
Received 2 June 2023, accepted 19 June 2023, date of publication 27 June 2023, date of current version 11 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289836

Scalable Empirical Dynamic Modeling With
Parallel Computing and Approximate
k-NN Search
KEICHI TAKAHASHI 1, (Member, IEEE), KOHEI ICHIKAWA 2, (Member, IEEE),
JOSEPH PARK 3, (Senior Member, IEEE), AND GERALD M. PAO4
1Cyberscience Center, Tohoku University, Sendai 980-8578, Japan
2Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
3Comprehensive Nuclear-Test-Ban Treaty Organization, 1400 Vienna, Austria
4Okinawa Institute of Science and Technology, Onna, Okinawa 904-0412, Japan

Corresponding authors: Keichi Takahashi (keichi@tohoku.ac.jp) and Gerald M. Pao (gerald.pao@oist.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP20K19808;
and in part by the Joint Usage/Research Center for Interdisciplinary Large-Scale Information Infrastructures (JHPCN), Japan,
under Project jh220050.

ABSTRACT Empirical Dynamic Modeling (EDM) is a mathematical framework for modeling and pre-
dicting non-linear time series data. Although EDM is increasingly adopted in various research fields, its
application to large-scale data has been limited due to its high computational cost. This article presents
kEDM, a high-performance implementation of EDM for analyzing large-scale time series datasets. kEDM
adopts the Kokkos performance-portable programming model to efficiently run on both CPU and GPUwhile
sharing a single code base. We also conduct hardware-specific optimization of performance-critical kernels.
kEDMachieved up to 6.58× speedup in pairwise causal inference of real-world biology datasets compared to
an existing EDM implementation. Furthermore, we integrate multiple approximate k-NN search algorithms
into EDM to enable the analysis of extremely large datasets that were intractable with conventional EDM
based on exhaustive k-NN search. EDM-based time series forecast enhanced with approximate k-NN search
demonstrated up to 790× speedup compared to conventional Simplex projection with less than 1% increase
in MAPE.

INDEX TERMS Empirical dynamic modeling, high-performance computing, time-series analysis, perfor-
mance portability, high-performance data analytics.

I. INTRODUCTION
Empirical Dynamic Modeling (EDM) [1] is a mathemati-
cal framework for modeling and predicting non-linear time
series data. Although EDM is increasingly adopted in various
fields such as neuroscience [2], ecology [3], medicine [4]
and geophysics [5], applications to large datasets have been
limited due to the high computational cost. Since current
EDM implementations are not designed with performance as
a primary goal, several studies [6], [7] improved the EDM
algorithm or implementation to accelerate the computation.
We developed mpEDM [8], a prototype implementation of
EDM that utilizes GPU-centric supercomputers, by taking

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

advantage of both intra- and inter-node parallelism, and GPU
offloading.

Although mpEDM demonstrated massive speedup over
a conventional implementation, several challenges remain.
First, mpEDM maintained different implementations for dif-
ferent hardware such as CPUs and GPUs. This design is
simple, but incurs high maintenance costs and requires devel-
opment effort when porting it to a novel hardware. Second,
some parts of the EDM computation could not be efficiently
implemented using ArrayFire, the library we used to offload
computation to the GPU. Thus, the computation could not be
fully executed on the GPU. Furthermore, we used exhaustive
k-nearest neighbor (k-NN) search in mpEDM, but the cost
of exhaustive k-NN search grows rapidly even if parallel
hardware is employed.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 68171

https://orcid.org/0000-0002-1607-5694
https://orcid.org/0000-0003-0094-3984
https://orcid.org/0000-0001-5411-1409
https://orcid.org/0000-0002-3360-9440


K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

In this article, we develop kEDM, a performance-portable
implementation of EDM using the Kokkos programming
model to address these challenges in mpEDM. By imple-
menting all kernels with Kokkos, kEDM efficiently runs on
diverse hardware while having a single code base. Further-
more, we integrate approximate k-NN search algorithms into
EDM to enable the analysis of extremely large datasets that
were intractable with exhaustive k-NN search.

This article is an extension to our previous conference
paper [9] where we presented a prototype of kEDM and
conducted a preliminary performance evaluation. The key
updates from the conference paper are summarized as
follows:

• We present a high-performance implementation of
S-map, an EDMalgorithm that quantifies the non-linearity
of a dynamical system.

• We analyze the impact of each optimization technique
we propose using microbenchmarks.

• We integrate approximate k-NN search algorithms into
EDM to enable the analysis of extremely large datasets.

The rest of the article is organized as follows. Section II
briefly introduces the basic concept of EDM and algorithms
that we mainly target, which are Simplex projection, Con-
vergent Cross Mapping, and S-map. Section III describes
the design and implementation of kEDM, our performance-
portable implementation of EDM based on the Kokkos
programming model. Section IV evaluates the performance
of kEDM using both synthetic and real-world datasets, ana-
lyzes the impact of performance tuning, and investigates the
trade-off between speed and accuracy when using approxi-
mate k-NN search in EDM. Section VI concludes this article.

II. BACKGROUND
In this section, we first discuss the basic concept behind
EDM. We then introduce popular EDM methods that we
target: Simplex projection for short-term forecasts, S-map for
quantification of non-linearity, andCCM for causal inference.

A. EMPIRICAL DYNAMIC MODELING
Empirical Dynamic Modeling (EDM) [1] is a mathematical
framework for modeling non-linear time series data. It is
based on the Takens’ theorem [10], [11]. Takens’ theorem
states that the attractor manifold of a dynamical system can
be reconstructed from time lags of time series observed
from the dynamical system. Fig. 1 illustrates the concept of
state space reconstruction. Fig. 1(a) shows the original state
space of a dynamical system. Fig. 1(b) shows the state space
reconstructed from time lags. Takens’ theorem shows that
given enough time lags, the reconstructed manifold preserves
the topological features of the original manifold, i.e., the
reconstructed manifold is diffeomorphic to the true manifold.

1) SIMPLEX PROJECTION
Simplex projection is an EDM method that makes short-
term forecasts [12]. Let x ∈ RL denote the library time

FIGURE 1. Concept of state space reconstruction.

series. The time-delayed embedding of a point xt ∈ R in the
E-dimensional state space Xt ∈ RE is given as:

Xt =
(
xt , xt−τ , . . . , xt−(E−1)τ

)
, (1)

where τ is the time lag. For a given observation yt and
its E-dimensional time-delayed embedding Yt =

(
yt ,

yt−τ , . . . , yt−(E−1)τ
)
, Simplex projection predicts the Tp

steps ahead value of yt+Tp . First, let us assume n ∈ NE+1

is a vector of nearest neighbor indices. ni is the time index
of the i-th nearest neighbor of Xt , and Xni is the embedded
vector of the i-th nearest neighbor. The Euclidean distance
is used to measure the distance between embedded points,
i.e., d(Xi,Xj) = ∥Xi−Xj∥2. Simplex projection predicts the
future of yt by considering how the E+1 nearest neighbors of
Xt , which define an E-dimensional simplex, move over time.
Specifically, the Tp steps ahead prediction of yt is given as a
weighted average of the E + 1 nearest neighbors in the state
space projected Tp steps ahead :

ŷt+Tp =
E+1∑
i=1

wi∑E+1
i=1 wi

· Xni+Tp , (2)

where

wi = exp

− d(Xt ,Xni )
min

1≤j≤E+1
d(Xt ,Xnj )

 . (3)

Here,w ∈ RE+1 are the weights assigned to each neighbor.
The weights are assigned based on the distance between the
predicted point and its neighbor, i.e., closer neighbors are
given higher weights.

