
Received 13 June 2023, accepted 23 June 2023, date of publication 27 June 2023, date of current version 6 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289976

The Estimation Method of Sensing
Parameters Based on OTFS
ZHILING TANG , ZHOU JIANG , WANGHUA PAN , AND LIZHEN ZENG
Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, School of Information and Communication, Guilin University of
Electronic Technology, Guilin 541004, China

Corresponding author: Zhiling Tang (tzl888@guet.edu.cn)

This work was supported by the Guangxi Natural Science Foundation under Grant 2021GXNSFAA220010.

ABSTRACT In an integrated sensing and communication (ISAC) system, improving the accuracy of
delay and Doppler shift sensing parameter estimation is a critical task that sustains the performance of
the communication system. To tackle this task, we introduce a two-stage estimation algorithm named
matched filter-Fibonacci (MF-F), which employs the orthogonal time frequency space (OTFS) waveform
characteristics in the delay-Doppler (DD) domain. In the first step (MF), the sensing parameters are
approximated on an integer grid using the relationship between the input and output signals of the DD
domain ISAC model. This approximation is executed on an integer grid using the cyclic shift property of
the matrix. In the following step (F), we implement a two-dimensional (2D) searching technique based on
the Fibonacci sequence, called the Fibonacci search method, to achieve sensing parameter estimation with
fractional accuracy. This method decreases the number of comparisons needed and enhances the search
process speed. Finally, the proposed method in this study was tested using numerical simulations and
hardware experiments. The results demonstrate that the MF-F method can precisely estimate the speed and
distance with millimeter-level accuracy and has the robustness and low complexity in numerical simulation.
Moreover, the hardware experiment’s estimated Doppler and delay parameters can reach the centimeter and
meter levels.

INDEX TERMS Integrated sensing and communication (ISAC), signal modulation, delay-Doppler (DD)
domain super-resolution estimation, low complexity.

I. INTRODUCTION
Various research has been conducted on 6G technology,
including the exploration of the vision and challenges of
6G technology [1], [2], [3]. The research focuses on the
design of the integrated sensing and communication (ISAC)
waveform [4], [5], [6]. Other research areas include wireless
propagation path prediction and electromagnetic spectrum
mapping [7], terahertz technology [8], and the construction
of the metaverse [9]. The integration of radar sensing and
wireless communication is a crucial research topic, as it
can enhance spectrum utilization and reduce maintenance
costs through shared equipment. However, this integra-
tion also presents several challenges, including hardware

The associate editor coordinating the review of this manuscript and

approving it for publication was Walid Al-Hussaibi .

implementation, signal processing, information theory, and
ISAC performance metrics [10], e.g., when ISAC devices
operate in full-duplex mode, the simultaneous use of commu-
nication transmitters and radar sensing receivers in an envi-
ronment of high device density, complex functionalities, and
spectrum congestion may lead to significant self-interference
and cross-interference, which hinders signal detection. Fur-
thermore, due to the interdependence of these devices, there
is an increased risk of mutual interference. Hence, intelli-
gent interference cancellation technology development has
become a crucial research field that requires further explo-
ration. The design of waveforms that satisfy radar sensing
and data communication requirements is challenging. While
radar sensing systems have traditionally utilized waveforms
optimized for detection performance, communication sys-
tems generally employ standardized waveforms optimized
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for communication purposes [9]. Recently, orthogonal time
frequency space (OTFS) modulation technology was first
presented by [11]. Following the introduction, a further
examination into OTFS pulse shaping [12], channel estima-
tion [13], and signal detection are conducted in [14], [15].
Their studies, which focused on the technical aspects of
this technology, were subsequently documented and sum-
marized in [16]. In contrast, different techniques, such as
multiple signal classification methods (MUSIC) [17] and
noise subspace methods [18], require feature decomposition
and numerous matrix-vector multiplications. Authors in [19]
and [20] respectively proposed the fast Fourier transform
(FFT) method and the fast cyclic cross-correlation (FCCC)
detection method to estimate velocity and distance via the
generation of range-Doppler maps (RDMs) followed by the
use of a cell-averaging constant false-alarm rate detector
(CA-CFAR). Although this RDM-based approach effectively
detects singular targets, it performs poorly in multi-target
scenarios and needs millimeter-level precision in parameter
estimation. Moreover, generating a two-dimensional (2D)
RDM matrix and detecting it using CA-CFAR translates to
high complexity and computational requirements. A more
adaptable and tractable approach, known as virtual cyclic
prefix (VCP), was proposed by [21]. This approach operates
in the Fourier domain, simplifying computational complexity.
The OTFS radar sensing system utilizes the atomic norm by
minimizing it [22]. This is achieved by solving the convex
optimization problem using the alternating direction method
of multipliers (ADMM). The 2D MUSIC algorithm is then
employed to search for the solution obtained to propose an
excellent high-resolution parameter estimation method.

The OTFS waveform offers several advantages when used
in the ISAC system:

• OTFS is capable of overcoming time-selective fading
caused by Doppler frequency shift. When the veloc-
ity of objects affecting the channel is constant, the
time-varying channel appears constant in the delay-
Doppler domain. Therefore, adaptive modulation and
coding schemes are unnecessary [23]. This is particu-
larly significant for rapidly changing channels since the
timely acquisition of the latest channel state information
at the transmitter is challenging.

• The OTFS system functions in the delay-Doppler (DD)
domain where radar targets are situated, and the chan-
nel and sensing parameters are connected in the same
domain. Due to this, the inherent sparsity of the DD
domain can be utilized [24]. Authors in [25] have estab-
lished that the sensing performance of the OTFS system
is as precise as that of orthogonal frequency division
multiplexing (OFDM) and frequency-modulated contin-
uous wave (FMCW).

• Radar sensing typically achieves a higher parameter
estimation match filter gain than the channel estimation
algorithm implemented in communication systems [26].
This is due to the use of the same physical channels at

both transmission nodes and the radar receiver’s knowl-
edge of the information transmitted in a monostatic
sensing scenario.

OTFS modulation relies on exploring and utilizing sym-
bol reuse and channel characteristics in the delay-Doppler
domain, which contrasts with the symbol reuse in the tradi-
tional time-frequency OFDM modulation [27]. The inherent
sparsity of the DD channel can be leveraged for sensing and
detection purposes, but the approach faces complexity and
accuracy challenges:

• The author of [28] proposed a matched filtering (MF)
algorithm that uses the OTFS radar system to estimate
the distance and velocity of various targets. A significant
drawback of the algorithm is its high computational
complexity and inability to estimate fractional delay
and Doppler shift, contributing to low sensing accuracy.
Additionally, the algorithm can only improve the esti-
mation accuracy of the target distance when discrete DD
domain dimensions are sufficiently large.

• The estimation of target parameters is performed
using the maximum likelihood detection (MLD)
algorithm [29]. This algorithm demands an exhaustive
search throughout the complete distance-Doppler region
to determine the estimates for each tested distance-
Doppler grid. High-dimensional matrix operations are
executed for each tested distance-Doppler grid to cal-
culate the metrics [20]. The ADMM-AN algorithm
proposed in [22] exhibits high perceptual performance.
However, to obtain its solution, it is necessary to conduct
a search using the 2D MUSIC algorithm. Consequently,
the computation complexity is high.

• The author of [30] introduced the algorithm for
sensing parameter estimation with low computational
complexity. The algorithm estimates distances with
millimeter-level accuracy and velocities with decimeter-
per-second level accuracy. However, the algorithm’s
velocity estimation could be more precise, reaching the
decimeter level.

