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ABSTRACT This paper investigates the stabilization problem of linear time-invariant (LTI) systems
with unbounded disturbances. Firstly, three suitable filters are designed to asymptotically estimate the
corresponding external disturbances: w(t) = p cos(3t) + q, w(t) = pe0.1t , and (p cos(3t) + q)e0.1t , where
p, q are unknown constants. Secondly, a disturbance estimator (DE)-based control strategy is proposed by
combining the linear feedback control method with the obtained filters, and thus the stabilization of such
systems is realized. It is the first time to suppress the unbounded disturbances by designing suitable filters.
Thus, the presented conclusions have some advantages over the existing ones. Finally, illustrative examples
with computer simulation verify the effectiveness and correctness of the proposed results.

INDEX TERMS Stabilization, disturbance, suppression, estimator, unbounded, periodically.

I. INTRODUCTION
In the field of systems and control science, linear system
is the basic research object. It has made many results and
important progress in the past decades and its application is
very wide, see Refs. [1], [2], and [3]. However, in practical
engineering, the control system is inevitably affected by
various external disturbances, and the performance of the
control system will be weakened obviously if it is not dealt
with in the design of the control system, especially for the
linear systems. So far, there have been a number of methods
to suppress these external disturbances. For instance, the
Hamilton-based method [4], H∞ control method [5], sliding-
mode control [6], [7], disturbance-observer-based control
(DOBC) method [8], [9], and so on. But the above methods
more or less have some shortcomings. Such as, some of
these methods will produce chattering, some are not easy
to realize and optimize, and some are needed to assume
that the disturbance is bounded and solved by linear matrix
inequalities (LMIS), which leads to overly conservative
conclusions.
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Recently, the uncertainty and disturbance estimator
(UDE)-based control method [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] can deal with model uncertainty
and external disturbance effectively. Because of its strong
anti-disturbance performance this method has been widely
used in various systems. The UDE-based control method is
introduced first in the next.

Consider the controlled nonlinear system with uncertainty
and disturbance:

ẏ = h(y) + ud + bu (1)

where y ∈ Rn is the state, h(y) ∈ Rn is a continuous vector
function, b ∈ Rn is a constant matrix, u is the controller to
be designed, ud = 1h(y) + d(t) is the whole of uncertainty
1h(y) and the external disturbance d(t). The core idea of the
UDE-based control method is to design a suitable filter g′

f (t)
to achieve the performance:

ûd (t) = ud (t) ∗ g′
f (t) → ud (t), t → +∞ (2)

where ‘‘∗’’ represents the convolution of two functions.
Therefore, the design of filter is very important. Although
the authors in Refs. [14] and [15] have proposed some filter
design schemes, the obtained results are only robust, lack
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rigorous proof of asymptotical stability, and do not achieve
good asymptotical estimation of the whole uncertainty and
disturbance ud (t). As a matter of fact,

ûd (t) = ud (t) ∗ g′
f (t) = (1h(y) + d(t)) ∗ g′

f (t)

= 1h(y) ∗ g′
f (t) + d(t) ∗ g′

f (t)

→ 1h(y) ∗ g′
f (t) + d̂(t), t → +∞ (3)

i.e., the filter g′
f (t) in Eq. (3) only asymptotically estimate

the disturbance d(t), and 1h(y) weakens the performance
of g′

f (t). Thus, ûd (t) does not asymptotically estimate ud .
In conclusion, the suitable filter which can asymptotically
estimate the whole uncertainty and disturbance (ud ) has been
not presented so far. Therefore, the existing methods do not
solve the control problem of linear systems with external
disturbances well, especially in the face of unbounded
external disturbances. In practical applications, the modeling
process of the system is often faced with a more complex
external environment, so it is necessary to study how to
suppress unbounded disturbances.

Although the UDE-based control method has strong anti-
disturbance performance, it only obtains robust practical
results due to the influence of uncertainties. A natural
idea arises, the control problem of the system only with
disturbances can be solved by designing suitable filters.
In the latest work [20], we have proposed a suitable filter
which can be used to asymptotically estimate the periodic
external disturbance p sin(ωt)+q, where p and q are unknown
constants, ω is known in advance. In addition, in the face
of exponential growth or even more complex unbounded
disturbances, the traditional low-pass filter has not tomeet the
requirements, so it is necessary and urgent to design suitable
filters to deal with such unbounded external disturbances.