2) S-MAP
Sequentially Locally Weighted Global Linear Maps (S-map)
is another short-term forecast method [13]. Its main purpose
is to estimate state space Jacobians and is used to quantify the
non-linearity of a system. Unlike Simplex projection that uses
the k-nearest library points of the predicted point in the state
space, S-map uses all library points, weighting the points
by their distances from the prediction point, and applying a
localization kernel to the weights reflecting a specific state
space localization of the linear mapping. This localization in
the state space reflects the ‘‘locally weighted global linear
maps’’.

68172 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

Specifically, S-map builds a linear model for each pre-
dicted point as follows. Given a vector of regression coef-
ficients ĉ ∈ RE+1, the linear model is defined as:

ŷt+Tp = ĉ1 +
E∑
i=1

ĉi+1Yt−iτ . (4)

The model linearly combines lagged observations Yt
scaled by the regression coefficients c. Note that c is a
function of time step t and varies over time. The regression
coefficients are estimated as a solution of the following least-
squares problem:

ĉ = argmin
c
∥WAc−Wb∥22, (5)

A =


1 x1−τ x1−2τ . . . x1−(E−1)τ
1 x2−τ x2−2τ . . . x2−(E−1)τ
...

...
...

. . .
...

1 xN−τ xN−2τ . . . xN−(E−1)τ

 , (6)

b =
[
x1+Tp x2+Tp . . . xN+Tp

]⊤
, (7)

W = diag(w1,w2, . . . ,wN ), (8)

where w are the weights defined as:

wi = exp
{
−

θd(Yt ,Xi)

d̄(Yt ,Xi)

}
. (9)

The parameter θ (≥ 0) is a localization factor that controls
how much near neighbors are given higher weights than
distant neighbors (i.e., the degree of state dependence) in
making a prediction. Note that if θ = 0, S-map is equivalent
to an autoregressive model. To quantify the non-linearity of
a system, the prediction skill is evaluated with respect to θ .
If the prediction accuracy increases with θ , the system is
considered non-linear.

3) CONVERGENT CROSS MAPPING (CCM)
Convergent Cross Mapping (CCM) identifies and quantifies
the causal interaction between two time series variables. [14]
The generalized Takens’ theorem [11] implies that it is pos-
sible to cross map between time series, i.e., predict one time
series from another, if both time series are observed from the
same dynamical system. Given a pair of time series x and y,
CCM reconstructs a subsampled manifold from x and uses
it to predict y with the Simplex projection or S-map. The
causality is tested by gradually increasing the subset size and
evaluating if the prediction accuracy of y (measured by Pear-
son’s correlation of predicted and actual values) increases.
If the prediction accuracy of y increases with the subset size
of x, it indicates that y left some information in x, and thus it
is considered y causes x.

B. mpEDM
mpEDM1 is a proof-of-concept implementation of EDM
for GPU-based HPC systems we developed in our previ-
ous work [8]. Prior to developing mpEDM, we profiled

1https://github.com/keichi/mpEDM

cppEDM,2 the de facto standard implementation, and iden-
tified that the k-NN search in the state space is the main
bottleneck in most EDM methods. We thus offloaded the
k-NN search to GPU using the ArrayFire [15] library. Using
the AI Bridging Cloud Infrastructure (ABCI)3 supercom-
puter, mpEDM demonstrated up to 1,530× speedup over
cppEDM on a dataset recorded from zebrafish brain contain-
ing 53,053 time series each with 1,450 time steps.

Although mpEDM successfully accelerated EDM using
HPC, several challenges remain. First, mpEDM maintained
different implementations for different architectures. This
design incurs high maintenance costs and requires develop-
ment effort when porting mpEDM to a novel HPC hard-
ware. Second, mpEDM was limited by ArrayFire. mpEDM
used ArrayFire to offload computation to GPU. However,
some parts of EDM computation, specifically the lookup
of nearest neighbor points, could not be efficiently imple-
mented using ArrayFire. Thus, the lookups were executed
on the host CPU even if a GPU is available on the
system.

III. PROPOSAL
In this section, we describe the design and implementation
of kEDM. We first describe the overall design of kEDM,
and introduce the Kokkos performance-portable program-
ming model we use to implement kEDM. We then discuss
the implementation of Simplex projection and S-map along
with performance tuning. Lastly, we describe the integration
of approximate k-NN search into EDM to enhance the scala-
bility of EDM.

A. OVERALL DESIGN
To address the challenges in mpEDM, we develop a new
implementation of EDM named kEDM.4 kEDM uses the
Kokkos [16], [17] performance portability framework, and
runs on both CPUs and GPUs while sharing the same code
base. Thus, porting to a new hardware can be completed
with minimal effort. Furthermore, since all kernels including
lookups of neighbors are implemented using Kokkos, the
entire application can be executed on the GPU. We also
include a Python binding based on pybind11.5

The runtime of exhaustive k-NN search becomes pro-
hibitively long if the time series is extremely long even if
high-performance CPUs or GPUs are employed. To address
this problem, we take advantage of approximate k-NN search
algorithms that yield massive speedup over exhaustive search
with minor loss in accuracy.

B. KOKKOS
Kokkos [16], [17] is a performance-portable programming
model. Kokkos is implemented as a C++ library, and allows

2https://github.com/SugiharaLab/cppEDM
3https://abci.ai/
4https://github.com/keichi/kEDM
5https://github.com/pybind/pybind11

VOLUME 11, 2023 68173



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

users to develop programs that run efficiently on diverse
hardware. Parallel computation in Kokkos is expressed using
a combination of three abstractions: (1) execution space,
(2) execution pattern, and (3) execution policy. The exe-
cution space represents where the computation is executed.
As of writing this article, Kokkos supports CUDA, HIP, HPX,
OpenACC, OpenMP, OpenMP Target Offloading and SYCL
as execution spaces. The execution pattern represents what
the computation is, i.e., computational kernel. The execu-
tion pattern is represented with one of parallel_for,
parallel_reduce and parallel_scan, and a C++
functor.