The existing sensing algorithms based on OTFS suffer from
high complexity, low sensing parameter accuracy, and poor
multi-target detection performance. To overcome these chal-
lenges, the matched filter-Fibonacci (MF-F) algorithm is
proposed in this paper. MF-F is a two-stage solution that
addresses both high complexity and low sensing parameter
accuracy. The main contributions of this paper can be sum-
marized as follows:
1) In the MF step, the input-output relationship is obtained

through continuous DD channels. Subsequently, the ML
algorithm searches for the sensing parameters of com-
plex channel gain coefficients, time delay, and Doppler
frequency shift in the DD channels. We estimate the
complex channel gain coefficient by assigning values
to time delay and Doppler frequency shift in order to
reduce the search dimension of the ML algorithm. Then,
we apply the ML algorithm to determine the param-
eters of sense. As a result, the estimated parameter
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FIGURE 1. OTFS transmitter based on the IDZT using rectangular pulse shaping waveform (M = 6, N = 6).

search range is now reduced from three-dimensional
(3D) to 2D.

2) In a scenario where monostatic sensing is used for com-
munication, the transmission of information is known,
and thus, it is possible to estimate complex channel gain
coefficients through the input-output relationship matrix
in the DD domain of the OTFS system. Since the trans-
mission and reception information matrices are known,
there is no need for high complexity. Subsequently,
in the MF step, the estimated value of the integer grid is
determined by e ML, allowing for the narrowing down
of the super-resolution estimate range for the F step.

3) We propose a 2D Fibonacci search method in the F step
to achieve a super-resolution estimation effect for a more
precise estimation of score delay and Doppler frequency
shift parameters.

The rest of this paper is structured as follows. Section II
outlines the ISAC system model based on OTFS and pro-
vides a basis for the proposed OTFS-based sensing algorithm
described in Section III. We present the numerical simulation
results in Section IV, followed by the discussion and conclu-
sions in Section V.

II. SENSING SYSTEM MODEL
Fig. 1 illustrates the monostatic sensing system which com-
prises a transmitter, receiver, and channel. The transmitter
generates OTFS waveforms used for communication and
sensing functions. Integrating a sensing receiver converts a
communication-only node into an ISAC node. As the com-
munication signal is transmitted, the sensing receiver gathers
target echoes for perception. The self-interference is disre-
garded, where the signal leaks directly from the transmitter
to the receiver due to the inherent full-duplex operation,
similar to the perception systems discussed in [21] and [25].

Reflection of the target results in a backward scattering
signal, which enables active perception. The radar sensing
receiver, located at the transmitter end, captures and utilizes
all transmitted signal information to estimate the parameters
of the target. The paper utilizes matrices and vectors to rep-
resent the model of the perception system.

FIGURE 2. OTFS transmitter based on the IDZT using rectangular pulse
shaping waveform (M = 6, N = 6).

A. TRANSMITTER MODEL
The transceiver system model depicted in Fig. 2 uses inverse
discrete Zak transform (IDZT) and OTFS techniques along
with rectangular pulse shaping. Let x ∈ CMN×1 be the trans-
mitted information symbols. The transmitted signal frame has
a duration of Tf = NT and a bandwidth of B = M1f ,
where T1f = 1, i.e., the OTFS signal is critically sampled
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for any pulse-shaping waveform. The information symbols
undergo M-QAM modulation, with each symbol having a
duration of Ts and occupying a bandwidth of 1f . Mapping
these symbols onto a 2D DD domain plane results in the for-
mation of an information symbol matrix XDD ∈ CM×N . The
delay-Doppler plane within the specified region is discretized
into a M × N dimension grid 0, i.e.,

0 = {(
l

M1f
,
k
NT

), l = 0, · · · ,M − 1, k = 0, · · · ,N − 1}

where 1
/
M1f and 1

/
NT represent the quantization res-

olutions for the delay and Doppler frequency shift axes,
respectively. Meanwhile, M and N denote the number
of subcarriers and time slots, respectively. Finally, the
data symbols undergo inverse symplectic finite Fourier
transform (ISFFT) mapping to represent the informa-
tion signal XTF ∈ CM×N in the time-frequency (TF)
domain, i.e.:

XTF = FM · XDD · FHN , (1)

where FM ∈ CM×M and FHN ∈ CN×N denote the Fourier
transformation matrix of point M and the inverse Fourier
transformation matrix of point N , respectively. The TF
domain is obtained by sampling the time and frequency axes
at intervals of T seconds and 1f = 1

/
T Hz, respectively.

This discretizes the TF signal plane into aM × N dimension
grid 3, i.e.,

3 = {(m1f , nT ),m = 0, · · · ,M − 1, n = 0, · · · ,N − 1},

where the duration of one symbol is T = NTs. TheXTF signal
is then subjected to a Heisenberg transform to obtain samples
in the time-delay domain, Denote:

X̃ = GTX · FHM · XTF

= GTX · FHM · FM · XDD · FHN
= GTX · XDD · FHN , (2)

where the waveform of the transmitter pulse is denoted
by GTX. For efficient compatibility with the OFDM mod-
ulation system, a rectangular pulse has been considered
for the pulse waveform of the transmitter and receiver,
i.e., GTX = IM , where IM ∈ CM×M is an identity
matrix with M × M dimensions. Wherein (2) in this case
also functions as the IDZT. Vectorization of the X̃ sam-
ples yields a time-domain signal of NM × 1 dimensions.
i.e., s ∈ CNM×1.

s = vec(X̃)

= vec(IM · XDD · FHN )

= (FHN ⊗ IM ) · vec(XDD), (3)

where vec(·) represent the vectorization operation of a matrix
by its column elements, ⊗ denote Kronecker product. The
time-domain signal is split into N blocks each with M sam-
ples, i.e.,s = [ sT0 ,sT1 , · · · ,sTN−1]

T, where sn ∈ CM×1, for
n = 0, · · · ,N − 1. A cyclic prefix (CP) is inserted at the

beginning of every data frame, with a particular duration TCP
and length LG.

B. CHANNEL MODEL
In a monostatic radar sensing scenario, similar to the [31]
system model, the time-varying pulse response of the P−tap
TF selective sensing channel was modeled as

h(t, τ ) =

P−1∑
p=0

hpej2πνptδ(τ − τp). (4)

In (4),P is the number of paths for scattering and reflection,
where the 0-th path is the line of sight path, and hp is The
complex channel gain coefficient that includes the path loss
of path components, νp and τp are the round-trip Doppler shift
and round-trip delay shift associated with the propagation
p−th path, respectively, where τp ∈ [0, 1

1f ), νp ∈ [− 1
2T , 1

2T ).
Moreover, it is possible to distinguish any pair of paths within
the DD domain. Each target has a distance Rp and relative
velocity for Vp, w.r.t. p = 0, · · · ,P − 1. Vp has positive and
negative bidirectional values. Hence, the following equation
is valid:

τp

2
=
Rp
c0

,
νp

2
=
Vp
c0
fc, (5)

where c0and fc are the speed of light and carrier frequency,
respectively. Therefore, the pulse response of the wireless
communication channel for OTFS in the DD domain can be
given as h(t, τ ) =

∑p=P−1
p=0 hpδ(τ − τp)δ(ν − νp). According

to [12], the signal received at the receiving end undergoes
down-conversion and discrete sampling and is represented

as rcom =

P∑
p=1

hp1κp5
lp
MN s + w, where rcom ∈ CNM×1,

w ∈ CNM×1, τp = lp/M1f , and νp = κp/NT denotes the
normalized delay and normalized Doppler frequency shift,
respectively. The communication channel response matrix
is expressed by Hcom =

∑P
p=1 hp1

κp5
lp
MN and Hcom ∈

CMN×MN consisting of the forward-shift circular shift matrix
and the diagonal matrix of Doppler frequency shift, i.e.,

5MN ∈ CMN×MN and 1

= diag{ej2π
0
MN , ej2π

1
MN , . . . , ej2π

MN−1
MN }.