Based on the above discussion, firstly, this paper proposes
three suitable filters to asymptotically estimate periodic
and unbounded external disturbances, and then a DE-based
control strategy is designed to solve the stabilization problem
of LTI systems with external disturbances. And the design
of the controller takes into account the matching conditions,
which means that it can not only achieve the stabilization
of single-input systems, but also achieve the stabilization
of multi-input systems. It is worth noting that this is
the first time to achieve the asymptotic estimation of
unbounded disturbances with suitable filters. Different from
fault diagnosis, fault tolerant control and traditional control
methods based on UDE, the proposed filter is only targeted
at the external disturbance of the system, and achieves the
objective of asymptotic control rather than just robust control,
which is also an important advantage of this paper. Thus,
the conclusions presented in this paper have more advantages
than the existing results. Illustrative examples with computer
simulation verify the effectiveness and correctness of the
proposed results.

The organization of this paper is presented as follows.
Problem formation is raised in Section II. Main results of this
paper are put forward in Section III. Section IV provides two

illustrative examples with numerical simulation, Section V
gives the conclusions.

Some notations used in this paper are presented before
ending this section. In denotes the n × n identity matrix,
3 = {1, 2, · · · , n} is a index set, Laplace transformation
is expressed by ‘‘ℓ’’, ‘‘ℓ−1’’ stands for the inverse Laplace
transformation, and ‘‘∗’’ represents the convolution of two
functions, i.e.,

F(s) = ℓ[f (t)] =

∫
+∞

0
f (t)e−stdt,

where s is complex variable with Re(s) > 0, f (t) is a function
which meets some appropriate conditions, f (t) = ℓ−1[F(s)].
And ‘‘∗’’ represents the convolution of two functions, that

is,

f (t) ∗ g(t) =

∫ t

0
f (t − τ )g(τ )dτ,

where g(t) is a function which satisfies certain conditions.

II. PROBLEM FORMATION
A. PRELIMINARIES
Definition 1: Consider the following controlled LTI sys-

tem

ẋ = Ax + Bus (4)

where x ∈ Rn is the state, A ∈ Rn×n and B ∈ Rr are constant
matrices, us ∈ Rr is the controller to be designed, r ≥ 1.
If lim
t→∞

∥x(t)∥ = 0, we call the system (4) is stabilized by the
controller u.

The system (4) is usually called the nominal system.
It is well known that there are many methods to design
the controller us. For simplicity, the linear feedback control
method is used in this paper to stabilize the above system.
Lemma 1: Consider the system (4). If (A,B) is control-

lable, then the linear feedback controller us is designed as

us = −Kx (5)

where K is a feedback gain matrix which is got by the pole
assignment algorithm.

B. PROBLEM FORMATION
Consider the following LTI system

ẋ = Ax + Bu+ w(t) (6)

where x ∈ Rn is the state, A ∈ Rn×n and B ∈ Rr are
constant matrices, w(t) = (w1(t), · · · , wn(t))T ∈ Rn are the
unpredictable external disturbances, u ∈ Rr is the controller
to be designed, r ≥ 1.
With the development of this paper, two assumptions are

presented as follows.
Assumption 1: (A,B) is controllable, and B has full

column rank.
Assumption 2: The control matrix B and the disturbance

w(t) meet the following condition

rank (B, w(t)) = rank(B). (7)
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Remark 1: Assumption 2 ensures that the following
equation

Buw = w(t) (8)

has an unique solution, where uw ∈ Rr is the desired
DE-based controller. The equation (7) is usually called the
matching condition.

If B ∈ R, then the equation (7) becomes

w(t) = wi(t)B, (9)

where wi(t) is the external disturbance, i ∈ 3.
Remark 2: The most significant difference from the exist-

ing results is that the disturbances wi(t) may be bounded
or unbounded. Such as, the bounded periodic disturbance:
wi(t) = pi cos(3t) + qi, the unbounded exponentially
increasing disturbance: wi(t) = pieait , or the unbounded
disturbance: wi(t) = (pi cos(3t) + qi)e0.1t , where pi, qi are
unknown constants, ai > 0 and ωi > 0 are known constants
in advance.