The execution policy defines how the computation is exe-
cuted. The most basic execution policy is RangePolicy,
which is used to parallelize a loop that iterates over
a one-dimensional range of indices. TeamPolicy and
TeamThreadRange execution policies are used in con-
junction to parallelize a nested loop. TeamPolicy is
applied to the outer loop, and launches teams of threads.
TeamThreadRange is applied to the inner loop, and
launches threads within a team. The use of TeamPolicy
and TeamThreadRange allows to take advantage the hier-
archical parallelism of the underlying hardware: on a GPU,
teams and threads map to thread blocks and threads, respec-
tively, and on a CPU, teams map to physical cores and threads
map to hardware threads. ThreadVectorRange is the
third level of parallelism, which maps to individual vector
lanes. TeamPolicy also gives access to scratch memory,
which is an abstraction of fast on-chip memory, e.g., shared
memory on GPUs.

Views are fundamental data types in Kokkos that rep-
resent reference-counted multidimensional arrays. They are
associated to memory spaces, an abstraction of where the
data resides, and have polymorphic data layouts so that the
memory layout can be transparently changed. By default,
a view is stored row-major on CPU and column-major on
GPU, so that accesses are blocked on CPU and coalesced
on GPU.

Listing 1 shows a vector add kernel implemented
in Kokkos. In this example, a parallel_for with
RangePolicy iterates over the one-dimensional range 0 ≤
i < n. Listing 2 shows a matrix vector multiply kernel that
uses hierarchical parallelism. The outer parallel_for
with TeamPolicy launches a league of m teams that each
computes one element in the output vector y. The inner
parallel_reducewith TeamThreadRange computes
the dot product between a row in A and x. Subsequently,
a single thread in each team writes the dot product to the
corresponding location in y.
In addition to Kokkos, we considered several perfor-

mance portable programmingmodels such as OpenMPTarget
Offloading, OpenACC and SYCL.We chose Kokkos because
previous research [18], [19], [20] suggested that Kokkos
delivers portable performance on a wider variety of devices
compared to its alternatives. Furthermore, multiple pro-
duction applications such as ExaWind [21], Albany [22]

Listing 1. Vector addition using RangePolicy.

Listing 2. Matrix vector multiplication using TeamPolicy and
ThreadVectorRange.

Uintah [23] and LAMMPS [24] have been successfully
ported to Kokkos, demonstrating its practicality.

C. SIMPLEX PROJECTION
In our previous work [8], we identified that the k-NN search
in the state space is the major bottleneck in Simplex projec-
tion. We thus design a parallel k-NN search using Kokkos.
An exact (exhaustive) k-NN search is composed of calcu-
lating the distances between all embedded points, and then
performing a top-k search to find the closest k points from
each point.

Algorithm 1 is a pseudocode of the pairwise distances
kernel. This kernel calculates the squared distance between
every pair of embedded points Xt . A trivial implementation
would first embed the time series x into the state space and
generate X as defined in Eq. (1). However, this approach
incurs excessive memory accesses. We thus do not create the
embedding X in the memory explicitly but directly compute
the distances between embedded points from the original
time series x. The i-loop (lines 1–8 in Algorithm 1) and
j-loop (lines 2–7) iterate over each element inD and calculate
Di,j, i.e., the distance between Xi and Xj. The inner-most
k-loop (lines 4–6) iterates over the embedded dimensions and
accumulates the distance in each dimension into Di,j.
To parallelize this algorithm, we use hierarchical par-

allelism and assign the outer-most i-loop to thread teams
and inner j-loop to individual threads. Taking advantage of
the fact that xi−kτ is L times reused in the j-loop, we use
team-private scratch memory to cache the values of xi−kτ .
On CPUs, vectorization is critical to attaining high per-
formance. A simple approach would be to vectorize the
inner-most k-loop by using ThreadVectorRange offered
by Kokkos or compiler auto-vectorization. However, this

68174 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

Algorithm 1 Pairwise distances

Input: Library time series x ∈ RL

Output: Pairwise distance matrix D ∈ RL×L

// TeamPolicy
1 parallel for i← 1 to L do

// TeamThreadRange
2 parallel for j← 1 to L do
3 Di,j← 0
4 for k ← 1 to E do
5 Di,j← Di,j + (xi−kτ − xj−kτ )2

6 end
7 end
8 end

is not profitable since the embedding dimension is usually
small (E ≤ 20) in realistic use cases. We thus use Kokkos
SIMD types [25] to explicitly vectorize the j-loop. SIMD
types are an abstraction around native SIMD instructions
(e.g., AVX-256, AVX-512 and SVE) and allow hardware-
independent explicit vectorization.

Algorithm 2 show the pseudocode of the top-k search
kernel that runs on the distance matrix computed by the pair-
wise distance kernel. The top-k search kernel is particularly
challenging to implement in a performance-portable manner
because state-of-the-art top-k search algorithms [26], [27] are
usually optimized for a specific hardware. Thus, we design
and implement a top-k search algorithm that works on both
CPU and GPU efficiently. The basic idea of this algorithm
is to maintain a list of top-k items while scanning the input.
To hold the top-k items, we use a sorted list. The average time
complexity of inserting a new element into a sorted list O(k).
Although there are data structures with lower time complexity
such as a max-heap with O(log k) average time complexity
for insertion, we found out that a sorted list is the fastest for
a small k (≤ 20) required in EDM.

In our algorithm, each thread team finds the top-k ele-
ments from one row of the distance matrix (lines 1–10 in
Algorithm 2). Each thread within a thread team maintains a
local sorted list on team-private scratchmemory that holds the
top-k elements it has seen so far. Threads read the distance
matrix in a coalesced manner and push the distances and
indices to their local lists (lines 2–4). Once all elements are
processed, one leader thread in each thread team merges the
local lists within the team and writes the final top-k elements
to global memory (lines 5–9). Once the top-k elements are
found, D is converted from squared distance to Euclidean
distance by taking the square root. D is then converted to
exponential scale and normalized such that the sum of each
row equals to one according to Eqs. (2) and (3).

D. CCM
When performing pairwise CCM between a large number
of time series, the number of k-NN search queries can be
drastically reduced by performing multiple CCMs that use

Algorithm 2 Top-k search

Input: Pairwise distance matrix D ∈ RL×L

Output: Top-k distance matrix D ∈ RL×(E+1) and index
matrix I ∈ NL×(E+1)

// TeamPolicy
1 parallel for i← 1 to L do

// TeamThreadRange
2 parallel for j← 1 to L do
3 Insert

(
Di,j, j

)
into local list

4 end
// Single

5 for j← 1 to E+1 do
6 for j← 1 to # of threads in the team do
7

(
Di,j, Ii,j

)
← Pop element from thread j’s list

8 end
9 end
10 Normalize D
11 end

the same library time series in parallel [8]. This is because
in Eq. (2), w and n only depend on the library time series
and do not depend on the predicted time series. Thus, w and
n can be precomputed and reused for many predicted time
series. If w and n are reused, the k-NN search becomes no
longer a bottleneck, and the lookup of the predicted time
series becomes the primary bottleneck.