The additive white Gaussian noise (AWGN) is assumed
to be independently and identically distributed, with a zero
mean and a variance of σ 2

wINM , i.e.,w ∼ CN (0, σ 2
wINM ). The

above-mentioned channel is in a discrete form. To further esti-
mate the score delay and Doppler shift, we will consider the
continuous-delay-and-Doppler-shift (CDDS) radar sensing
channel as outlined in [25] and [30]. Then, the received signal
can be accordingly written as rrad =

∑P
p=1 hp1

vps(τp) ∈

CMN×1, where and the expression for the matrix of sampled
signals at specific time intervals, given a transmitted signal
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with a time delay was derived in [30] as

Sτp [l, k] =


1

√
M

M−1∑
m=0

X̃ [m, n]ej2πm(
l
M−

τp
T ) l ⩾ lp

1
√
M

M−1∑
m=0

X̃ [m, [n− lp]N ]e
j2πm( lM −

τp
T ) l < lp

,

(6)

where l = 0, 1, · · · ,M − 1, k = 0, 1, · · ·N − 1, and
lp =

⌈
τp ·M1f

⌉
(⌈·⌉ denote Ceiling function.). sτp

vectorized is 5
lp
MNvec(5

−l
M FHMb(τp)XTF) w.r.t. b(τp) =

diag{ej2πνp01f τp , ej2πνp11f τp , · · · , ej2πνp(M−1)1f τp}. The
cyclic shift matrix 5−l

M ∈ CM×M can be decom-
posed by utilizing the eigen-decomposition property of the
Fourier transform matrix, giving us a diagonal matrix with
5−l
M = FHM3FM as its diagonal elements, where 3 =

diag{ej2π
lp
M 0, ej2π

lp
M 1, · · · , ej2π

lp
M (M−1)

} ∈ CM×M . The s(τp)
can be thus formulated as 5

lp
MN (IN ⊗ (FHMB(τi)FM ))s, where

B(τi) = diag{b0, b1, · · · , bM−1
} ∈ CM×M w.r.t. Diago-

nal matrix ej2π (
lp
M −

τp
T )of b. The input-output relationship for

the final time-domain baseband signal in the CDDS radar
sensing channel can be derived as:

rrad =

P∑
p=1

hp 1vp5
lp
MN (IN ⊗ (FHMB(τi)FM ))︸ ︷︷ ︸

8p

s + w

=

P∑
p=1

hp8p︸ ︷︷ ︸
G

s + w

= Gs + w. (7)

where 8p ∈ CNM×NMand G ∈ CNM×NM

C. RECEIVER MODEL
The OTFS receiver model based on discrete Zak transform
(DZT) and rectangular pulse shaping is illustrated in Fig. 3.
At the receiving end, the signal is received as a protected and
isolated discrete signal with dimensions of NM × 1, which
are defined as the specific signal received without additional
information on its components, i.e., rrad ∈ CNM×1, where
r = [rT0 , rT1 , · · · , rTN−1]

T, for n = 0, · · · ,N − 1. Then,
convert rinto a delay-time domain signal matrix Ỹ ∈ CM×N ,
i.e., Ỹ = GRX · (vec−1

M ,N (rrad )).vec
−1
M ,N (·) operation is a

matrix formed by folding a vector into an M−by−N matrix
by filling it column-wise. To ensure compatibility with the
OFDM system, i.e., GRX = IM . It follows that the Wigner
transform is applied to convert the Ỹ matrix YTF ∈ CM×N

to the TF domain, i.e., YTF = FM · Ỹ. Subsequently, the
YTF can be transformed into the DD domain signal matrix
YDD ∈ CM×Nusing the symplectic finite Fourier transform
(SFFT) transformation. It then follows that DZT is givens by

YDD = FHM · YTF · FN = FHM · FM · Ỹ · FN = Ỹ · FN .

(8)

FIGURE 3. OTFS receiver based on the DZT using rectangular pulse
shaping waveform (M= 6, N = 6).

The matrix YDD contains the DD samples which are vec-
torized to obtain the DD samples y ∈ CMN×1, i.e., y =

vec(YDD) ∈ CMN×1.which are given by

y = HDDx + w̃, (9)

where w̃ = (FN ⊗IM )w ∈ CNM×1, i.e., w̃ ∼ CN (0, σ 2
wINM ).

The relationship between the time domain channel and DD
domain channel matrix can be derived from (7) and (9) as
follows:

HDD = (FN ⊗ IM )G(FHN ⊗ IM )

=

P∑
p=1

hp9p(τp, νp), (10)

where 9p(τp, νp) ≜ (FN ⊗ IM )8p(FHN ⊗ IM ) ∈ CMN×MN

III. ESTIMATION OF TARGET PARAMETERS
A. MAXIMUM LIKELIHOOD ESTIMATOR
Sensing aims to estimate target parameters, including time
delay andDoppler frequency shift sets{(τp, νp)}, which can be
utilized to calculate the distance and velocity of a target. The
estimation of 3P parameters is required for P targets, which
means estimating P sets of channel coefficients, time delay
shift, and Doppler frequency shift parameters. This refers to
the maximum likelihood estimation of 3P sets of unknown
parameters θ̂ = {ĥ1, , · · · , ĥP, τ̂1, · · · , τ̂P, ν̂1, · · · , ν̂P}.
Through (10), a channel matrix containing parameter depen-
dency relationships can be obtained. In a monostaticradar
sensingscenario, the symbol sent at the radar detector is
known, which allows for the derivation of the likelihood
function l(y| θ , x), yielding

l(y| θ , x) = ∥y − HDDx∥2

=

∥∥∥∥∥∥y −

P∑
p=1

hp9px

∥∥∥∥∥∥
2

, (11)
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where ∥·∥ denote 2-Norm operation. We can obtain (12) for
MLE as follows:

θ̂ = (ĥp, τ̂p, ν̂p) = arg min
θ∈CP×RP

+×RP

∥∥∥∥∥∥y −

P∑
p=1

hp9px

∥∥∥∥∥∥
2

.

(12)

Attempting to search for the optimal solution in the contin-
uous 3P dimension would thereby make it infeasible, as the
complexity would demonstrate exponential growth. There-
fore, we propose the MF-F method to achieve a less complex
approximation of the ML solution. The channel’s gain coef-
ficient is characterized by a quadratic constant pattern for a
specific arrangement of parameters {(τp, νp)}in (11). Hence,
resolving {hp}before implementing the MLE approach to
evaluate the remaining parameters. This approach facilitates
the transformation of the search estimation from a 3P-
dimensional to a 2P-dimensional space. Afterward, we apply
the circular shifting property of the unitary circulant matrix
to (12) to perform a rough integer parameter estimation
within the grid range using the matching filter algorithm.
Subsequently, we use the Fibonacci algorithm to perform
off-grid search. The Fibonacci search concept involves using
the index value corresponding to the Fibonacci sequence in a
sorted array to determine the range for the subsequent search.
Compared to other search techniques, Fibonacci search is
more versatile and can be applied to any data structure.

B. PROPOSED MF-F PARAMETERS ESTIMATION
ALGORITHM
In the event of a solitary estimation target, i.e., P = 1.
According to (12), we can derive the maximization problem
by obtaining ĥ =

(9x)H ·y
∥9x∥2

and (13). The derivation process

for (11)-(13) and ĥ is given in Appendix A.