The main goal of this article is to design an appropriate
controller u to implement the following performance:

lim
t→∞

∥x(t)∥ = 0.

i.e., make the system (6) realize stabilization.
In the next the desired controller u = us + uw is proposed

by two steps. In the first step, the stabilization controller
us = −Kx for the nominal system (4) is presented by the
pole assignment algorithm, where K is a constant matrix
with appropriate dimension. The DE-based controller uw is
designed in the second step. For several external disturbances
wi(t) mentioned above, the corresponding controllers uwi
are designed by designing suitable filters Gfi(s) which can
asymptotically estimate such disturbances, i ∈ 3.

III. MAIN RESULTS
First, some preliminary results are presented as follows.

A. STABILITY OF LTI SYSTEMS WITH ASYMPTOTICALLY
STABLE DISTURBANCE
Theorem 1: About the linear system ẋ = Āx + w̃(t). If Ā

is a Hurwitz matrix and ∥w̃(t)∥ ≤ L1eλ1t , where L1 > 0,
λ1 < 0, then lim

t→∞
∥x(t)∥ = 0.

Proof: Since Ā is a Hurwitz matrix, there exist two
constants L2 > 0, λ2 < 0 such that ∥eĀt∥ ≤ L2eλ2t .
The solution of the system ẋ = Āx + w̃(t) is obtained as

follows

x(t) = eĀtC +

∫ t

0
eĀ(t−s)w(s)ds (10)

C ∈ Rn is an arbitrary constant matrix.
It results in

∥x(t)∥ ≤ ∥eĀtC∥ +

∫ t

0
∥eĀ(t−s)w(s)∥ds

≤ ∥C∥∥eĀt∥ +

∫ t

0
∥eĀ(t−s)∥∥w(s)∥ds

≤ ∥C∥L2eλ2t +

∫ t

0
L2eλ2(t−s)L1eλ1sds

≤ ∥C∥L2eλ2t + L1L2eλ2t
∫ t

0
e(λ1−λ2)sds (11)

The following two cases are considered.
If λ1 = λ2, then the equation (11) is obtained as follows

∥x(t)∥ ≤ ∥C∥L2eλ2t + L1L2eλ2t t → 0.

If λ1 ̸= λ2, then the equation (11) is got as follows

∥x(t)∥ ≤ ∥C∥L2eλ2t +
L1L2

λ1 − λ2

(
eλ1t − eλ2t

)
→ 0.

In conclusion, the results are derived, which completes the
proof.

B. A SUITABLE FILTER IS DESIGNED FOR THE BOUNDED
PERIODIC DISTURBANCE
Theorem 2: For the bounded periodic disturbance:wi(t) =

pi cos(3t) + qi, where pi ̸= 0, qi are unknown constants,
a suitable filter is designed as

Gfi(s) =
20s4 + 920s3 + 11960s2 + 31200s+ 73620

s5 + 63s4 + 1398s3 + 12347s2 + 35421s+ 73620
(12)

and meets the following performance:

ŵi(t) = wi(t) ∗ ℓ−1 [
Gfi(s)

]
= wi(t) ∗ gfi(t) → wi(t),

as t → ∞, i ∈ 3. (13)

Proof: Since

gfi (t) = ℓ−1[Gfi(s)]

= 20e−20t [52319689 − 6560502 cos(3t)

− 6e
37
2 t (185793 cos( 3

√
3 t
2 ) + 86930

√
3 sin( 3

√
3 t
2 ))

+ 52301140 sin(3t)]
/

44644429 (14)

it concludes

(pi cos(3t) + qi) ∗ gfi(t)

=

∫ t

0
(pi cos(3τ ) + qi)gfi(t − τ )dτ

= pi cos(3t) + qi − e−20t
[
9 (289pi + 400qi)

127921
(cos(3t)

+
20 (7313pi + 7466qi)
9 (289pi + 400qi)

sin(3t)) +
400pi + 409qi

349

]
+ e−

3
2 t

(
60 (123862pi + 148861qi)

44644429

)
(cos(

3
√
3 t
2

)

+

√
3 (173860pi − 98863qi)
371586pi + 446583qi

sin(
3
√
3 t
2

))

→ pi cos(3t) + qi, as t → ∞ (15)