Algorithm 3 shows the pseudocode of the lookup kernel.
The basic idea of the lookup kernel is to perform the lookups
of many predicted time series in batch. This reduces the
number of k-NN search, but also increases the chance that
the distances and indices of the neighbors are kept cached.
The outer i-loop (lines 1–8 in Algorithm 3) iterates over
the predicted time series, and assigned to thread teams. The
inner j-loop (lines 2–7) loop iterates over the time steps, and
assigned to threads within the team. The body of the j-loop

Algorithm 3 Lookup

Input: Predicted time series Y ∈ RL×N , normalized
top-k distance matrix D ∈ RL×(E+1) and index
matrix I ∈ RL×(E+1) computed from the library
time series

Output: Predicted time series Ŷ ∈ RL×N

// TeamPolicy
1 parallel for i← 1 to N do

// TeamThreadRange
2 parallel for j← 1 to L do
3 ŷj,i← 0
4 for k ← 1 to E + 1 do
5 ŷj,i← ŷj,i + Dj,k · yIj,k−kτ
6 end
7 end
8 end

VOLUME 11, 2023 68175



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

Algorithm 4 S-map

Input: Library time series x ∈ RL and predicted time
series y ∈ RL

Output: Pairwise distance matrix D ∈ RL×L

// TeamPolicy
1 parallel for i← 1 to L do

// TeamThreadRange
2 parallel for j← 1 to L do
3 Di,j← 0
4 for k ← 1 to E do
5 Di,j← Di,j + (xi−kτ − yj−kτ )2

6 end
7 Di,j←

√
Di,j

8 end
// TeamThreadRange

9 parallel for j← 1 to L do

10 w← exp
{
−

θDj,i
D̄j,i

}
11 Aj,0,i← w
12 for k ← 1 to E do
13 Aj,k,i← w · xj−kτ
14 end
15 bj,i← w · xj+Tp
16 end
17 end
18 Batch solve argmin∥Ax− b∥2 and store solution to c

// RangePolicy
19 parallel for i← 1 to L do
20 yi← c0,i
21 for k ← 1 to E do
22 ŷi+Tp ← ck,i · yi−kτ
23 end
24 end

is essentially identical to Eq. (2). Since the lookup requires
indirect (random) accesses to the predicted time series y,
we cache the time series onto team-private scratch memory.

E. S-MAP
As described in Section II-A2, S-map builds a linear model
for each predicted point and estimates its parameters using the
least-squares method. Thus, the main bottleneck of S-map is
to solve a large number of least-squares problems. In kEDM,
we use sgels, a function provided by LAPACK6 that finds
solutions to least-squares problems. To alleviate the kernel
launch overhead and increase the utilization of the hardware,
we use the cublasSgelsBatched function provided by
cuBLAS,7 which solves many least-squares problems in par-
allel. On the CPU, we simply call sgels repeatedly since
standard LAPACK implementations do not provide a batched
version of sgels.

6https://netlib.org/lapack/
7https://docs.nvidia.com/cuda/cublas/

Listing 4 shows the pseudocode of S-map. Lines 1 to 17
prepare A and b according to Eqs. (6)–(8). Note that A and
b are three dimensional arrays where their first dimension
corresponds to batches. Since the size ofA isO(L2E),A does
not fit in memory if L or E is large. We thus calculate the
size of A and control the batch size so that A fits in memory.
Line 18 invokes the least-squares solver, and lines 19–24
make predictions using the estimated linear models.

F. APPROXIMATE EDM FOR LARGE-SCALE DATASETS
Even if multi-threading or GPU offloading is used, the run-
time of EDM becomes prohibitive for long time series since
the time complexity of k-NN search is O(L2). To solve this
problem, we take advantage of Approximate Nearest Neigh-
bor (ANN) search [28] algorithms to accelerate the costly
k-NN search in EDM. ANN search algorithms provide a large
speedup compared to an exhaustive k-NN search with a small
loss in accuracy. In this article, we consider the following
three popular ANN search algorithms:

• Inverted File Index (IVF): IVF [29] is a simple index that
clusters the training points using the k-means method.
At search time, only the points within the cluster nearest
from the query point are searched.

• k-dimensional Tree (k-d Tree): k-d Tree [30] is a clas-
sical tree-based index that hierarchically partitions the
space into cells. It is constructed by recursively split-
ting the training points by a hyperplane perpendicular
to an axis. At search time, the tree is traversed and
only a small number of cells are searched to find the
neighbors.

• Hierarchical Navigable Small World (HNSW) [31]:
HNSW is a recently proposed graph-based index based
on Navigable Small World (NSW) graphs [32], [33].
An NSW graph is a graph where a greedy search
algorithm can find a path between two vertices with
a number of hops polylogarithmic to the number of
vertices. This property can be leveraged for k-NN search
by building an NSW graph where vertices correspond to
data points and searching over this graph.

We use the Faiss [26] library to implement IVF andHNSW,
and use the nanoflann [34] library to implement k-d Tree,
since these libraries are used in many previous studies and
are generally considered well-optimized and mature.

IV. EVALUATION
In this evaluation, we first assess the performance of k-NN
search and lookup kernels in kEDM using microbenchmarks,
and analyze the performance benefit of tuning.We then evalu-
ate the performance of CCMand S-map using kEDM. Finally,
we analyze the runtime and accuracy trade-off of Simplex
projection accelerated with approximate k-NN search.

The evaluation experiments are conducted on both CPU
and GPU. The evaluation environment is a computing server
equipped with two sockets of AMD EPYC 7742 CPUs,
1 TB of DDR4 SDRAM and one NVIDIA A100 PCIe card

68176 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

(40GB model). We use the AMD Optimizing C/C++ Com-
piler (AOCC) 4.0.0 and NVIDIA CUDA Toolkit 11.8 to
compile kEDM for CPU and GPU, respectively. As for the
BLAS/LAPACK implementation, we use AMD Optimizing
CPU Libraries (AOCL) BLIS and libFLAME on the CPU,
and cuBLAS on the GPU. All experiments on the CPU are
conducted on a single socket of EPYC 7742with core binding
enabled.

A. MICROBENCHMARKS
Fig. 2 shows the runtime of the k-NN search of kEDM and
mpEDM on A100 as a function of the embedding dimen-
sion E. When L = 103, the pairwise distances kernel of
kEDM is significantly faster than that of mpEDM, and the
speedup reaches up to 26.7×. In mpEDM, the time-delayed
embeddings were performed on the CPU, and the embedded
vectors were passed to ArrayFire’s kNN search function.
Contrastingly, kEDM performs the time-delayed embedding
during the distance calculation and thus requires much fewer
memory accesses. On the other hand, the partial sort kernel
is slower than mpEDM. This is because the overhead of
maintaining the priority queues becomes dominant if the total
number of time steps is small, and each thread only processes
a small number of elements. However, since the distance
calculation is the bottleneck in mpEDM, the k-NN search is
up to 6.32× faster on kEDM.

FIGURE 2. k-NN search runtime on A100.

