine the integrated
learning effect. The stochastic nature of the integrated
learning [36] framework effectively improves the training
effect by rotating the feature space [37], and stacking [27]
is an important method for improving prediction scores in
integrated learning. The principle of stacking is shown in
Figure 3. The steps are:

1) The primary trainer first splits the training set into folds,
assembles multiple classifiers for feature extraction, selects
a five-fold cross-validation for data normalization, sets the
model parameter pool using a grid search method to output
the best parameters for each base model, and outputs the sub-
validation set.

2) Secondly, the output of the primary trainer is imported
into the secondary regression model trainer, and the combined
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sub-validation sets are averaged to output the hierarchical
prediction results.

F. DEEP FOREST

Deep learning frameworks are mostly built on neural net-
works with multi-layer parameterized differentiable nonlin-
ear modules, which outperform traditional machine learning
in terms of classification and regression performance and
applicability and have sufficient model complexity, usually
leading to good prediction results. However, they rely on
hyperparameter tuning and do not apply to small-scale
datasets. The deep forest model [38], a non-neural network-
based supervised integrated learning model with a cascade
structure, can adaptively adjust the network structure for
feature learning through the forest, reevaluate the K-fold
cross-validation dataset at each layer, and automate the iter-
ative training network layers to avoid the risk of overfitting,
as shown in Figure 4. The steps are as follows:

1) To enhance model generalization, two CRF (Completely
Random Forest) and RF (Random Forest) structures are
selected for each layer to learn information about the input
feature vectors.

2) The decision process involves feeding the samples into
the deep forest, which obtains a d-dimensional class vector at
the leaf nodes, representing the probability distribution of the
samples belonging to different categories. Then, all the mean
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FIGURE 4. Deep forest schematic.

TABLE 1. Interpretation of the meaning of selected indicators.

Rock blast classification guidelines

Rockburst indicators Indicates meaning

None(I) Light(1) Moderate(I1I) Strong(IV)
the maximum tangential stress of
0o (MTS) the surrounding rock, MPa 0-24.0 24.0-60.0 60.0-126.0 126.0-200.0
the uniaxial compressive strength
o.(UCS) of the rock, MPa 0-80.0 80.0-120.0 120.0-180.0 180.0-320.0
o the uniaxial tensile strength of the 0-5.0 5070 70-9.0 9.0-30.0
t rock, MPa : o o R
W (EEID) rock elastic strain energy index 0-2.0 2.0-3.5 3.5-5.0 5.0-6.5
SCF (ng P 9o/0c) rock stress coefficient 0.1-03 0.3-0.5 0.5-0.7 0.7-0.9
Bi(By ngc/ o) or rock brittleness coefficient 40.0-53.0 26.7-40.0 14.5-26.7 0-14.5

class vectors for each category are concatenated to form a
4d-dimensional vector, and all the vectors are concatenated
to form a k x 4d-dimensional matrix. The category with the
highest score in the k-dimensional vector is taken as the final
prediction result for each sample.

G. DATA BINNING

Data binning can optimize the data structure, reduce the
risk of model overfitting, speed up training, and be more
robust with outliers, which is necessary for certain logistic
regression models (e.g., LR, Logistic Regression, etc.). For
the discrete features, similar features can be merged and
ordered numerically through the binning operation. In this
paper, we use an unsupervised approach to equifrequency
discrete binning of features, calculate the quantile, and map
the data to the quantile bins.

Ill. TWO-LEVEL PREDICTIVE MODEL CONSTRUCTION

A. ROCKBURST FEATURE EXTRACTION

The precursory process of rock explosion is often accompa-
nied by changes in the mechanical parameters of the rock, and
the accumulated elastic deformation energy of brittle rocks in
the high stress zone is released instantaneously. In addition
to this, on the basis of defining the material and structural
damage of rocks under high stress, there is a division into

71958

dynamic superposition, deep high static load loading, and
deep high static load unloading rockbursts. Rock bursts are
therefore closely related to the mechanical properties of the
rock, the state of the energy deposit, and the properties of the
rock itself.

In this paper, based on rockburst characteristics in relation
to intensity, six rockburst indicators are selected based on
the meta-literature example study method. Depending on the
source of the data, the rockbursts are classified into four
categories: None, Light, Medium, and Strong, according to
the classification of rockburst intensity. The results of the
rockburst feature selection and classification basis are shown
in Table 1.

B. FIRST-LEVEL MODEL BUILDING

The first level model of rockburst data (Figure 5) is
established by collecting real rockburst data through meta
literature analysis method in the data preparation stage,
followed by the Box-Cox transform, Yeo-Johnson power
transform, uniform transform, and CTGAN framework in the
data pre-processing stage. After that, the dataset combined
with different nonlinear transformations and extensions is
split according to a 30% test set and a 70% training set. The
training process starts with KNN (K-Nearest Neighbor) and
CatBoost (Categorical Boosting) for prediction using a grid
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FIGURE 5. First-level model flowchart.

search approach and a 5-fold cross-validation strategy for
parameter optimization and overfitting prevention, followed
by optimization at the RockBurst feature level to find the opti-
mal solution by increasing the number of feature dimensions.
Finally, the two-stage stacking model is introduced.