Thus, the designed filterGfi(s) meets the requirements, i ∈ 3.
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C. SOME SUITABLE FILTERS ARE DESIGNED FOR THE
UNBOUNDED DISTURBANCE
Theorem 3: For the unbounded exponentially increasing

disturbance: wi(t) = mieait , where ai > 0 is known (ai is
usually 0.1), and mi is unknown, a suitable filter is designed
as

Gfi(s) =
20

s+ (20 − ai)
(16)

and meets the following performance:

ŵi(t) = wi(t) ∗ ℓ−1 [
Gfi(s)

]
= wi(t) ∗ gfi(t) → wi(t),

as t → ∞, i ∈ 3. (17)

Proof: Since

gfi(t) = ℓ−1 [
Gfi(t)

]
= ℓ−1

[
20

s+ (20 − ai)

]
= 20e−(20−ai)t (18)

it is to get

mieait ∗

[
20e−(20−ai)t

]
= mi20

∫ t

0
eaiτ e−(20−ai)(t−τ )ds

= mi20e−(20−ai)t
∫ t

0
e20τds

= mie−(20−ai)t
[
e20t − 1

]
= mieait

[
1 − e−20t

]
→ mieait , as t → ∞ (19)

So the presented filter Gfi(s) meets the requirements.
Theorem 4: For the unbounded disturbance: wi(t) =

[pi cos(3t) + qi] e0.1t , where pi ̸= 0, qi are unknown
constants, a suitable filter is designed as

Gfi(s) =
a4s4 + a3s3 + a2s2 + a1s+ a0

b5s5 + b4s4 + b3s3 + b2s2 + b1s+ b0
(20)

where a4 = 2000000, a3 = 91200000, a2 =

1168520000, a1 =

2883552000, a0 = 7061868200; b5 = 100000, b4 =

6250000, b3
= 137290000, b2 = 1193137000, b1 = 3299328850, b0 =

7019997829.
and meets the following performance:

ŵi(t) = wi(t) ∗ ℓ−1 [
Gfi(s)

]
= wi(t) ∗ gfi(t) → wi(t),

as t → ∞, i ∈ 3. (21)

Proof: Since

gfi (t) = ℓ−1[Gfi(s)]

= 20e−
199
10 t [52319689 − 6560502 cos(3t)

− 6e
37
2 t (185793 cos( 3

√
3 t
2 ) + 86930

√
3 sin( 3

√
3 t
2 ))

+ 52301140 sin(3t)]
/

44644429 (22)

in the next

[pi cos(3t) + qi] e0.1t ∗ gfi(t)

=

∫ t

0
[pi cos(3τ ) + qi] e0.1τgfi(t − τ )dτ

= [pi cos(3t)+qi] e0.1t−e−
199
10 t

[
9 (289pi + 400qi)

127921
(cos(3t)

+
20 (7313pi + 7466qi)
9 (289pi + 400qi)

sin(3t)) +
400pi + 409qi

349

]
+ e−

7
5 t

(
60 (123862pi + 148861qi)

44644429

)
(cos(

3
√
3 t
2

)

+

√
3 (173860pi − 98863qi)
371586pi + 446583qi

sin(
3
√
3 t
2

))

→ [pi cos(3t) + qi] e0.1t , as t → ∞ (23)

Therefore, the designed filter Gfi(s) meets the requirements.

D. THE DE-BASED CONTROLLER DESIGNED
Based on the above discussion, a conclusion is got in the next.
Theorem 5: About the system (6). If the suitable filters

Gfi(s) are proposed, i ∈ 3, then this system is stabilized by
the following controller:

u = us + uw (24)

where

us = −Kx (25)

K is a feedback gain matrix which is got by the pole
assignment algorithm, and

uw = B+

{
ℓ−1

[
(In − Gf (s))−1Gf (s)

]
∗

[
Āx(t)

]
−ℓ−1

[
(In − Gf (s))−1(sGf (s))

]
∗ x(t)

}
(26)

where B+
= (BTB)−1BT , Gf (s) = ℓ

[
gf (t)

]
, Ā = A − BK ,

and

Gf (s) =


Gf 1(s) 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · Gfn−1(s) 0
0 0 · · · 0 Gfn(s)

 (27)

gf (t) =


gf 1(t) 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · gfn−1(t) 0
0 0 · · · 0 gfn(t)

 (28)

Proof: Since (A,B) is controllable, thus Ā is a Hurwitz
matrix according to the pole assignment theory of linear
systems.