When L = 104, the pairwise distance kernel is up to 7.62×
faster than mpEDM. The partial sort kernel is 5.67× faster
whenE = 1, but the speedup becomes smaller asE increases.
This is because a larger E requires a more shared memory to
hold the local priority queues, and results in lower multipro-
cessor occupancy. Fig. 3 shows the runtime of k-NN search on
EPYC. Overall, kEDM achieves comparable performance as
mpEDM on EPYC. This suggests that the overhead imposed
by Kokkos is minimal, and our performance-portable imple-
mentation can attain similar performance as a conventional
implementation for CPU.

Fig. 4 shows the runtime of the lookup kernel (with-
out cross-correlation calculation) on A100 and EPYC 7742.
We generate 105 synthetic target time series each having
103 or 104 time steps, and measure the time to perform batch
lookups from a library time series with the same number

FIGURE 3. k-NN search runtime on EPYC 7742.

FIGURE 4. Lookup runtime on A100 and EPYC 7742.

FIGURE 5. Impact of performance tuning on the pairwise distances
kernel.

of time steps. kEDM on A100 is consistently faster than on
EPYC, and the speedup ranges from 3.89× to 7.50×.
To assess the impact of performance tuning described

in Section III-C, we compare the performance of kernels
with and without the performance tuning applied. Fig. 5
shows the performance of the pairwise distances kernel with
and without using the scratch memory and SIMD types.
On A100, using the SIMD types yield no measurable change
in performance as expected. This is because the SIMD
types are translated to scalar types on GPUs. Using scratch
memory clearly improves the performance of the kernel by
up to 1.34×. On EPYC, scratch memory has no perfor-
mance benefit, but SIMD types yield significant performance
improvement. The speedup reaches 3.0× at maximum.

Fig. 6 shows the performance of the lookup kernel with and
without using the scratch memory. The performance benefit
of using scratch memory is drastic on A100, reaching up
to a 17.2× speedup. Interestingly, scratch memory slightly
improves the performance on EPYC as well, even though

VOLUME 11, 2023 68177



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

FIGURE 6. Impact of performance tuning on the lookup kernel.

CPUs do not have a manually managed cache. This might
be because accessing the predicted time series in advance
loads the time series into the cache hierarchy. These results
demonstrate that the Kokkos programming model allows
optimization for a specific hardware while keeping the per-
formance penalty on other hardware minimal.

B. CCM
We prepare the following six real-world datasets with diverse
number and length of time series that reflect a variety of
use cases, and measure the runtime of kEDM for completing
pairwise CCM calculations. At the time of the development
of mpEDM and kEDM the target datasets for analysis were
mostly biological. For this reason, we used whole genome
RNA sequencing (transcriptome) datasets that we generated
ourselves, as well as neurosciencewhole brain Calcium imag-
ing, datasets that represent the main areas of experimental
biological big data at this time. All datasets are recorded in
single-precision floating point numbers. The number of time
series and time steps in each datasets are described in Table 1.

• Fish1_Normo is a subset of 154 representative neu-
ron behaviors of the so called default state behavior
of zebrafish larvae collected by lightsheet microscopy
of fish transgenic with nuclear-localized GCAMP6f,
a calcium indicator that we generated ourselves (unpub-
lished).

• Fly80XY is aDrosophila melanogaster (fruit fly) whole
brain lightfield microscopy GCAMP6f recording, where
distinct brain areas were identified by independent
component analysis with the fly left right and for-
ward walking speed behaviors collected on a styrofoam
ball [35].

• Genes_MEF contains the gene expression profiles of
all genes and small RNAs generated by Illumina8 short
read sequencing from mouse embryo fibroblast genes
over 96 time steps of two cycles of serum induction
and starvation stimulation generated by the authors
(unpublished).

• Subject6 and Subject11 are whole brain light sheet
microscopy GCAMP6f recordings at whole brain scale

8https://www.illumina.com/

and single neuron resolution of larval zebrafish respond-
ing to visual stimuli [36].

• F1 is a subset of whole brain 2-photon microscopy
a larval zebrafish where seizures were biochemically
induced with recordings of three phases: control condi-
tions, pre-seizure and full seizure [37].

Table 1 shows the runtime for performing a pairwise CCM
on each dataset. Fig. 7 shows the speedup of each imple-
mentation on each platform over mpEDM executed on AMD
EYPC 7742. The results clearly demonstrate that kEDM out-
performs mpEDM in most cases. In particular, kEDM shows
significantly higher (up to 6.58×) performance than mpEDM
on A100. This performance gain is obtained from the opti-
mized k-NN search and GPU-enabled lookups. Datasets with
few number of time steps or time series, i.e., Fish1_Normo
and Genes_MEF, do not benefit from GPU acceleration on
both kEDM andmpEDM. This is because the runtime of each
kernel is short, and the reduction of kernel runtime cannot
offset the runtime overhead of offloading computation to
the GPU.

C. S-MAP
Fig. 8 shows the runtime of S-map using kEDM. If L = 103,
A100 is slower than EPYC. This is because the computation
is not large enough to fully utilize theGPU. TheGPU speedup
becomes larger as the number of time steps and embedding
dimension become larger. The GPU speedup becomes 12.8×
when L = 104 and E = 20.

D. APPROXIMATE EDM
In this evaluation, we assess the trade-off between runtime
and accuracy when using ANN search in EDM. We create
artificial time series data with varying lengths by simulating
the Lorenz attractor using the Runge-Kutta method [38],
and compare the runtime and accuracy of Simplex projec-
tion across different ANN algorithms. We also provide the
performance when using exact k-NN search as a baseline.
Each ANN search algorithm has different hyperparameters
that affect its search speed and accuracy. We use the default
values provided by Faiss and nanoflann in all algorithm to
make a fair comparison.

1) RUNTIME
Since the dimensionality of data heavily impacts the per-
formance of ANN search [39], we measure the runtime of
approximate EDM in two cases, where the embedding dimen-
sion is 1 and 20. The measurement results are summarized in
Tables 2 and 3 in the Appendix.

Fig. 9 shows the runtime of Simplex projectionwith respect
to the time series length when the embedding dimension is
one. The time series length L is varied from 210 (=1,024)
to 220 (=1,048,576). On the CPU, exact search is the fastest
only if L = 210, and quickly becomes the slowest due to its
quadratic time complexity. k-d Tree is the fastest algorithm
for most time series lengths. When L = 220, k-d Tree attains

68178 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

TABLE 1. Runtime for performing pairwise CCM on real-world datasets.

FIGURE 7. Speedup for performing pairwise CCM on real-world datasets.

FIGURE 8. S-map runtime.

a 3,406× speedup over exact search. It is also 4.4× and 4.3×
faster than IVF and HNSW, respectively. This indicates that
k-d Tree is highly efficient for low-dimensional data.

On the GPU, exact search is faster than IVF when the time
series is short. IVF becomes faster than exact search when
L ≥ 218, and attains 19.9× speedup over exact search when
L = 220. IVF clusters the data points using the k-means
algorithm and then performs an exact searchwithin the cluster
closest to the query point. This reduces the number of points
to search in the exact search, but the time complexity remains
quadratic. The overhead for this clustering step does not pay
off until the time series becomes long.