(τ̂ , ν̂) = argmax
(τ̂ ,ν̂)

∣∣∣(9x)H · y
∣∣∣2. (13)

As we extend from a single-target scenario to multiple
targets, potential interference among different targets must
be taken into consideration. Specifically, when estimating
the p−th target, the remaining p-1 targets can significantly
interfere, as expressed by

y = hp9p(τp, νp)x︸ ︷︷ ︸
Useful Signal

+

P∑
q̸=p

hq9q(τq, νq)x︸ ︷︷ ︸
ISI Interference Signal

+w̃. (14)

The p−th target under current estimation is considered a
useful signal hp9p(τp, νp)x, whereas the remaining P-1 target
signals

∑P
q̸=p hq9q(τq, νq)x are deemed useless due

to their interference with the estimation of the targets
mentioned above. To minimize interference during parameter
estimation of the p−th target, interference signals in the
estimated p-1 targets must be removed, optimizing the effect

FIGURE 4. Two search areas 0s1 and 0s2, respectively.

of interference cancellation, which is

yp = y −

p−1∑
q=2

hq9q(τq, νq)x 1 ⩽ q ⩽ p, (15)

for q = 1, · · · , p − 1and p = 2, · · · ,P. Combining the
single-target channel gain coefficient ĥpcan be deduced by

ĥp =


(9p(τp, νp) · x)H · y∥∥9p(τp, νp) · x

∥∥2 p = 1

(9p(τp, νp) · x)H · yp∥∥9p(τp, νp) · x
∥∥2 p > 2

, (16)

where τp ∈ [0, 1
1f ) and νp = [− 1

2T , 1
2T ) represent the

search interval of MLE in RP
+ × RP dimensions. This study

proposes an approach to partitioning an area into two regions
aiming to estimate parameters, thus, reducing uncertainty and
enhancing accuracy. Let us denotes these regions as region
0S1 and region 0S2, respectively, as shown in Fig. 4. Region
0s1 = {

(
l

M1f ,
k
NT

)
, l = 0, · · · ,M−1,k = −

N
2 , · · · ,N2 −1

is estimated to be integer parameters in the DD domain; The
second area 0s2 = {

(
τp, νp

)
, l̂−1
M1f ≤τp ≤

l̂+1
M1f ,

k̂−1
NT ≤

νp≤
k̂+1
NT is designated for estimating parameter fractions.

The estimation of MF-F parameters comprises two stages,
In the first stage, the rough estimates of the parameters are
obtained by matching filter parameter estimation. The second
stage involves using the Fibonacci method for refined param-
eter estimation.

1) Estimation of the step parameters for the MF: The delay
and Doppler resolution are currently integer multiples of each

other. i.e., lp =

⌈
τp
1

M1f

⌉
and κp =

⌈
νp
1
NT

⌉
. The input-output

relationship of the information symbol matrices in the DD
domain, for the reduced cyclic prefix (RCP) modulation
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variant of OTFS in [16], is approximately represented by a
circular shift of the transmitted symbol and it is given by

YDD[l, k] =

P∑
p=1

hpαlp,κp [l, k]

· XDD[[l − lp]M , [k − κp]N ] + W[l, k], (17)

where

αlp,κp [l, k] =

{
ej

2π
MN κp(l−lp) lp ⩽ l < M

ej
2π
MN κp([l−lp]M )ej2πn/N 0 ⩽ l < lp

and W[l, k] ∼ CN (0, 6w) denotes the AWGN with zero
mean covariance matrix 6w, and can be concisely written as

vec(Y) = vec(
P∑
p=1

βp5
lp
MXDD5

−κp
N + IIsI + W)

y = βvec(5
lp
MXDD5

−κp
N )︸ ︷︷ ︸

Useful Signal

+ vec(IIsI )︸ ︷︷ ︸
ISI Interference Signal

+vec(W).

(18)

In (18) Y ∈ CM×N , y ∈ CMN×1, βp = hpαlp,κp [l, k],

5
lp
MXDD5

−κp
N ∈ CM×N . The useful signal βvec(5

lp
M

XDD5
−κp
N ) and the interference vec(IIsI ) term correspond

respectively to the two terms in (14). If multiple targets are
present, one can obtain interference-free receiving signals
by utilizing (15); otherwise, the receiving signals can be
acquired without interference. The complex channel coeffi-
cients can be derived from (16). Subsequently, the obtained
values are substituted into (13) to solve the maximization
problem, which is

(l̂p, κ̂p) = arg max
(l̂p,κ̂p)

∣∣∣∣vec(5lp
MXDD5

−κp
N )

H
· yp

∣∣∣∣2. (19)

At this juncture, we have determined the upper and lower
limits of the fraction estimation, i.e., 0S2area.

2) Refinement estimation of F-step parameters: The pro-
cess of conducting the off-grid search in0S2 area can be given
similarly to (19) as

(τ̂p, ν̂p) = arg max
(τ̂p,ν̂p)∈0s2

∣∣∣(9px)H · yp
∣∣∣2. (20)

We propose a 2D Fibonacci method to solve the maximiza-
tion problem in 2D. The Fibonacci search method is a divide-
and-conquer algorithm utilized to search for sorted arrays.
The application of Fibonacci numbers enables the narrowing
down of possible locations and decreases uncertainty [32].
In a binary search, the sorted array is partitioned in half,
and one of the two partitions is selected for further examina-
tion. This technique is also known as the half-interval search
method. Fibonacci search differs from binary search by divid-
ing the array into two parts using a contiguous Fibonacci
sequence. This results in an increase of approximately 4% in

the number of comparisons performed [33]. The average and
worst-case complexities of the Fibonacci search algorithm
are both O(log(n)). The Fibonacci search method has sev-
eral properties: a) The Fibonacci method and golden section
method have the same interval reduction rate as n approaches
infinity, resulting in linear convergence to the convergence
ratio of 0.618 for the Fibonacci method. Hence, the Fibonacci
method converges linearly to a 0.618 convergence ratio.
b) The optimal strategy for solving one-dimensional mini-
mization problems using the division method is the Fibonacci
method, while the golden section method is an approximative
optimal one. c) Prior knowledge of the number of calculations
needed to evaluate the function and the Fibonacci series is
required for the Fibonacci method. This approach reduces
the interval of uncertainty at each step using the Fibonacci
series.

The distance and velocity of the target can be calculated
using the estimated delay and Doppler, as shown (5), i.e.,
Rp = τ̂pc0

/
2, and Vp = ν̂pc0

/
2fc. For multi-target estima-

tion, interference signals from the p-1 targets are elimi-
nated when estimating the parameters of the p−th target.
Each target estimation is divided into two stages. In the
first stage, the integer parts of the delay and Doppler
parameters are estimated using (19) to reduce the search
area in the second stage. In the second stage, fractional
delay and Doppler shift parameters are estimated using
the 2D Fibonacci search method and (20), and the com-
plex channel coefficient parameters are updated according
to (16).

C. PERFORMANCE BOUNDS
The Cramér-Rao lower bound (CRLB) provides a lower
bound on the variance of unbiased estimators of deterministic
parameters. It is a measure that can be used to describe
the performance limits of OTFS systems. Previous work has
analyzed the system limits from the perspective of CRLB,
including [25] and [34]. More recently, [35] summarized
the CRLB of four types of waveform systems and showed
through both CRLB deduction and numerical analysis that
the OTFS has superior sensing performance to OFDM at the
same bandwidth. The waveform system utilized in this paper
conforms to the two-step OTFS system described in [35].
To ensure compatibility with existing OFDM systems, the
OTFS receiver performs a two-step conversion. Specifically,
it first uses an OFDM demodulator to transform the received
time-domain signal to the time-frequency domain and then
channels the TF signal through the SFFT transform to the DD
domain. We demonstrate the CRLB of the waveform system
used in this paper by applying algebraic operations to (17),
yielding (21). We refer readers to [25] and [35] for further
details.

YDD[l, k] =

N−1∑
k ′=0

M−1∑
l′=0

P∑
p=1

9
p
k,k ′ [l, l ′]XDD[l, k], (21)
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where 9
p
k,k ′ [l, l ′] ∈ CM×M , which is

9
p
k,k ′ =


9

p
k,k ′ [0,M − 1] · · · 9

p
k,k ′ [0,M − 1]

...
. . .

...

9
p
k,k ′ [0,M − 1] · · · 9

p
k,k ′ [0,M − 1]

 (22)

and the matrix expression is given by

9
p
k,k ′ [l, l ′] =

1
MN

hpej2πκplpDir(κpNT−k + k ′,N )

· Dir(l − lpM1f − l ′,M )ej2πκp
l′

M1f

·

{
1 lp ⩽ l < M

e−j2π(κpT+
k′
N ) 0 ⩽ l < lp

. (23)

where the Dir(ϕ,Z ) =
∑Z−1

z ej2πϕ z
Z is Dirichlet kernel func-

tion, when k is a multiple of Z, the function evaluates to Z or
-Z, depending on whether Z is even or odd. In contrast, for all
other integer values that are not ϕ, it is equal to zero, making
it very distinct from other kernel functions. Consequently, the
channel matrix 9p can be expressed as

9p
=


9
p
0,0 · · · 9

p
0,N−1

...
. . .