Substituting the controller presented in Eq. (25) into the
system (6), it gets

ẋ = Āx + Buw + w(t) (29)
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Let

Buw = −ŵ(t), (30)

and

w̃(t) = w(t) − ŵ(t). (31)

According to Theorem 2, Theorem 3 and Theorem 4,

w̃(t) = w(t) − ŵ(t) → 0, as t → ∞ (32)

Therefore, system (29) can be rewritten as

ẋ = Āx + w̃(t) (33)

According to Lemma 1, it is noted that the system (33) is
asymptotically stable.

Making Laplace transformation of the two sides of the
Eq. (30) with zero initial condition

Buw = −ŵ(t) = −gf (t) ∗ (ẋ − Āx − Buw), (34)

it yields

Buw(s) = −Gf (s)
[
sX (s) − ĀX (s) − Buw(s)

]
, (35)

where X (s) = ℓ[x(t)].
Simplifying the above equation (35), it results in

uw(s) = B+

{[
(In − Gf (s))−1Gf (s)

] [
ĀX (s)

]
−

[
(In − Gf (s))−1(sGf (s))

]
X (s)

}
. (36)

Thus, the controller uw given in Eq. (26) is obtained by
making inverse Laplace transformation of the equation (36).
Remark 3: If B ∈ R, the DE-based controller uw is

presented as follows

uw = B+

{
ℓ−1

[
Gf (s)

1 − Gf (s)

]
∗

[
Āx(t)

]
−ℓ−1

[
sGf (s)

1 − Gf (s)

]
∗ x(t)

}
. (37)

IV. ILLUSTRATIVE EXAMPLES WITH NUMERICAL
SIMULATION
Illustrative examples are taken as examples and the corre-
sponding numerical simulations are carried out to verify the
above obtained theoretical results in this section.
Example 1: Consider the following single input LTI

system with the bounded periodic disturbance

ẋ = Ax + Bu+ w(t), (38)

where x ∈ R3 is the state, and

A =

 1 1 2
3 1 0
1 0 1

 , B =

 0
1
0

 , (39)

w(t) =

 0
2 cos(3t) + 3

0

 .

FIGURE 1. The system (38) is asymptotically stable.

It is clear that

w(t) =

 0
2 cos(3t) + 3

0

 = w1(t)B, (40)

where w1(t) = 2 cos(3t) + 3, i.e., the match condition (9) is
met.

Let the eigenvalues of the matrix Ā = A − BK be
−2, − 1± j. According to Theorem 5, the desired controller
u is expressed as

u = us + uw, (41)

where

us = −Kx = −
(
22 7 29

)
x

= −22x1 − 7x2 − 29x3, (42)

Gfi(s) =
20s4 + 920s3 + 11960s2 + 31200s+ 73620

s5 + 63s4 + 1398s3 + 12347s2 + 35421s+ 73620
,

(43)

and

uw = ℓ−1
[

Gf (s)
1 − Gf (s)

]
∗ (−19x1 − 6x2 − 29x3)

− ℓ−1
[
(In − Gf (s))−1(sGf (s))

]
∗ x2. (44)

Next, numerical simulation is implemented with the initial
condition: x0 = [−2, 1, 3]T . It can be seen from Figure 1 that
the system (38) is asymptotically stable, and Figure 2 shows
that the disturbance estimator ŵ1(t) tends to the disturbance
w1(t) as t → ∞.
Remark 4: For the disturbancew2(t), the proposed filter in

Ref. [15] is given as follows

Gf (s) =
a1s+ (a2 − w2)
s2 + a1s+ a2

(45)

where w = 4π, a1 = 10w, a2 = 100w2.
Let ŵ2 = w2(t) ∗ gf (t) = w2(t)ℓ−1[Gf (s)] and

e = ŵ2 − w2(t), numerical simulation is carried out with
t = 0 : 0.01 : 10, the state of e is shown below

VOLUME 11, 2023 65201



X. Wang et al.: Stabilization of LTI Systems With Unbounded Disturbances via DE-Based Control Method

FIGURE 2. ŵ1(t) tends to w1(t).