Fig. 10 shows the runtime of Simplex projection when
the embedding dimension is 20. On the CPU, k-d Tree is
no longer the fastest one. This is because k-d Tree struggles
with high-dimensional data because of the curse of dimen-
sionality [40], where the number of visited cells increases
exponentially with respect to the data dimension. IVF and
HNSW both achieve similar performance, but HNSW is the

FIGURE 9. Runtime of approximate Simplex projection (E = 1).

fastest when the time series becomes long (L ≥ 219). The
speedups of HNSW and IVF over exact search are 775.1×
and 325.6×, respectively, when L = 220. On the GPU,
the trend is similar to the low-dimensional case. IVF is ini-
tially slower than exact search, but surpasses exact search
when L ≥ 217.
These results clearly show that there is no single ANN

search algorithm that always performs faster than all the other
algorithms. Therefore, the ANN search algorithm should be
switched depending on the characteristics of the input dataset.
A reasonable choice would be to use k-d Tree for lower
embedding dimensions and HNSW for higher embedding
dimensions on a CPU. On a GPU, exact search should be used
for shorter time series and IVF for longer time series. In the
next section, we will compare the ANN search algorithms
from the aspect of accuracy.

VOLUME 11, 2023 68179



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

FIGURE 10. Runtime of approximate Simplex projection (E = 20).

FIGURE 11. Recall of nearest neighbors (higher is better).

2) ACCURACY
We now assess the accuracy of ANN search and Simplex
projection. Fig. 11 shows the recall of ANN search, which
is defined as the ratio of found neighbors by the ANN search
algorithm to the number of true neighbors. The true nearest
neighbors are obtained using exact nearest neighbor search
on the GPU. When E = 1, the recall rate drops quickly
as L increases. Interestingly, the difference in recall among
the three ANN algorithms is very small. When E = 20, the
decline in recall of HNSW and k-d Tree is small compared to
the E = 1 case. This is because more neighbors are found
compared to the E = 1 case, and the probability that the
true neighbors are included in the found neighbors becomes
higher. The recall of IVF is initially low, but increases as the
time series become longer. As described in Section III-F, IVF
clusters the training points, and then searches only within the
cluster that is closest from the query point. Therefore, if the
number of points per cluster is few, the probability that the
closest cluster does not contain the true neighbors becomes
high, and thus the recall drops.

To evaluate the impact of errors incurred by approximate
k-NN search on the prediction accuracy of Simplex pro-
jection, we measure the Mean Absolute Percentage Error
(MAPE) of Simplex projection and compare it with the
conventional Simplex projection using exact k-NN search.
Fig. 12 shows the relative MAPE of Simplex projection when
using each ANN search algorithm instead of exact k-NN
search.

FIGURE 12. Normalized MAPE of approximate Simplex projection (lower
is better).

Interestingly, the increase in MAPE is minimal even if the
recall of k-NN search clearly drops such as in the E = 1 case.
This can be explained as follows. If the embedded points are
densely distributed on the attractor manifold, there are a large
number of points surrounding the predicted point. Since the
key idea of Simplex is to use an ensemble of points similar to
the predicted point in the state space, if the ANN search can
find some of the similar points around the predicted point,
Simplex projection can still provide robust accuracy if those
points are not exact k-nearest neighbors.

Out of the ANN search algorithms, HNSW is the most
stable algorithm in terms of MAPE. The increase in MAPE
compared to conventional Simplex projection is consistently
below 1% for the variety of time series lengths and embed-
ding dimensions we evaluated. Considering the comparison
of runtime in the previous section, HNSW takes a good
balance between speed and accuracy and is the best choice
on the CPU.

V. LIMITATIONS AND FUTURE WORK
Our evaluation in this article is limited to two processors:
NVIDIA A100 GPU and AMD EPYC 7742 CPU. Even
though kEDM is developed using the Kokkos performance
portable-programming model and thus expected to achieve
reasonable performance on other processors as well, the exact
speedup is yet to be investigated. Performance evaluation
on other recent high-performance processors such as AMD
Instinct GPUs [41] or NEC Vector Engines [42] is a future
work.

The evaluation results indicate that the choice of the best
ANN search algorithm depends on several parameters such as
the number of time steps and embedding dimension. In addi-
tion, it also depends on whether a GPU is available on the
system, and the performance of the CPU and GPU. Currently,
the ANN search algorithm needs to be manually selected
by the user by considering these factors, which might be a
burden for some users. We thus plan to develop an automatic
algorithm selection mechanism in the future that chooses the
fastest ANN search algorithm on a target hardware for a given
dataset.

In terms of the implementation, not all features available in
cppEDM are implemented in kEDM. These features include
exclusion radius (excludes nearest neighbors if their relative
time index is within a threshold), conditional embedding

68180 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

TABLE 2. Runtime of approximate Simplex projection (E = 1).

TABLE 3. Runtime of approximate Simplex projection (E = 20).

(selectively embeds library points), pluggable solvers (allows
swapping the linear model used in S-map to other models
such as Ridge, LASSO and ElasticNet regression models),
and plotting of results. However, there are no fundamental
challenges in implementing these features in kEDM.

VI. CONCLUSION
We presented the design and implementation of kEDM,
a high-performance implementation of EDM for analyzing
large-scale time series datasets on CPU and GPU. kEDM
achieved up to 6.58× speedup in pairwise causal infer-
ence of real-world biology datasets compared to mpEDM.
This result demonstrates the effectiveness of our approach,
i.e., developing the software using a performance-portable
programming model and applying hardware-specific opti-
mizations to performance-critical kernels.

Furthermore, we integrated approximate k-NN search into
EDM to enable the analysis of extremely large datasets. Sim-
plex projection enhanced with approximate k-NN search was
790× faster Simplex projection using exact k-NN search with
less than 1% increase in MAPE. A key insight we obtained
is that Simplex projection is surprisingly robust to low k-NN
search recall rate. This property might apply to other EDM
algorithms aswell, and could be further exploited in the future
to achieve significant speedup.

The massive speedup delivered by kEDM will allow the
research community to apply EDM to previously intractable
big data. Conventionally, the number of time steps or time
series had to be significantly reduced by subsampling or
dimensionality reduction to analyze large-scale datasets using

EDM within feasible time. However, this inherently causes
loss of information and produces potentially inaccurate
results. We believe that kEDM will widen the applicability
of EDM to various research fields involving the analysis of
non-linear time series data.

APPENDIX
APPROXIMATE EDM RUNTIME
Table 2 compares the runtime of approximate Simplex pro-
jection using different ANN search algorithms and varying
the number of time steps when E = 1. Similarly, Table 3
compares the runtime of approximate Simplex projection
when E = 20.