C. SECONDARY MODEL BUILDING

The rockburst secondary modeling (Figure 6) process uses
the K-Means algorithm to reduce intra-class variability in the
Yeo-Johnson-CTGAN dataset, while the clustering results are
visualized using ISOMAP and PCA (Principal Component
Analysis) dimensionality reduction. The classification deci-
sion process of the K-Means algorithm is visualized through
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the KElbowVisualizer tool. Finally, the prediction results
of deep forest, integrated stacking, and a single model are
compared.

D. MODEL EVALUATION STRATEGIES

To improve the accuracy of rockburst prediction, this study
has established a two-level modeling process. For the
first-level model, the focus is on data structure transforma-
tion. To highlight the transformation effect, five datasets
were constructed, including the original dataset, Uniform
Transformation-CTGAN, Box-Cox-CTGAN, Yeo-Johnson-
CTGAN, and Yeo-Johnson-Smote. KNN and CatBoost
base models were used for preliminary prediction in the
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verification and evaluation process, with Precision, Recall,
FPR, F1 score, and overall accuracy selected as prediction
evaluation indicators. Confusion matrix and ROC curve
were analyzed. Then, the feasibility of expanding the model
prediction effect at the feature level was explored through
polynomial derivation, and the necessity of establishing a
second-level prediction model was verified through feature
decision analysis using shap graphs.

The second-level prediction model considered the actual
engineering application scenario and mainly worked on
model optimization. By reconstructing the classification
labels of the data, the model complexity was increased and
the prediction accuracy was improved. The effectiveness of
the second-level model established in this study was verified
through comparison with the base model and the integrated
model.

IV. RESULTS AND DISCUSSION

A. DATA SOURCES AND PROCESSING

1) DATA COLLECTION

Rockburst data were collected using a literature analysis [39]
approach, with WOS (Web of Science), CSCD (Chinese
Science Citation Database), EI (Engineering Village), and
other databases featuring, chosen as the data source, subject
terms limited to rockburst prediction, machine learning, etc.
for precise retrieval. A total of 105 relevant papers were
retrieved, collecting both Chinese and foreign research results
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TABLE 2. Original data information.

0o(MPa) o.(MPa) o(MPa) SCF B W,

Max 29780 30420 2260 487 80.00 30.00
Min 2.60 20.00 130 010 0.5 081
Mean  58.72 115.24 7.09 057 2093  5.05
Std 50.65 44.89 4.15 061 1322 385

Cov 0.86 0.39 0.58 108 063 076

Note: 'Std' tabulates the standard deviation of each column, 'Cov' indicates
the coefficient of variation (C, = d/u, ¢ indicates the standard deviation,

u indicates the mean).

TABLE 3. Information on collected rockburst data.

Input Parameters Data selection Reference

0%, O O, Wer 129 Dong et al. [40]
09, Oc, O, Wer, H 85 Zhang et al. [41]
0y, ¢, O, Wey, 09/ 0¢, 0./ 0¢ 44 Zhou et al. [26]
g, Oc, O, Wer, 09 /0, O/ 0% 15 Xue et al. [42]
06, 0c) O, Wer, 0/ 0c, 0c/ 0t 52 Pu et al. [43]
09, Oc, Or, Wer, 09 /0, 0/ 0t 29 Liu et al. [44]
09, Oc, O, Wer, 09/ 0, ¢/ 04, B, 37 Jia et al. [45]
09, 0¢, Ot Wet Ue/UC' Jc/Utv B, 45 Wu et al. [9]
0, O¢, O, Wey, 09/ 0¢, 0./ 0y, B, 41 Xue et al. [46]
09, 0¢, Oy, Wer, 0 /0, 0. /00, H 37 Wang et al. [47]

Note: B,(B, = (0. — 0v)/(0. + 0y)) indicates rock brittleness index; H
indicates depth.

from different engineering backgrounds and evaluation
indexes. Overall, 25 duplicate papers and 11 review-type
articles were excluded as they did not contain the required
terms, and 59 articles were excluded after a close reading
of their abstracts, technical backgrounds, and methods used.
Finally, 10 papers were selected as the final research objects
in terms of data accessibility (see Figure 5 for the screening
process). These data were derived from real engineering cases
(hydropower station caverns, mines, and tunnels) and so the
authenticity can be guaranteed.