...

9
p
0,0 · · · 9

p
0,N−1

 . (24)

The derivatives of 9
p
k,k ′ [l, l ′] in (24) w.r.t κp and lp can be

obtained as

∂9
p
k,k ′ [l, l ′]

∂(lp)
=

j2π
MN

hpDir(κpNT−k + k ′,N )ej2πκp
l′

M1f

·

M−1∑
m=0

(κp −M1f )ej2π (l−lpM1f−l′) mM

·

{
1 lp ⩽ l < M

e−j2π (κpT+
k′
N ) 0 ⩽ l < lp

, (25)

∂9
p
k,k ′ [l, l ′]

∂(κp)
=

j2π
MN

hp(l − lpM1f − l ′,M )ej2πκp(lp+ l′
M1f )

·

N−1∑
n=0

ej2π (κpNT−k+k ′) nN

·


lp + nT +

l ′

M1f
lp ⩽ l < M

lp + n− 1T +
l ′

M1f
e−j2π (κpT+

k′
N ) 0 ⩽ l < lp

. (26)

Next, we use the derived partial derivatives to obtain the
Fisher Information Matrix (FIM). According to [36], FIM is
a measure of the information an observed data point provides
about an unknown parameter.

J(θ) = E

{
[

∂

∂θ
log l(y| θ , x)][

∂

∂θ
log l(y| θ , x)]

T
}

.

(27)

Assuming that the received signal interferes with additive
Gaussian white noise N ∼ CN (0, 6N ), where 6N is the
covariance matrix in this study, we extended the scenario
presented in Appendix A to high-dimensional cases, i.e.,
y ∼ CN (0, 6N ), where can be obtained as the logarithmic
probability function yw.r.t. θ , we get

f (y; θ ) = log l(y| θ , x) = −(y − 9x)H6−1(y − 9x).
(28)

The derivatives of f (y; θ )in (28) w.r.t. θ , which is

∂

∂θ i
f (y; θ i) = −(y − 9x)H6−1 ∂9

∂θ i
x

− (
∂9

∂θ i
x)H6−1(y − 9x), (29)

The second derivative is taken to obtain the (30), and its
expected value is computed. The resulting expression is as
follows

E
{

∂2

∂θ i∂θ j
f (y; θ i)

}
= −2ℜ

{
(
∂9

∂θ j
x)
H

6−1 ∂9

∂θ i
x
}

,

(30)

Thus, FIM can be obtained as

J(θ) = [Ji,j]1⩽i,j⩽3P, (31)

where Ji,j = −E( ∂2f (y;θ i)
∂θ i∂θ∗

j
). The mean square error (MSE) of

an unbiased estimator satisfies:

E
{
(θ̂ − θ )(θ̂ − θ )T

}
J−1(θ ). (32)

The J−1(θ ) main diagonal elements represent the expected
CRLB of the unknown estimated parameters. Supplemental
information regarding the CRLB for OFDM and when using
the ZAK transform, rather than the two-stage transformed
OTFS waveform described in this paper, may be found
in [35].

IV. NUMERICAL RESULTS AND DISCUSSION
This section aims to validate the reliability of the proposed
MF-F algorithm by analyzing the curve distribution map
and estimation results under both the single and multiple
targets. Next, we evaluate the accuracy and robustness of the
MF-F method by analyzing the Root Mean Squared Error
(RMSE) under different signal-to-noise ratios (SNR). The
evaluation of RMSE is also conducted with different numbers
of targets. Then, the effectiveness of the proposed algorithm
is established by comparing the parameter estimation results
of different algorithms, particularly regarding a single tar-
get. Finally, using a software-defined radio (SDR) platform,
a simple ISAC system was constructed to evaluate the per-
formance of the proposed algorithm in practical scenarios.
The simulation parameters of the OTFS waveform are listed
in TABLE 1.

To evaluate the accuracy and ambiguity of the perception
algorithm for target recognition, we present a 2D normalized
profile map of velocity and range with varying numbers of
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FIGURE 5. The 2D range-velocity profile for a rough estimation. (a) The single target rough estimation of normalized distribution; (b) The
multiple targets rough estimation of normalized distribution.

FIGURE 6. Normalized curves for range and velocity estimation. (a) Single target coarse estimation vs refined estimation distance; (b) Multiple targets
coarse estimation vs refined estimation distance; (c) Single target coarse estimation vs refined estimation velocity; (d) Multiple targets coarse
estimation vs refined estimation velocity.

TABLE 1. Simulation parameters.

targets under the rough estimation results of the MF step.
On this graph, the normalized amplitude has an enormous
value only in specific regions, where the maximum values
correspond to the estimated velocity and range of the tar-
gets. Ultimately, the results of super-resolution estimation

are presented. TABLE 2 provides a framework for setting
the estimated parameters. The parameter set for the single
target estimated range-velocity pair is {(R1 = 10 m,V1 =

10 m/s)}, while for multiple targets, range and velocity
parameters are set {(R1 = 15 m,V1 = 27 m/s)} and
{(R2 = 40 m,V2 = 72 m/s)}. separately. As shown in
Fig. 5(a)-(b), a rough estimation of the normalized profile of
perceived results for velocity and range is given. TABLE 2
shows the range-velocity values estimates for Fig. 5(a)-(b),
which display one and two peaks, respectively. Although
there is a significant difference between the estimated and
actual distance values, the deviation of the estimated speed
values is relatively minor. Nevertheless, despite the deviation
of the estimated value, it can accurately determine the number
of targets and reduce the search range for F-step super-
resolution estimation.

To verify the accuracy of the F-step refined estimation
algorithm and compare it to the MF-step coarse estima-
tion results, normalized curves of range and velocity coarse
estimates were illustrated under different conditions in
Fig. 6(a)-(d). Additionally, the estimated super-resolution
values were represented by dashed lines. The results revealed
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TABLE 2. Target parameters set and estimated parameters values.

that the deviation between the estimated super-resolution val-
ues and the actual values for distance and speed is negligible.
According to TABLE 2, the maximum deviation for distance
estimation and velocity estimation is 0.02 m and 0.028 m/s,
respectively.

To assess the accuracy of the proposed algorithm with-
out bias, Monte Carlo simulation experiments were con-
ducted. To measure performance, the RMSE was used as
the metric for sensing accuracy. We assume that there
exist scenarios with 1, 2, and 3 targets, respectively,
i.e., p = 1, 2, 3. The simulation parameters remain
unchanged as presented in Table 1, except for the SNR
which is uniformly distributed between -20 dB and
20 dB. The estimated parameters of the targets are set
for{(R1 = 5 m,V1 = 10m/s)}, {(R2 = 20 m,V2 = 20m/s)},
and{(R3 = 60 m,V3 = 40m/s)}, respectively. The RMSE is
used to calculate the error between distance and velocity,

i.e., RMSE =

(
1
N

∑N
i=1 (xi − x̂i)2

)1/2
w.r.t. xi is a value in

the set of true values and x̂i is the corresponding estimated
value in the set. The proposed MF-F algorithm is employed
to perform 100 Monte Carlo simulations for each target, and
the resulting RMSE values are compared and characterized
in Figs. 7-8 shows the accuracy comparison of velocity and
range estimation, respectively. The curve in Fig. 7 indicates
that for a single target scenario, when the SNR is 10 dB,
the RMSE of velocity estimation approaches 10−3 m/s,
which suggests high accuracy in millimeter-per-second level
estimation. On the other hand, in the presence of multiple
targets and low SNR of 0 dB, the curve in the figure suggests
that the RMSE approximates 10−2 m/s. This implies that
the accuracy of estimating velocity is at the centimeter-per-
second level. In Fig. 8, the distance estimation RMSE of
the system is displayed. For single-target scenarios, at an
SNR of 5 dB, the estimate reaches 10−2 m. At an SNR of
15 dB, the RMSE drops to less than 10−3m, demonstrating
millimeter-level accuracy. In the case of multiple targets,
the RMSE equals 10−1m at which point the SNR declines
to −5 dB. An observation can be made from the distribution
trends of the three distinct curves indicating different target
numbers depicted in Figs. 7-8. The RMSE value is seen to
be progressively increasing with an increase in the P value.