ACKNOWLEDGMENT
The authors would like to thank Dominic R. W. Burrows at
theMRCCentre for Neurodevelopmental Disorders, Institute
of Psychiatry, Psychology and Neuroscience, King’s Col-
lege London, London, U.K., for providing the F1 dataset
used in the performance evaluation. They also would like
to thank Jorge Aldana at the Salk Institute for Biolog-
ical Studies for providing assistance with the computing
servers.

REFERENCES
[1] C.-W. Chang, M. Ushio, and C.-H. Hsieh, ‘‘Empirical dynamic

modeling for beginners,’’ Ecol. Res., vol. 32, no. 6, pp. 785–796,
Nov. 2017.

[2] S. Liu, M. Ye, G. M. Pao, S. M. Song, J. Jhang, H. Jiang, J.-H. Kim,
S. J. Kang, D.-I. Kim, and S. Han, ‘‘Divergent brainstem opioidergic path-
ways that coordinate breathing with pain and emotions,’’ Neuron, vol. 110,
no. 5, pp. 857–873, Mar. 2022.

VOLUME 11, 2023 68181



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

[3] M. Ushio, C.-H. Hsieh, R. Masuda, E. R. Deyle, H. Ye, C.-W. Chang,
G. Sugihara, and M. Kondoh, ‘‘Fluctuating interaction network and time-
varying stability of a natural fish community,’’ Nature, vol. 554, no. 7692,
pp. 360–363, Feb. 2018.

[4] S. Liu, D.-I. Kim, T. G. Oh, G. M. Pao, J.-H. Kim, R. D. Palmiter,
M. R. Banghart, K.-F. Lee, R. M. Evans, and S. Han, ‘‘Neural basis of
opioid-induced respiratory depression and its rescue,’’ Proc. Nat. Acad.
Sci., vol. 118, no. 23, Jun. 2021, Art. no. e2022134118.

[5] J. Park, G. M. Pao, G. Sugihara, E. Stabenau, and T. Lorimer, ‘‘Empir-
ical mode modeling: A data-driven approach to recover and forecast
nonlinear dynamics from noisy data,’’ Nonlinear Dyn., vol. 108, no. 3,
pp. 2147–2160, May 2022.

[6] H. Ma, K. Aihara, and L. Chen, ‘‘Detecting causality from nonlinear
dynamics with short-term time series,’’ Sci. Rep., vol. 4, no. 1, pp. 1–10,
Dec. 2014.

[7] B. Pu, ‘‘Exploiting multiple levels of parallelism of convergent cross
mapping,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Saskatchewan,
Saskatoon, SK, Canada, 2019.

[8] W. Watanakeesuntorn, K. Takahashi, K. Ichikawa, J. Park, G. Sugihara,
R. Takano, J. Haga, and G. M. Pao, ‘‘Massively parallel causal inference
of whole brain dynamics at single neuron resolution,’’ in Proc. IEEE 26th
Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020, pp. 196–205.

[9] K. Takahashi, W. Watanakeesuntorn, K. Ichikawa, J. Park, R. Takano,
J. Haga, G. Sugihara, and G. M. Pao, ‘‘kEDM: A performance-portable
implementation of empirical dynamic modeling using Kokkos,’’ in Proc.
Pract. Exp. Adv. Res. Comput., Jul. 2021, pp. 1–8.

[10] F. Takens, ‘‘Detecting strange attractors in turbulence,’’ in Dynamical Sys-
tems and Turbulence, Warwick 1980, vol. 898. Berlin, Germany: Springer,
1981, pp. 366–381.

[11] E. R. Deyle and G. Sugihara, ‘‘Generalized theorems for nonlinear
state space reconstruction,’’ PLoS ONE, vol. 6, no. 3, Mar. 2011,
Art. no. e18295.

[12] G. Sugihara and R. M. May, ‘‘Nonlinear forecasting as a way of distin-
guishing chaos from measurement error in time series,’’ Nature, vol. 344,
no. 6268, pp. 734–741, Apr. 1990.

[13] G. Sugihara, ‘‘Nonlinear forecasting for the classification of natural time
series,’’ Phil. Trans. Roy. Soc. London A, Phys. Eng. Sci., vol. 348,
no. 1688, pp. 477–495, 1994.

[14] G. Sugihara, R. May, H. Ye, C.-H. Hsieh, E. Deyle, M. Fogarty,
and S. Munch, ‘‘Detecting causality in complex ecosystems,’’ Science,
vol. 338, no. 6106, pp. 496–500, Oct. 2012.

[15] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrishnan,
K. Patel, and J. Melonakos, ‘‘ArrayFire: A GPU acceleration platform,’’
Proc. SPIE, vol. 8403, May 2012, Art. no. 84030A.

[16] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam,
M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke, ‘‘Kokkos 3: Pro-
gramming model extensions for the exascale era,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 4, pp. 805–817, Apr. 2022.

[17] H. C. Edwards, C. R. Trott, and D. Sunderland, ‘‘Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,’’ J. Parallel Distrib. Comput., vol. 74, no. 12, pp. 3202–3216,
Dec. 2014.

[18] M. Martineau, S. McIntosh-Smith, and W. Gaudin, ‘‘Assessing the per-
formance portability of modern parallel programming models using
TeaLeaf,’’ Concurrency Comput., vol. 29, no. 15, pp. 1–15, 2017.

[19] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa,
and J. Salmon, ‘‘Performance portability across diverse computer architec-
tures,’’ in Proc. IEEE/ACM Int. Workshop Perform., Portability Productiv.
HPC (P3HPC), Nov. 2019, pp. 1–13.

[20] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, ‘‘Tracking per-
formance portability on the yellow brick road to exascale,’’ in Proc.
IEEE/ACM Int. Workshop Perform., Portability Productiv. HPC (P3HPC),
Nov. 2020, pp. 1–13.

[21] M. A. Sprague, S. Ananthan, G. Vijayakumar, and M. Robinson,
‘‘ExaWind: Amultifidelity modeling and simulation environment for wind
energy,’’ J. Phys., Conf. Ser., vol. 1452, no. 1, Jan. 2020, Art. no. 012071.

[22] I. Demeshko, J. Watkins, I. K. Tezaur, O. Guba, W. F. Spotz,
A. G. Salinger, R. P. Pawlowski, and M. A. Heroux, ‘‘Toward performance
portability of the Albany finite element analysis code using the Kokkos
library,’’ Int. J. High Perform. Comput. Appl., vol. 33, no. 2, pp. 332–352,
Mar. 2019.

[23] J. K. Holmen, A. Humphrey, D. Sunderland, and M. Berzins, ‘‘Improving
Uintah’s scalability through the use of portable Kokkos-based data parallel
tasks,’’ in Proc. Pract. Exp. Adv. Res. Comput. Sustainability, Success
Impact, Jul. 2017, pp. 1–8.

[24] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. I. Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, ‘‘LAMMPS—A flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,’’ Comput.
Phys. Commun., vol. 271, Feb. 2022, Art. no. 108171.