A total of 514 case studies with corresponding data were
collected from the literature (Table 3), while considering that
some of the data would have had missing values [40], [41]
if interpolation and partial elimination methods had been
used. As this would have introduced bias to the original
features of the data set, leading to the problem of order
imbalance between regions, these incomplete data samples
were eliminated in this paper. The final 300 sets of
complete data were obtained. The maximum, minimum,
mean, standard deviation, and coefficient of variation within
the original data characteristics are shown in Table?2.

Nonlinear transfer 300 raw rockburst classification records
collected had six characteristics (Table 1), which were classi-
fied into four categories based on rockburst intensity: None,
Light, Moderate, and Strong, with a ratio of 1.4:2.7:4.0:1.9,
respectively (Figure 7). It can be seen that the data are in a
skewed state, the I class samples and III class samples have
large differences in the number of samples while the I class
sample data feature less.
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FIGURE 7. Raw rockburst data proportion of each grade.

The data distributions of the two original features (maxi-
mum and minimum cov) are illustrated in Figure 8(a), which
shows that outliers are prevalent in the features and that the
data distributions are characterized by skewed fronts and
long-tailed distributions. In addition to this, by calculating
the Pearson correlation coefficient (pcc) between the features,
it can be seen that there is a strong correlation between SCF
and oy (pcc= 0.9), We, 09 (pcc= 0.47), o1, o (pcc= 0.48)
and Bj, o. (pcc= 0.63) had a strong correlation between
them. It is therefore necessary to perform a non-linear
transformation of the raw data to reduce the interference of
outliers.

2) NONLINEAR TRANSFORMATIONS

The data set after the initial sieving does not contain missing
values and does not require deletion and filling operations;
each feature column has the same amount of data; there are no
large outliers or duplicate data; and the data integrity is good.
The rockburst classification data are numerically processed,
and the rockburst intensities of None, Light, Moderate, and
Strong correspond to the classification values (0, 1, 2, 3),
respectively.

The process of data collection will result in outliers
due to random errors, human errors, and variances in the
original data. To fit the original dataset, one is used to
divide the dataset into different groups, and another is
used to build a low-rank approximation of the covariance
matrix based on the induced variables [31]. Gou et al. [3]
plotted box line plots to scale outliers within the median
and interquartile range. Yin et al. [1] visualized outliers
using data dimensionality reduction algorithms, such as the
local outlier factor (LOF), and replaced the outliers with
expectation maximization (EM).To highlight the effect of the
transformation, the feature of o. (cov=0.39) with a smaller
Coefficient of Variation (cov) and the larger feature of SCF
(cov=1.08) were selected to construct the data distribution
and compared with the above nonlinear transformation
results, Figure 8 represents the comparison between the
transformed results and the original data: (a), (b), (c), and (d)
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are represented as the Box-Cox mapping of the original data,
the Yeo-Johnson power transformation, the histogram of the
frequency distribution of the uniformly distributed feature o,
with SCF, the Q-Q plot, and the scatter plot of the distribution
between the two features, respectively.

To quantify the distribution of the data after the transfor-
mation introduced Skewness (Skew), measure the asymmetry
of the probability distribution of the random variables and
the size of the value indicates the degree of skewness
within the normal distribution. Kurtosis (BK) indicates the
characteristic number of the peak height of the probability
density distribution curve at the mean, a statistic describing
the steepness of the distribution pattern of all the values taken.
The data set with a high peak tends to have heavy-tailed
distribution characteristics or outliers, and the formula is as

follows:
1< (X -\t
Kurt = — ( ! M)
n = o

_1 ~ Xi—nu 3
Skew—ZZ( - ) (12)

where p denotes the mean value and o is the standard
deviation.

A quantile-quantile plot (Q-Q plot) was used to visualize
the normal distributivity of the features, with the horizontal
axis indicating the actual data and the vertical axis indicating
the quantile of the assumed normal data. Normality analysis
of the data after several transformations, with the raw data in
(a) Skew, the BK of 0. and SCF are (170, 1.01), (0.53, 20.46),
respectively. A very poor SCF normality was observed, and
the outliers on the scatter plot were mainly concentrated on
this feature.

In (a), the original data have long-tailed data distribution
characteristics due to the presence of sparse data that may be
subjectively considered outliers. The poor data peak of the
SCF normality state skewed the normal distribution.

From (b) and (c), it can be seen that the normality is
substantially improved after the Box-Cox and Yeo-Johnson
transformations, and Skew and BK are substantially reduced.
When comparing the results of the effects of the two
treatments on the data, they are not very different.

(d) After uniform transformation, the data are uniformly
distributed in the interval [0, 1]. The o, and Skew of SCF are
slightly reduced compared to the above two transformations,
but BK is slightly increased, and the kurtosis value of both
features after uniform transformation is - 1.2. The kurtosis is
flat and the same.