FIGURE 7. RMSE vs velocity based on different numbers of targets.

FIGURE 8. RMSE vs range based on different numbers of targets.

Hence, it can be stated that the number of targets has a
noteworthy impact on perceptual accuracy. The reason for
this impact is that the estimation of the current target is
influenced by interference from other targets. As the SNR
increases, the RMSE values for multiple targets converge to
a stable value. e.g., in velocity perception, the stable value
is 0 dB, which corresponds to a convergence of RMSE to
10−2 m/s; In comparison, in distance perception, the RMSE
approaches 10−1 m as the SNR becomes -5 dB.
To explicitly illustrate the effectiveness of the proposed

MF-F algorithm, we undertook a thorough comparative
analysis against established algorithms, specifically the MF
algorithm [28], the FFT algorithm [19], the FCCC algorithm
in [20], and the MUSIC algorithm [17]. TABLE 3 indicates
the simulation parameters that were configured following the
settings provided in [22]. The simulation was conducted to
run 100 Monte Carlo experiments for each algorithm with
estimated parameters set at {(R1 = 10 m,V1 = 36km/h)}
and{(R2 = 30 m,V1 = 320km/h)}, respectively. The results
as showcased in Figs. 9-10. we see in Fig. 9 that the
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TABLE 3. Simulation parameters for different algorithms.

FIGURE 9. RMSE vs velocity for various algorithms.

MF-F algorithm proposed in this study exhibits supe-
rior speed-sensing performance compared to other algo-
rithms. Conversely, the FFT algorithm exhibits the worst
speed-sensing performance out of all the algorithms. In con-
trast, the performance of the FCCC and MF algorithms
is comparable regarding speed sensing. Fig. 10 shows the
range-sensing RMSE profile at 5 dB SNR, the RMSE
values of other algorithms are higher than those of the
MF-F algorithm, indicating the latter superior perceptual
accuracy. Additionally, the perceptual RMSE value of the
proposed MF-F algorithm remains stable under varying con-
ditions, demonstrating its robustness, while other algorithms
become unstable, signifying their lack of robustness. The
above-mentioned results demonstrate the effectiveness of
the proposed MF-F algorithm. Furthermore, by consider-
ing the simulation results under different conditions shown
in Figs. 7-8, it is evident that the MF-F algorithm proposed in
this work possesses robustness.

The paper provides a complexity analysis of the MF-F
algorithm, which is split into two parts. The first part involves
the MF step, which uses (19). This step includes a low-
complexity O (M ) +O (N )circular shift operation involving
a complexityO (MN )of as well as a multiplication operation.
The second part, i.e., the F step entails a computational
complexityO ((MN )2) of whenmatrix operations are directly

FIGURE 10. RMSE vs range for various algorithms.

applied through 9px. To reduce the complexity, the paper
chooses to transform the matrix operation into vector calcu-
lations, resulting in

9px = (FN ⊗ IM )8p(FHN ⊗ IM )x

= (FN ⊗ IM )

· (1vp5
lp
MN (IN ⊗ (FHMB(τi)FM ))) · (FHN ⊗ IM )x

= (FN ⊗ IM ) · (1vp5
lp
MNvec(F

H
MB(τi)FMXDDFHN ))

= vec(vec−1((1vp5
lp
MNvec(F

H
MB(τi)FMXDDFHN )) · FN ).

(33)

The computation described above includes the multiplication
of two diagonal matrices, i.e., 1vp and B(τi), respectively,
a cyclic shift matrix operation 5

lp
MN , and the FFT and inverse

FFT FMXFHN of a 2D matrix Xat points Mand N , respec-
tively. The complexity of the diagonal matrix multiplication
is O(MN ), whereas the cyclic shift matrix operation has
a complexity of O (MN ). The FFT at point M and the
inverse FFT at point N have complexities of O(MN log(M ))
andO(MN log(N )), respectively.
Therefore, the total complexity of the MF-F algorithm

proposed is O((MN )log2(MN )). TABLE 4 presents different
parameter estimations of the algorithm complexity.

To verify the performance of the algorithm in realistic
situations, we constructed a single-input single-output (SISO)
OTFS radar sensing system that operated at a carrier fre-
quency of 5.6 GHz using an analog devices, inc. (ADI)
Pluto software-defined radio (SDR) and Mathworks Matlab,
as shown in Fig. 1 of the OTFS ISAC system. The system
was built using two ADI Plutos, with one functioning as
an ISAC transceiver and the other as a receiver, as done
in [37]. To simulate an actual high-mobility environment,
we used the simulated channel on the transmitter side to
convey channel information with the ideal DD domain signal,
therefore simulating this. The simulation involved examining
the relativistic speed, distance, noise power, and simulated
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FIGURE 11. The image before and after the signal passes through the channel. (a) The signal image of the transmitter without passing through
the channel; (b) The single-target channel response image; (c) The multi-target channel response image.

FIGURE 12. Estimate target results using the MF-F algorithm. (a) The estimated single target; (b) The estimated single
target.

TABLE 4. Complexity vs for various algorithms.

channel parameters of multiple scatterers (i.e., sensing tar-
gets), which ultimately revealed the ‘‘ground truth’’ labels
channel parameters of multiple scatterers (i.e., sensing tar-
gets), which eventually disclosed the ‘‘ground truth’’ labels
for evaluating the channel performance. Before conducting
super-resolution sensing parameter estimations using theMF-
F algorithm, the received signal underwent signal processing,
such as frame synchronization, as described in [37]. The
detailed simulation parameters are presented in TABLE 5.

We transmitted signals through the CDDS channel. The
sensing parameter for single target scene estimation is
set {(R1 = 1000 m,V1 = 144km/h)}. The parameters
for multi-target scene estimation are respectively set as
{(R1 = 1000 m,V1 = 144km/h)} and {(R2 = 2000 m,

V2 = 360km/h)}. The coordinates of the time delay axis
and the Doppler frequency shift axis corresponding to the
two-parameter sets are (67.71, 35.44) M ,N and (133.42,
39.12) M ,N . Fig. 11(a)-(c) portrays the images of OTFS trans-
mitter signals before and after encountering single-target and
multi-target channel responses. The color of the image of
the transmitter signal without passing through the channel is
uniform, as depicted in Fig. 11(a). However, upon traversing
the CDDS channel, which has time-frequency selective char-
acteristics, the signal incurs damage. As a result, the image
presents itself with multiple noisy speckles, as illustrated in
Fig. 11(b)-(c). Next, theMF-F algorithm (a type of algorithm)
was employed to estimate the target. Fig. 12(a)-(b) presents
the image of the first step of the MF. The target coordinates
were retrieved from Fig. 12(a) by selecting the axis range’s
median value at (68, 35.5)M ,N . Fig. 12(b) displayed estimated
target coordinates at (68, 35.5)M ,N and (134, 39)M ,N respec-
tively. The estimated coordinates from the previous step were
then utilized to obtain the second F-step estimation, leading
to the acquisition of parameter super-resolution estimation.
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FIGURE 13. RMSE of delay-Doppler sensing parameters.

TABLE 5. Experimental parameters of the SDR platform.