[25] D. Sahasrabudhe, E. T. Phipps, S. Rajamanickam, and M. Berzins,
‘‘A portable SIMD primitive using Kokkos for heterogeneous architec-
tures,’’ inProc. Int. Workshop Accel. Program.UsingDirectives, in Lecture
Notes in Computer Science: Including Subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics, vol. 12017, 2020,
pp. 140–163.

[26] J. Johnson, M. Douze, and H. Jégou, ‘‘Billion-scale similarity search with
GPUs,’’ IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, Jul. 2021.

[27] A. Shanbhag, H. Pirk, and S. Madden, ‘‘Efficient top-K query process-
ing on massively parallel hardware,’’ in Proc. Int. Conf. Manage. Data,
May 2018, pp. 1557–1570.

[28] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin, ‘‘Approx-
imate nearest neighbor search on high dimensional data—Experiments,
analyses, and improvement,’’ IEEE Trans. Knowl. Data Eng., vol. 32, no. 8,
pp. 1475–1488, Aug. 2019.

[29] H. Jégou, M. Douze, and C. Schmid, ‘‘Product quantization for nearest
neighbor search,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[30] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[31] Y. A. Malkov and D. A. Yashunin, ‘‘Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 824–836,
Apr. 2020.

[32] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, ‘‘Scalable
distributed algorithm for approximate nearest neighbor search problem in
high dimensional general metric spaces,’’ in Proc. 5th Int. Conf. Similarity
Search Appl. (SIASP), 2012, pp. 132–147.

[33] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, ‘‘Approximate
nearest neighbor algorithm based on navigable small world graphs,’’ Inf.
Syst., vol. 45, pp. 61–68, Sep. 2014.

[34] J. L. Blanco and P. K. Rai. (2014). Nanoflann: A C++ Header-Only Fork
of FLANN, a Library for Nearest Neighbor (NN) With KD-Trees. [Online].
Available: https://github.com/jlblancoc/nanoflann

[35] S. Aimon, T. Katsuki, T. Jia, L. Grosenick, M. Broxton, K. Deisseroth,
T. J. Sejnowski, and R. J. Greenspan, ‘‘Fast near-whole–brain imaging in
adult Drosophila during responses to stimuli and behavior,’’ PLOS Biol.,
vol. 17, no. 2, pp. 1–31, Feb. 2019.

[36] X. Chen, Y. Mu, Y. Hu, A. T. Kuan, M. Nikitchenko, O. Randlett,
A. B. Chen, J. P. Gavornik, H. Sompolinsky, F. Engert, and M. B. Ahrens,
‘‘Brain-wide organization of neuronal activity and convergent senso-
rimotor transformations in larval zebrafish,’’ Neuron, vol. 100, no. 4,
pp. 876–890, Nov. 2018.

[37] D. Burrows, G. Diana, B. Pimpel, F. Moeller, M. Richardson, D. Bassett,
M. Meyer, and R. Rosch, ‘‘Single-cell networks reorganise to facilitate
whole-brain supercritical dynamics during epileptic seizures,’’ bioRxiv,
Oct. 2021. [Online]. Available: https://www.biorxiv.org/content/early/
2021/10/16/2021.10.14.464473

[38] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge, U.K.:
Cambridge Univ. Press, 2007.

[39] M. Aumüller, E. Bernhardsson, and A. Faithfull, ‘‘ANN-benchmarks: A
benchmarking tool for approximate nearest neighbor algorithms,’’ Inf.
Syst., vol. 87, Jan. 2020, Art. no. 101374.

[40] P. Ram and K. Sinha, ‘‘Revisiting kd-tree for nearest neighbor search,’’
in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Jul. 2019, pp. 1378–1388.

[41] A. Smith and N. James, ‘‘AMD InstinctTM MI200 series accelerator
and node architectures,’’ in Proc. IEEE Hot Chips 34 Symp. (HCS).
Washington, DC, USA: IEEE Computer Society, Aug. 2022, pp. 1–23.

[42] K. Takahashi, S. Fujimoto, S. Nagase, Y. Isobe, Y. Shimomura, R. Egawa,
and H. Takizawa, ‘‘Performance evaluation of a next-generation SX-
Aurora TSUBASA vector supercomputer,’’ in Proc. 38th Int. Conf. High
Perform. Comput. (ISC High Performance), 2023, pp. 359–378.

68182 VOLUME 11, 2023



K. Takahashi et al.: Scalable EDM With Parallel Computing and Approximate k-NN Search

KEICHI TAKAHASHI (Member, IEEE) received
the M.S. and Ph.D. degrees in information science
from Osaka University, Osaka, Japan, in 2016 and
2019, respectively. In 2018, he was a Visiting
Scholar with the Oak Ridge National Labora-
tory, Oak Ridge, TN, USA. He was an Assistant
Professor with the Nara Institute of Science and
Technology, Nara, Japan, from 2019 to 2021.
He is currently an Assistant Professor with Tohoku
University, Sendai, Japan. His research interests

include high-performance computing and parallel distributed computing.

KOHEI ICHIKAWA (Member, IEEE) received the
B.E., M.S., and Ph.D. degrees from Osaka Univer-
sity, in 2003, 2005, and 2008, respectively. He was
a Postdoctoral Fellow with the Research Cen-
ter of Socionetwork Strategies, Kansai University,
from 2008 to 2009. He was an Assistant Professor
with the Central Office for Information Infrastruc-
ture, Osaka University, from 2009 to 2012. He is
currently an Associate Professor with the Division
of Information Science, Nara Institute of Science

and Technology (NAIST), Japan. His current research interests include
distributed systems, virtualization technologies, and software-defined
networking.

JOSEPH PARK (Senior Member, IEEE) received
the B.S. and M.S. degrees in ocean engineering
and the Ph.D. degree in electrical engineering from
Florida Atlantic University. He is currently the
Chief of Engineering and Development with the
Comprehensive Nuclear-Test-Ban Treaty Organi-
zation, Vienna, Austria. His technical background
is centered on acoustics, nonlinear dynamics, sig-
nal processing, control and systems engineering,
numerical modeling, oceanography, ocean and

structural engineering, sensors and instrumentation, information theory, elec-
tronics, and software development.

GERALD M. PAO received the B.S. degree
in molecular biology from the University of
California at San Diego and the Ph.D. degree in
molecular biology from the Salk Institute working
on cancer biology and virology. He was a Post-
doctoral Fellow with the Salk Institute working on
epigenetics of cancer and then in applied mathe-
matics with the Scripps Institution of Oceanogra-
phy before becoming a Staff Scientist with the Salk
Institute. He was subsequently a Research Track

Director (Research Fellow) for high throughput screening data science and
gene therapy with Vertex Pharmaceuticals before coming back to academia.
He is currently an Assistant Professor with the Biological Nonlinear Dynam-
ics Data Science Unit, Okinawa Institute of Science and Technology. His
research interests include big data nonlinear dynamics and causal inference
in complex networks using high-performance computing.

VOLUME 11, 2023 68183