The 0-1 distribution (Equation 2) distorts the correlation
and distance between and within the features, while the
power transformation method arbitrarily maps distributions
to locations close to the Gaussian distribution for different
data sets. Examining the scatter plot shows that all three
transformations narrow the gap between the outliers and the
aggregated region and reduce the interference of the outliers,
and the original Skew changes significantly after the three
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FIGURE 8. Non-linear transformed data distribution comparison chart.

transformations. The variability with the normal distribution
is greatly reduced, and the Q-Q plot reveals that the three
transformations have the greatest impact on the SCF', and the
normality of the characteristic distribution is corrected.

3) BIAS DATA PROCESSING

False accuracy is caused when the data set is skewed toward a
certain classification result, and it is difficult to determine the
distribution of the minority class data due to the limited data
information contained in the minority classification sample,
resulting in a low recognition rate [1]. There are two main
approaches to addressing this issue, as follows:

Data approaches, such as k-means and SVM resam-
pling methods based on the Smote algorithm, the fusion
of Bayesian posterior probability and distribution density
processing categories overlap downsampling methods com-
bined with up-sampling denoising, a multi-model fusion of
integrated sampling methods, etc.

Algorithmic approaches, which consider the difference in
the cost of different misclassification cases for optimization,
e.g., based on cost-sensitive learning algorithms such as
meta-learning process and using insensitive algorithmic
models such as CatBoost, RF, etc.

For the biased data structure of this paper, an oversampling
technique that generates new data is more appropriate.
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Smote, which is based on the concept of generative clusters,
is the classic oversampling algorithm [48] for handling class-
imbalanced data, but the newly generated data samples
are based within the range of the native data samples;
therefore, the generalization ability is poor. The GAN
model learns data distribution through an adversarial training
process but has weak performance concerning distributed
modeling; therefore, this paper uses the improved model
CTGAN [29] to generate new sample data to cope with dif-
ferent real data distributions and solve the sample imbalance
problem.

The new dataset consists of 499 sets of data, including
144 sets of native test samples and 355 sets of hybrid training
samples. To highlight the model performance of CTGAN,
the Yeo-Johnson transformed data are Smote oversampled to
generate 332 sets of hybrid training samples, and 144 sets of
native test samples are retained for model comparison.

Figure 9 compares the data distributions of the three
single-feature variables, with the x-axis indicating the data
distribution interval and the y-axis indicating the frequency of
the variable distribution. The data distributions generated in
both ways are similar to the original distributions. Similarity
analysis of univariate kernel density functions: the KL
scatter was applied to compare the expectation of the log
difference between the original and approximate distribution
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FIGURE 9. CTGAN, smote data distribution comparison.

TABLE 4. Model evaluation indexes.

Evaluation Metrics Meaning and expression

Precision TP /(TP + FP)
FPR (False Positive Rate) FP / (FP + TN)
Recall TP /(TP + FN)
F1 Score P*Recall*2/ (P + Recall)
Accuracy (TP + TN) /(TP + TN + FP + FN)

Note: TP means the true case, FN means positive case predicted to be the
negative case; FP means negative case predicted to be the positive case;

and TN means a true negative case.

probabilities. Smote and CTGAN calculated the KL scatter
values of 44.95 and 13.21, respectively, as follows:

N P (i)
Dir(PI|Q) = Q. p(@)In (—) (13)
Zl Q (@)
where D(P||Q) denotes the information loss of the probability
distribution, Q, estimating the true distribution, P. A larger
value for the KL scatter indicates a larger gap between the
two distributions.

B. KNN AND CATBOOST MODEL PREDICTION
To compare different algorithms for data sensitivity dif-
ferences, five different data sets, including the original
data, were created for a comparison between the above
three nonlinear transformation methods and two data expan-
sion methods, and the generalization ability was analyzed
using the K-nearest neighbor (KNN) and CatBoost models.
KNN [49] is fast and insensitive to outliers, and the
CatBoost [50] model is a gradient-boosting model relying on
the GBDT framework, and both models can call the model
interpreter and tend to. perform better for different training
tasks with better generalization ability for analysis.
Predictions were made for five different combinations
of rockburst datasets; the test set was split by 30%; and
the original sorting was randomly disrupted and feature
coded for the original classification labels (0, 1, 2, 3).
For KNN, the CatBoost model uses a grid search to find
the optima parameters, select five-fold cross-validation, and
obtain the prediction evaluation index to obtain the precision,
recall, FPR, F1 value, and accuracy. Table 4 lists the model
prediction evaluation index and its meaning.
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Through the analysis of the prediction results of the KNN
and CatBoost models in Tables 5 and 6, it can be observed
that the Yeo-Johnson-Ctgan dataset has the best overall
performance in both models, with the highest accuracy
reaching 81.25%. The uniform transformation-Ctgan and
Box-Cox-Ctgan have similar prediction performance, and the
Yeo-Johnson-Smote dataset performs equally well in both
models, with an accuracy of about 77%. The original dataset
has the worst performance, with only a maximum accuracy
of 58.89%.