As in [37], Monte Carlo experiments were conducted for
each scene to compare time delay values and RMSE values of
the Doppler shift perception parameter for different scenes.
Fig. 13 presents a comparison of sensing parameters for
single and multi-target scenes. The results show that, before
a low SNR of -5 dB, the time delay values and RMSE values
of the Doppler shift sensing parameter for a single target
are lower than those of the corresponding parameters for
a multi-target. The DD domain channel response pattern is
more complex under multi-target conditions, leading to a
decrease in estimation accuracy. After -5 dB, the fluctuations
of RMSE are minimal, and both the time delay for perception
and the RMSE of the Doppler shift remain stable. Based on
the results presented, we can conclude that centimeter-level
sensing accuracy can be achieved for Doppler sensing param-
eters. In contrast, the accuracy is limited to decimeters for
delay sensing parameters. This limitation is attributed to the
simple SDR ISAC system established in this paper, which
did not consider hardware limitations in much detail. Further
research could focus on addressing these limitations.

V. CONCLUSION
The accuracy of sensing parameter estimation in the ISAC
system poses a challenging issue. To address this, the
present study investigates the super-resolution ISAC sensing

parameter estimation based on the OTFS waveform in a
monostatic sensing scenario. This paper introduces a novel
algorithm for estimating the perceptual function of the ISAC
system. Specifically, the algorithm is for estimating MF-F
sensing parameters. To estimate the target parameters, the
proposed method employs two steps, which are referred
to as MF and F. The MF step is responsible for estimat-
ing the integer range of the target parameter on the grid
plane; The F step, on the other hand, uses the Fibonacci
search method for performing super-resolution estimation
within the reduced range acquired from the MF step. In this
paper, we develop a sensing system model for the ISAC
using a monostatic and determine the input-output rela-
tionship of the system’s matrices and vectors. Based on
these results, the practical scenarios of the SDR hardware
platform were used to validate the MF-F algorithm. The
effectiveness of the MF-F algorithm was compared to other
algorithms (MF, FFT, FCCC, and MUSIC) using numerical
simulations. Furthermore, the performance of the algorithm
was analyzed based on its multi-target identification accu-
racies, sensing accuracies, robustness, and complexity. The
results indicate that compared to other algorithms, the MF-F
algorithm has better perception performance. In addition,
the MF-F algorithm exhibits advantageous features such as
robustness, low complexity, and superior super-resolution
estimation performance. In addition to accurate sensing
parameter estimation, future practical applications present
challenging research tasks, including resource allocation for
ISAC-integrated sensing and communication and interfer-
ence elimination from ISAC hardware devices in practical
scenarios.

APPENDIX A
DERIVATION OF MLE
For brief derivation, consider a single-target scenario. The
observed vector y has a complex Gaussian distribution
with mean h · 9(τ, ν)x and variance σ 2

wINM , according
to (9)-(11). The maximum likelihood function of y is pro-
vided for a specified set of parameters, yielding

f (y; θ ) =
1

(πσ 2
w)

NM
2

exp(−
1
σ 2
w

∥y−h · 9(τ, ν)x∥2).

(34)

Thus, the MLE of θ that maximizes f (y; θ )is given by

θ̂ = (ĥ, τ̂ , ν̂) = argmin
θ

∥y − h9(τ, ν)x∥2. (35)

For the given parameters set {(τ, ν)}, To obtain ĥ, it is
necessary to minimize the following:

L(h) = ∥y − h9(τ, ν)x∥2

= (y − h9x)H (y − h9x)

= yHy − yH · h9x− h(9x)H · y + h2(9x)H9x.
(36)
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By setting the partial derivative of the above (36) w.r.t. h
equal to zero, leading

∂L(h)
∂h

= −2 · (9x)H · y + 2 · h · (9x)H9x ≜ 0

⇓

ĥ =
(9x)H · y

∥9x∥2
. (37)

Substituting ĥin (35) and expanding, we obtain a function
of the given variable, which can be written by

L(τ, ν) =

∥∥∥y − ĥ · 9(τ, ν) · x
∥∥∥2

= ∥y∥2 −

∣∣(9(τ, ν) · x)H · y
∣∣2

∥9(τ, ν) · x∥2
. (38)

Thus, the MLE of the parameters set {(τ, ν)}is given as

(τ̂ , ν̂) = argmin
(τ,ν)

J (τ, ν)

= argmin
(τ,ν)

(∥y∥2 −

∣∣(9(τ, ν) · x)H · y
∣∣2

∥9(τ, ν) · x∥2
)

⇓

(τ̂ , ν̂) = argmax
(τ,ν)

∣∣(9(τ, ν) · x)H · y
∣∣2

∥9(τ, ν) · x∥2

∝ argmax
(τ,ν)

∣∣∣(9(τ, ν) · x)H · y
∣∣∣2. (39)

The constant coefficient term ∥9(τ, ν) · x∥2does not affect
ML search results and can be disregarded.

REFERENCES
[1] D. K. P. Tan, ‘‘Integrated sensing and communication in 6G: Motivations

use cases requirements challenges and future directions,’’ inProc. 1st IEEE
Int. Online Symp. Joint Commun. Sens. (JCS), Feb. 2021, pp. 1–6.

[2] H. Wymeersch, D. Shrestha, C. M. de Lima, V. Yajnanarayana,
B. Richerzhagen, M. F. Keskin, K. Schindhelm, A. Ramirez, A. Wolfgang,
M. F. de Guzman, K. Haneda, T. Svensson, R. Baldemair, and S. Parkvall,
‘‘Integration of communication and sensing in 6G: A joint industrial and
academic perspective,’’ in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor
Mobile Radio Commun. (PIMRC), Sep. 2021, pp. 1–7.

[3] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
‘‘Integrated sensing and communications: Toward dual-functional wireless
networks for 6G and beyond,’’ IEEE J. Sel. Areas Commun., vol. 40, no. 6,
pp. 1728–1767, Jun. 2022.

[4] T. Wild, V. Braun, and H. Viswanathan, ‘‘Joint design of communica-
tion and sensing for beyond 5G and 6G systems,’’ IEEE Access, vol. 9,
pp. 30845–30857, 2021.

[5] Q. Qi, X. Chen, A. Khalili, C. Zhong, Z. Zhang, and D. W. K. Ng,
‘‘Integrating sensing, computing, and communication in 6G wireless net-
works: Design and optimization,’’ IEEE Trans. Commun., vol. 70, no. 9,
pp. 6212–6227, Sep. 2022.

[6] H. Zhang, H. Zhang, B. Di, M. D. Renzo, Z. Han, H. V. Poor, and L. Song,
‘‘Holographic integrated sensing and communication,’’ IEEE J. Sel. Areas
Commun., vol. 40, no. 7, pp. 2114–2130, Jul. 2022.

[7] G. Nie, J. Zhang, Y. Zhang, L. Yu, Z. Zhang, Y. Sun, L. Tian, Q. Wang, and
L. Xia, ‘‘A predictive 6G network with environment sensing enhancement:
From radio wave propagation perspective,’’China Commun., vol. 19, no. 6,
pp. 105–122, Jun. 2022.

[8] H. Chen, H. Sarieddeen, T. Ballal, H. Wymeersch, M. Alouini, and
T. Y. Al-Naffouri, ‘‘A tutorial on terahertz-band localization for 6G com-
munication systems,’’ IEEE Commun. Surveys Tuts., vol. 24, no. 3,
pp. 1780–1815, 3rd Quart., 2022.

[9] F. Tang, X. Chen, M. Zhao, and N. Kato, ‘‘The roadmap of communication
and networking in 6G for the metaverse,’’ IEEE Wireless Commun., early
access, Jun. 24, 2022, doi: 10.1109/MWC.019.2100721.

[10] Z. Feng, Z. Wei, X. Chen, H. Yang, Q. Zhang, and P. Zhang, ‘‘Joint
communication, sensing, and computation enabled 6G intelligent machine
system,’’ IEEE Netw., vol. 35, no. 6, pp. 34–42, Nov. 2021.

[11] R. Hadani, ‘‘Orthogonal time frequency space modulation,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.

[12] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, ‘‘Practical pulse-shaping
waveforms for reduced-cyclic-prefix OTFS,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 1, pp. 957–961, Jan. 2019.