FIGURE 3. The state of e.

FIGURE 4. The state of e.

From Figure 3, it can be seen that the proposed filter in
Eq. (45) only realize the robust estimation of w2(t).

The same simulation result by the designed filter in (20) is
shown in the following,

FIGURE 5. The state of controller u.

FIGURE 6. The system (46) is asymptotically stable.

It can be observed from Figure 4 that the designed filter
in (20) can asymptotically estimate the w2(t). Therefore, the
obtained result has advantages over the existing ones.
The control signal u is displayed in the following figure
Example 2: Consider the following multi-input LTI sys-

tem with the unbounded external disturbances

ẋ = Ax + Bu+ w(t), (46)

where x ∈ R3 is the state, and

A =

 2 1 0
1 3 6
1 2 5

 , B =

 0 0
1 0
0 1

 ,

w(t) =

 0
5e0.1t

e0.1t [10 cos(3t) + 1]

 . (47)

It is easy to verify that

rank(B, w(t)) = rank

 0 0 0
1 0 5e0.1t

0 1 e0.1t [10 cos(3t) + 1]


65202 VOLUME 11, 2023
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FIGURE 7. ŵ2(t) converges to w2(t).

FIGURE 8. ŵ3(t) converges to w3(t).

= 2 = rank(B) = rank

 0 0
1 0
0 1

 , (48)

i.e., the match condition (7) is satisfied.
By similar procedure to Example 1, the controller u is

designed as

u = us + uw, (49)

where (50) and (51), as shown at the bottom of the page, and

Gf2 (s) =
20

s+ 19.9
, (52)

FIGURE 9. The state of controller u.

Gf3 (s) =
a4s4 + a3s3 + a2s2 + a1s+ a0

b5s5 + b4s4 + b3s3 + b2s2 + b1s+ b0
(53)

where a4 = 2000000, a3 = 91200000, a2 =

1168520000, a1 = 2883552000, a0 = 7061868200; b5 =

100000, b4 = 6250000, b3 = 137290000, b2 =

1193137000, b1 = 3299328850, b0 = 7019997829.
With the initial condition: x0 = [2, 3, −5]T , numerical

simulation is carried out. From Figure 6 it is easy to see that
the system (46) is asymptotically stable, and Figure 7 shows
that ŵ2(t) converges to w2(t) as t → ∞, Figure 8 shows that
ŵ3(t) converges to w3(t) as t → ∞.
The control signal u is displayed in the following figure

V. CONCLUSION AND PROSPECT
The stabilization of the LTI systems with external dis-
turbances (which are bounded or unbounded) has been
investigated by the DE-based control method. Firstly, the
stabilization of linear nominal system has been achieved
by pole assignment algorithm of linear system. Next, some
suitable filters have been proposed to asymptotically estimate
the corresponding external disturbances, and it has been
the first time to propose suitable filters for unbounded
disturbances. Then, the DE-based control method consid-
ering matching conditions has been proposed and applied
to realize the stabilization of such systems by estimating
the disturbance asymptotically and eliminating it exactly.
Therefore, the method presented in this paper has advantages
over previous results. Finally, numerical examples with

us = −Kx = −

(
11 7 6
1 2 7

)
x =

(
−11x1 − 7x2 − 6x3
−x1 − 2x2 − 7x3

)
, (50)

uw =

 ℓ−1
[

Gf 2(s)
1 − Gf 2(s)

]
∗ (−10x1 − 4x2) − ℓ−1

[
sGf 2(s)

1 − Gf 2(s)

]
∗ x2

ℓ−1
[

Gf 3(s)
1 − Gf 3(s)

]
∗ (−2x3) − ℓ−1

[
sGf 3(s)

1 − Gf 3(s)

]
∗ x3

 , (51)
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computer simulation have been taken to verify the validity
and effectiveness of the proposed results.

The limitation of the method proposed in this paper is
that only the external disturbances of the system has been
investigated without considered the model uncertainty of the
system. The model uncertainty of the system is also one of
the factors affecting the control performance of the system.
Therefore, in the following work, we will investigate the
stabilization problem of linear systems with both parametric
uncertainty and external disturbance, and we hope to put
forward a better method to improve the control performance
of the system.
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