Both models have good accuracy in Precision for the no
explosion and strong explosion categories, while in terms
of Recall rate, both models have the best recall rate for
the Yeo-Johnson-Ctgan dataset. The classifiers are able to
better capture data for the no explosion and strong explosion
categories, and the KNN model exhibits better ability to
predict positive class samples than CatBoost. FPR is reduced
compared to the original dataset, and the KNN model
has significantly lower misjudgment rate for negative class
samples.

The confusion matrix of the Yeo-Johnson-CTGAN dataset
in the KNN model is shown in Figure 10(a). The classO
misclassification rate is 17.14%, the class1 misclassification
rate is 21.05%, the class2 misclassification rate is 21.95%,
and the class3 misclassification rate is 13.33%.

The Roc curve in Figure 11 depicts the variation process
of KNN model performance with the change in the classifier
threshold. The horizontal coordinate indicates the classifier
performance and the area closer to 1 means stronger the
recognition ability, the stronger the classifier performance.
Observing the five class curves, it can be seen that the model
has a better predictive identification ability for high-risk
factors (class 3) and low-risk factors (class 0), and the overall
identification performance is better.

C. FEATURE DERIVATION AND COMPARISON

The predictions for different numbers of rockburst features
are documented in Figure 12, and datasets of different
sizes exhibit large deviations in predictive power influenced
by the model prediction accuracy and the number of
features. However, in engineering practice, the indicators
characterizing rock rupture are not limited to the uniaxial
compressive strength of rock (R.), the axial stress in the
surrounding rock of the cavern (or), the maximum initial
ground stress perpendicular to the axis of the cavern (omax),
etc. Furthermore, the criteria of different criteria, such as
the engineering criteria, depth criteria, etc., derived from the
judgment indicators are very different, so the model relying
on only six indicators cannot explain the occurrence of the
rockburst phenomenon. The set of feature variables was
enriched in the dimensional space through the crossover of
multiple features with the help of the Polynomial Features
tool. Using this method, a set of 28 features was constructed
in Yeo-Johnson-CTGAN, and the model performed well.
The newly constructed feature set mixes original features,
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TABLE 5. KNN model prediction results.

KNN
Model
Precision Recall rate FPR F1 Accuracy
N 0.5000 0.6429 0.1184 0.5625
L 0.6897 0.6667 0.1500 0.6780
Raw data 0.5889
M 0.5000 0.6538 0.2656 0.5667
S 0.7778 0.3500 0.0286 0.4828
N 0.8000 0.7762 0.0648 0.7887
Uniform L 0.7778 0.7778 0.0741 0.7776
Transformation- 0.7778
CTGAN M 0.6829 0.7792 0.1204 0.7275
S 0.8750 0.7780 0.0370 0.8235
N 0.9667 0.8056 0.0093 0.8788
L 0.7000 0.7778 0.1111 0.7368
Box-Cox-CTGAN 0.7847
M 0.7073 0.8056 0.1111 0.7532 ’
S 0.8182 0.7500 0.0556 0.7826
N 0.8286 0.8056 0.0556 0.8169
L 0.7895 0.8333 0.0741 0.8108
Yeo-Johnson-CTGAN 0.8125
M 0.7805 0.8889 0.0833 0.8312 ’
S 0.8667 0.7222 0.0370 0.7879
N 0.9487 0.8605 0.0200 0.9024
L 0.6316 0.6857 0.1296 0.6575
Yeo-Johnson-Smote 0.7762
M 0.7059 0.7500 0.0901 0.7273 ’
S 0.8125 0.7879 0.0545 0.8000
TABLE 6. CatBoost model prediction results.
CatBoost
Model
Precision Recall rate FPR F1 Accuracy
N 1.0000 0.5000 0.0000 0.6667
L 0.6000 0.4000 0.1333 0.4800
Raw data 0.5778
M 0.4490 0.8462 0.4219 0.5867
S 0.7857 0.5500 0.0429 0.6471
N 1.0000 0.6389 0.0000 0.7797
Uniform L 0.6444 0.8056 0.1481 0.7160
transformation- 0.7569
CTGAN M 0.6275 0.8889 0.1759 0.7356
S 1.0000 0.6944 0.0000 0.8197
N 0.9355 0.8056 0.0185 0.7458
L 0.6444 0.8056 0.1481 0.6914
Box-Cox-CTGAN 0.7500
M 0.6222 0.7778 0.1574 0.7160 ’
S 0.9565 0.6111 0.0093 0.8657
N 1.0000 0.7500 0.0000 0.8571
L 0.6667 0.8333 0.1389 0.7407
Yeo-Johnson-CTGAN 0.7708
M 0.6444 0.8056 0.1481 0.7160 ’
S 0.9259 0.6944 0.0185 0.7937
N 1.0000 0.8375 0.0000 09114
L 0.6875 0.6286 0.0926 0.6567
Yeo-Johnson-Smote 0.7622
M 05532 0.8125 0.1892 0.6582 )
S 0.8929 0.7576 0.0273 0.8197

quadratic features, and the product cross terms of arbitrary
features.