[13] P. Raviteja, K. T. Phan, and Y. Hong, ‘‘Embedded pilot-aided channel esti-
mation for OTFS in delay–Doppler channels,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 5, pp. 4906–4917, May 2019.

[14] T. Thaj, E. Viterbo, and Y. Hong, ‘‘Orthogonal time sequency multiplexing
modulation: Analysis and low-complexity receiver design,’’ IEEE Trans.
Wireless Commun., vol. 20, no. 12, pp. 7842–7855, Dec. 2021.

[15] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, ‘‘Interference cancellation
and iterative detection for orthogonal time frequency space modulation,’’
IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.

[16] Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Prin-
ciples and Applications. San Diego, CA, USA: Academic Press, 2022.

[17] R. Schmidt ‘‘Multiple signal classification (MUSIC),’’ ESL, Cologne,
Germany, Tech. Memo TM 1098, 1979.

[18] R. Roy and T. Kailath, ‘‘Esprit-estimation of signal parameters via
rotational invariance techniques,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[19] C. Sturm and W. Wiesbeck, ‘‘Waveform design and signal processing
aspects for fusion of wireless communications and radar sensing,’’ Proc.
IEEE, vol. 99, no. 7, pp. 1236–1259, Jul. 2011.

[20] Y. Zeng, Y. Ma, and S. Sun, ‘‘Joint radar-communication with cyclic
prefixed single carrier waveforms,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 4, pp. 4069–4079, Apr. 2020.

[21] K.Wu, J. A. Zhang, X. Huang, and Y. J. Guo, ‘‘Integrating low-complexity
and flexible sensing into communication systems,’’ IEEE J. Sel. Areas
Commun., vol. 40, no. 6, pp. 1873–1889, Jun. 2022.

[22] Z. Gong, S. Liu, L. Li, Y. Huang, and J. Yuan, ‘‘Super-resolution
delay-Doppler estimation for OTFS radar,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), 5th Workshop Integr. Sens. Commun. (ISAC), Rome, Italy,
May 2023, pp. 1–4.

[23] Q. Wang, A. Kakkavas, X. Gong, and R. A. Stirling-Gallacher, ‘‘Towards
integrated sensing and communications for 6G,’’ in Proc. 2nd IEEE Int.
Symp. Joint Commun. Sens. (JCS), Seefeld, Austria, Mar. 2022, pp. 1–6,
doi: 10.1109/JCS54387.2022.9743516.

[24] M. Temiz, E. Alsusa, and M. W. Baidas, ‘‘A dual-function massive MIMO
uplink OFDM communication and radar architecture,’’ IEEE Trans. Cog-
nit. Commun. Netw., vol. 8, no. 2, pp. 750–762, Jun. 2022.

[25] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, ‘‘On the effective-
ness of OTFS for joint radar parameter estimation and communication,’’
IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951–5965, Sep. 2020.

[26] W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, ‘‘Integrated sensing and
communication-assisted orthogonal time frequency space transmission for
vehicular networks,’’ IEEE J. Sel. Topics Signal Process., vol. 15, no. 6,
pp. 1515–1528, Nov. 2021, doi: 10.1109/JSTSP.2021.3117404.

[27] S. Li, W. Yuan, C. Liu, Z. Wei, J. Yuan, B. Bai, and D. W. K. Ng, ‘‘A novel
ISAC transmission framework based on spatially-spread orthogonal time
frequency space modulation,’’ IEEE J. Sel. Areas Commun., vol. 40, no. 6,
pp. 1854–1872, Jun. 2022.

[28] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, ‘‘Orthogonal time
frequency space (OTFS) modulation based radar system,’’ in Proc. IEEE
Radar Conf. (RadarConf), Apr. 2019, pp. 1–6.

[29] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, ‘‘Hybrid digital-
analog beamforming and MIMO radar with OTFS modulation,’’ 2020,
arXiv:2009.08785.

[30] Y. Wu, C. Han, and Z. Chen, ‘‘DFT-spread orthogonal time frequency
space system with superimposed pilots for terahertz integrated sensing and
communication,’’ IEEE Trans. Wireless Commun., early access, Mar. 6,
2023, doi: 10.1109/TWC.2023.3250267.

[31] G. A. Vitetta, D. P. Taylor, and G. Colavolpe, Wireless Communications:
Algorithmic Techniques. Hoboken, NJ, USA: Wiley, 2013.

[32] D. E. Ferguson, ‘‘Fibonaccian searching,’’ Commun. ACM, vol. 3, no. 12,
p. 648, Dec. 1960.

66048 VOLUME 11, 2023

http://dx.doi.org/10.1109/MWC.019.2100721
http://dx.doi.org/10.1109/JCS54387.2022.9743516
http://dx.doi.org/10.1109/JSTSP.2021.3117404
http://dx.doi.org/10.1109/TWC.2023.3250267


Z. Tang et al.: Estimation Method of Sensing Parameters Based on OTFS

[33] K. J. Overholt, ‘‘Efficiency of the Fibonacci search method,’’ BIT, vol. 13,
no. 1, pp. 92–96, Mar. 1973.

[34] J. Pan, ‘‘Cramer-rao low bound of channel estimation for orthogonal time
frequency space modulation system,’’ IEEE Trans. Veh. Technol., vol. 70,
no. 10, pp. 9646–9658, Oct. 2021, doi: 10.1109/TVT.2021.3107917.

[35] B. Wang, J. Zhu, X. She, and P. Chen, ‘‘Cramer-rao lower bound analysis
for OTFS and OFDM modulation systems,’’ 2023, arXiv:2304.13928.

[36] S. K. Sengijpta, ‘‘Fundamentals of statistical signal processing: Estimation
theory,’’ Technometrics, vol. 37, no. 4, pp. 465–466, Nov. 1995.

[37] X. Wei, L. Zhang, W. Yuan, F. Liu, S. Li, and Z. Wei, ‘‘SDR system design
and implementation on delay-Doppler communications and sensing,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2023, pp. 1–6,
doi: 10.1109/WCNC55385.2023.10118889.

ZHILING TANG received the B.S. and M.S.
degrees in communications engineering from
the Guilin University of Electronic Technology
(GUET), China, in 1997 and 2005, respectively,
and the Ph.D. degree in information and com-
munications engineering from Xidian University,
China, in 2013. Since 2019, he has been a Pro-
fessor with the Guilin University of Electronic
Technology. His current research interests include
signal processing and radio signal recognition
technology for wireless communications.

ZHOU JIANG received the B.S. degree in engi-
neering from the Guilin University of Technology,
in 2021. He is currently pursuing the M.S. degree
with the School of Information and Communica-
tion, Guilin University of Electronic Technology.
His research interests include radio signal recogni-
tion technology for wireless communications and
integrated sensing and communication.

WANGHUA PAN was born in Ningdu, Jiangxi,
China, in 1979. He received the B.E. degree in
aircraft test and launch engineering, the M.S.
degree in weapon launch theory and technology,
and the Ph.D. degree in flight vehicle design
from the National University of Defence Technol-
ogy (NUDT), China, in 2001, 2004, and 2012,
respectively.

Since 2021, he has been a Lecturer with
the Guilin University of Electronic Technology

(GUET). His research interests include the determination of carrier attitude,
satellite navigation, and integrated sensing and communication.

LIZHEN ZENG was born in Hunan, China,
in 1979. She received the B.S. degree in electronic
information engineering from Xiangtan Univer-
sity, Xiangtan, China, in 2002, and theM.S. degree
in communication and information technology
from the Guilin University of Electronic Technol-
ogy, Guilin, China, in 2007.

Since 2008, she has been a Lecturer with the
School of Electronic Engineering andAutomation,
Guilin University of Electronic Technology. She

is the author of more than 20 articles and holds three patents. Her current
research interests include novel terahertz sensors and its applications and
integrated sensing and communication.

VOLUME 11, 2023 66049

http://dx.doi.org/10.1109/TVT.2021.3107917
http://dx.doi.org/10.1109/WCNC55385.2023.10118889