The greater the number of features, the richer the feature
information captured by the complex system and the clearer
the decision boundary, but increasing the number of data
features utilizing derived features will inevitably make the
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system redundant for features with strong correlations in
the data set, causing a decrease in prediction accuracy.
PCA [52] was used to structure the sample matrix by dimen-
sionality reduction, covariance eigenvectors, and eigenvalues
were calculated to identify principal components, and high
contribution rate features were selected to reconstruct the
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FIGURE 10. Rockburst dataset feature relationships and prediction results.
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FIGURE 11. KNN ROC multiclassification curve.

data samples based on the cumulative contribution rate in
descending order to reduce the interference of cross terms.

The set of features B = {B(i)|l <i< 28,i € N*} is
chosen to construct a new dataset [B (i) ,B(j)], where [j >
i&i,j € (1,28)], and Figure 12(a) represent the variation
in the accuracy of the different sets of features in the KNN
and CatBoost models. The KNN model reached a maximum
accuracy of 79.86% when the number of features was equal
to 4, after which the accuracy leveled off and remained
at 78.47%. The CatBoost model achieves 83.33% accuracy
when the

number of features equals 21, which is 8.11% higher
than the original feature prediction accuracy and exceeds the
original results in 73.08% of the datasets.

Figure 12(b) shows the change curve of the prediction
accuracy when increasing the number of polynomial features
in the dataset, and the KNN model selects the number of
features with the best prediction results. it can be seen that the
fluctuation in the prediction accuracy is not obvious around
79.86%. The CatBoost model takes into account the training
time problem caused by the extended dataset and chooses
a prediction accuracy of 81.25% with several features equal
to 13. Performing the characteristic number derivation, it can
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be seen that the prediction results fluctuate more overall,
showing a decreasing trend.

D. LEVEL 1 MODEL ASSESSMENT

The machine learning process for high-complexity systems
is often accompanied by multi-level decision-making tasks.
Model algorithms achieve higher prediction accuracy through
autonomous selection and abstraction judgments, but this
decision complexity turns the model into a black box,
making the predictions difficult to understand and reducing
confidence in the results [51]. Therefore, a visual analysis
of the model decision process is necessary. To verify
the validity of the primary model and the necessity of
constructing a secondary model, the Yeo-Johnson-CTGAN
dataset with the best prediction results was subjected to model
characterization using the KNN algorithm.

1) SHAP VALUE ANALYSIS
The SHAP framework is an interpretive framework for
explainng model predictions that helps us understand the
outputs and decisions of machine learning models, and
provides explanations for both global and local results [50].
The feature density scatter plot in Figure 13 explains,
from a macro perspective, the predictions of four types of
rockburst intensity by a KNN model, given six different
rockburst feature values after an initial transformation. This
plot visually demonstrates the influence of each feature on
the model prediction and the distribution of feature values.
The horizontal axis represents SHAP values, and the vertical
axis represents features in descending order. Each scatter plot
represents the SHAP value of a sample, and the density of the
scatter plot represents the degree to which the samples are
clustered. The color represents the size of the feature value,
with darker colors indicating larger feature values.
Observing the four figures, we can see that the features o,
and op have the highest importance in the model, and their
influence on the model decision is the greatest. The samples
of the SCF feature are distributed around SHAP value =0,
indicating that its impact on the model decision is minimal.
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In Figure (a), the values of the o, feature are relatively
scattered and mainly cluster around the interval [0.2, 0.0],
which mixes a large number of feature values. Horizontally,
the magnitude of the feature values does not significantly
affect the decision of classO rockbursts. Additionally, the
boundary between oy and W, features is clearly distin-
guished. The positive region of the SHAP values of these
features mainly includes samples with smaller feature values,
while the negative region includes samples with larger feature
values. The changes of these two features are somewhat
correlated, but their importance to the model is relatively
low.

Similar to Figures (b) and (c), the o, feature is mainly
clustered in the negative region of the SHAP values,
while a large number of samples are also gathered in
the positive region. The horizontally extended samples
mix different values and are not clearly distinguished.
Other than the W, feature, the other features do not
have clear boundary distinctions. Therefore, this validates
the model’s low prediction accuracy for classl and class2
rockbursts.

In Figure (d), we can see that the oy feature has the highest
importance for predicting class3 rockbursts, and the feature’s
influence is clearly divided between positive and negative
SHAP values. A large number of samples are concentrated
between [—0.1, 0.0], with medium-sized values being the
main trend. In the positive region, high feature values are
dominant, while in the negative region, low values are
dominant. This indicates that the rockburst strength increases
with the maximum tangential stress of the surrounding rock,
thus the model has the best prediction performance for class3
rockbursts.

A SHAP Dependence Plot is a type of visualization that
shows the impact of a single feature on a model’s prediction.
By observing the macroscopic trend reflected in the plot,
we can understand how changes in the feature’s values affect
the model’s predictions. The Figure 14 shows the SHAP
dependence plot of oy and B; features on the prediction of
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class3 rock burst. The x-axis represents the values of oy
feature, while the y-axis represents the size of SHAP values
of og, which is reflected by the color depth of the comparison
feature B;. By observing the plot, we can find that the
SHAP values show an overall fluctuating upward trend with
the increase of oy, and the same feature value corresponds
to different SHAP values, indicating an interaction effect
between oy and B;. When op > 5, relatively small B
values have a positive effect on the prediction results, while
when oy < 2, relatively small By has a negative impact on
the model prediction. However, overall, a large number of
samples gather around SHAP = 0, and the overall trend is
not clear.

2) CORRELATION ANALYSIS

Too high a degree of correlation between the features of
the rockburst data can cause information redundancy and
affect the prediction results. Figure 10(b) shows the feature
heatmap in the Yeo-Johnson-CTGAN dataset, a darker color
represents a stronger correlation between the two. Generally
speaking, correlation values between [0.2,0.4] belong to
weak correlations, [0.4, 0.6] belong to medium correlations,
and [0.6, 0.8] indicate strong correlations. By calculating the
spearman correlation coefficient, it was found that the highest
degree of correlation between SCF and oy is 0.53, which is
a medium correlation, followed by the value of 0.38 between
Wet and op, which is a weak correlation.

E. ANALYSIS OF SECONDARY MODEL PREDICTION
RESULTS

1) NECESSITY ANALYSIS

From the KNN confusion matrix, Figure 10(a), it can be seen
that the misclassification rate of low-intensity (class 0 and
1) labels reaches 19.18% and the misclassification rate of
high-intensity (class 2 and 3) labels is 18.31%. From the
correlation coefficient between the features in Figure 10(b),
there are redundant features and multicollinearity.
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Observing the SHAP values (Figure 13), we can see that
the classification feature values are not obvious, the clustering
area is confusing, and the classification effect is not good.
Observing the misclassified data, we found that the prediction
effect is not good due to the longitudinal expansion of the
dataset or due to the inconsistent classification standard of the
original labels, such that some data cannot match the original
labels.

In practical engineering contexts, misclassification prob-
lems caused by low model recognition accuracy can lead
to increased anti-impact costs, trigger impact events, reduce
model reliability, and cause trouble in on-site work. Although
the primary model in this study achieved an accuracy of
81.25%, there is still a gap from the expected error allowed
in engineering. Therefore, it is necessary to construct a
secondary model to further improve prediction accuracy.
In this study, the secondary model used K-Means clustering
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to reconstruct classification labels and the ISOMAP dimen-
sionality reduction to visualize this process.

2) DIMENSIONALITY REDUCTION VISUALIZATION AND
RELABELING

To visualize the data distribution characteristics of the
Yeo-Johnson-CTGAN dataset, the ISOMAP nonlinear
dimensionality reduction algorithm was used to filter the
three most important features for normalization and compare
them with the PCA linear reduction algorithm (Figure 15
and Figure 16). Figure 17 shows the clustering metric
selection process, traversing the model classification effect
with different values of the number of clusters. (a) The
ratio of the sum of all inter-cluster dispersion to the sum
of intra-cluster dispersion is calculated by the variance ratio
criterion (dispersion denotes the sum of squared distances),
and higher CH values (Calinski-Harabaz Index) represent
better clustering (denser concerning observations, better
inter-cluster separation). (b) is a measure used to calculate
the merit of the clustering technique and takes a value
in the range [-1, 1], where the larger the value represents
the relative distance of clusters in the clustering space,
which are clearly dispersed and distinguished. (c) With the
help of KEIbow Visualizer visualization, the optimal number
of clusters is chosen by fitting a range of model values,
and the dashed line (n= 4) on this figure indicates the
most suitable value. By looking at the three images, n= 4
is the optimal number of clusters, with relatively good
inter-cluster dispersion and achieving the best clustering,
which is consistent with the number of labels that need to
be reconstructed in the dataset, thus achieving good training
results.
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FIGURE 16. ISOMAP algorithm K-Means clustering before and after comparison.

A~ 3000 '
A
2109 0.30 |
2500 |
200 £ |
5
3 5 N
H s ] — 2000 I
g $0.28 <
g k]
T 1904 o] £ |
% 2 /™ 2
=4 = —
] § 0.271 a 1500 - I
° £
1804 @
0.26 I
10004
107 0.25 1 I
2 3 910 2 9 10 1 2 3 4 5 9 10

5 6 7
Number of Clusters

(a) Calinski-Harabasz Index.

FIGURE 17. K-Means clustering model evaluation metrics.

3) COMPARISON OF PREDICTED RESULTS

The prediction results of single-model, integrated stacking,
and deep forest models are compared in Table (7) and table (8)
for the dataset after ISOMAP reconstruction labeling. The
deep forest model achieves the highest prediction accuracy
of 98.60%, which is an average improvement of 1.40%
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(b) Silhouette Coefficient.

6 7
Number of Clusters

(c) The Elbow Diagram.

compared to the single-model prediction results and 1.40%
compared to stacking, and achieves 100% accuracy for strong
rockburst and no rockburst, and reduces the misclassification
rate of light rockburst and moderate rockburst by 15.96%.
The integrated model with eight algorithms stacked is
analyzed, and Table 7 shows that the accuracy of the
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TABLE 7. Single model and Stacking model prediction results.

Model Partial Parameter Optimization Value Prediction Accuracy
Ridge Regression alpha=0.1 0.7413
DT max_depth=8, min_samples_leaf=2 0.9650
min_samples_split=4
RF max_depth=16 09231
n_estimators=50
AdaBoost n_estimators=100 0.9671
GBR max_depth=2 0.9441
n_estimators=250
XGBoost gamma=0 0.9371
n_estimators=500
SVR =10 0.9510
MLP hidden layer sizes=50 09441
solver="lbfgs'
Staking 0.9720
KNN n neighbors=2 0.9790
CatBoost n_estimators=1000, loss function="RESE' 0.9650
12 leaf reg=3
TABLE 8. Evaluation indexes of deep forest model.
Precision Recall rate Fl1 Confusion Matrix Accuracy
N 1.0000 0.9697 0.9846
32 1 0 0
Deep L 0.9737 1.0000 0.9867 0 37 0 0 0.9860
Forest M 0.9787 1.0000 0.9892 0 0 46 O '
S 1.0000 0.9630 0.9811 0 0 1 26

integrated model is 97.2%, which is higher than the accuracy
of the integrated DT (Decision Tree), GBR (Gradient
Boosting Regression), SVR (Support Vector Regression),
and other algorithms. but 0.7% less accurate than the KNN
algorithm in this paper.

The integrated model is more influenced by the combina-
tion strategy [27] and hyperparameter optimization, reducing
the generalization ability [28]. When multiple nonlinear
systems determine decision boundaries, the integrated model
training process is influenced by trees, making the training
results unstable and the training time long, while a deep forest
has higher accuracy and a faster iteration time. Therefore,
the deep forest model has stronger robustness and better
adaptability.

The two-level rock burst prediction model constructed in
this article achieved an overall prediction accuracy of 8§1.25%
and a misclassification rate of 6.25% for the first-level model,
which utilized Yeo-Johnson transformation and CTGAN
enhancement. The second-level prediction model achieved
an accuracy of 98.60%, which is a significant improvement
compared to the original classification data with a prediction
accuracy of 58.89%. This provides valuable reference for
engineering applications.

V. CONCLUSION
1) This paper conducted Yeo-Johnson, Box-Cox transfor-
mation, and uniform transformation on the original rock

VOLUME 11, 2023

burst data in terms of data structure and enhanced data
using the CTGAN framework, and established prediction
models for six rock burst features. The results showed that
the Yeo-Johnson algorithm is suitable for a wider range
of data distributions, exhibiting stronger adaptability. The
Yeo-Johnson-CTGAN dataset performed the best, achieving
a prediction accuracy of 81.25%. Compared to the orig-
inal model’s prediction results, the average accuracy was
improved by 0.19 after the first-level model processing.
In addition, expanding the data features using polynomial
extension is also an effective means of improving prediction
results. The prediction results may vary due to the influence
of the model structure, but overall, there was a slight
improvement with an average prediction accuracy increase
of 2.5%.

2) The accuracy of the prediction was further improved
through different model selection and improvement strate-
gies. A CTGAN expansion plan that fits the original
distribution was selected for data expansion, and its
effectiveness was verified through quantitative comparison.
To achieve accurate recognition in engineering application
scenarios, improvements were made in the complexity of
the model by increasing the degree of aggregation of the
same type of rock burst data, expanding the inter-class
boundary, and visualizing the process. Finally, an ensemble
model was used to further improve the prediction accuracy,
reaching 98.6%.
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3) Model interpretation is an important direction for
understanding model decisions. In this paper, we used the
SHAP visualization tool to validate the model evaluation
results through a Summary plot and a Dependence plot. These
plots showed the contribution of each feature to the prediction
results and the importance ranking of each feature.

4) Although this paper significantly improved the predic-
tion accuracy under the two-level prediction model, there
is still insufficient research on the model decision-making
process, limited sample size, and the sensitivity to different
algorithms that need to be further studied. The next step
should be to expand the research scope, gain a deeper
understanding of the inherent decision-making logic within
the model, and expand the types of data that the model can
handle.
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