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ABSTRACT The analysis and investigation of the data obtained fromDirect Numerical (DNS) simulation of
droplet dynamics in cloud turbulence is a complex and time-consuming task when performaed on traditional
computers. The DNS data generally have, a high spatial resolution ≈ 1mm and require considerable space
to store. It is tedious to find specific features of this data, such as locating high and low vortex areas in cloud
turbulence using machine learning algorithms. In this research, we employ quantum computing to examine
and analyze cloud droplet dynamics data and present a quantum supervised machine learning algorithm,
namely, a support vector machine (SVM) to segregate low and high vortex regions and investigate the droplet
characteristics in those regions. The result show that use of quantum computers can accelerate the entire
process, and quantum mechanics tools, such as quantum kernels and quantum circuits can better manage the
complex nature of data than traditional methods.

INDEX TERMS Quantum computing, quantum machine learning, DNS, cloud droplet, vorticity.

I. INTRODUCTION
In traditional computing, information is stored in a binary
form, called bits, which are strings of 0s and 1s. These bits
were processed during the computation. Quantum computing
is an emerging technology that uses the quantum mechan-
ics and can revolutionize computing strategies in most of
the domains compared to conventional computing [1], [2].
Some of the terminology often used in relation to quantum
mechanics include qubit, superposition, and entanglement.
For a 1-qubit system, the qubit is simultaneously in states
0 and 1, as there are two states in superposition. For a
2 qubits system, the superposition states are defined as 00, 01,
10 and 11. Therefore, the n-qbit system has 2n states.Multiple
states coexist concurrently during the superposition process.
Fundamentally, we can say that qubit power is greater than
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traditional bit power. The Entanglement allows several qubits
to pair together at the same time and exponentially accel-
erate the computing process. Multiple states with weights
can be sandwiched between qubit [3], [6], [7]. Although
superposition makes it possible to calculate several states
simultaneously, it also limits the number of responses that
can be obtained for each state. The quantum states described
using density matrices and the Dirac notations. An expression
for the qubit state is provided in Eq. (1),

|9⟩ = α|0⟩ + β|1⟩ (1)

The relation between α and β according to the Max Bourn
Rule using Schrödinger 's wave function is expressed as:

|9⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩ (2)

where φ ∈ [0, 2π ] describes the relative phase and
θ ∈ [0, π] determines the probability measure. P(|0⟩) =
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FIGURE 1. Bloch sphere visualization for superposition state.

TABLE 1. Representation of quantum gates for different operations.

cos2 θ
2 ,P(|1⟩) = sin2 θ

2 . All normalized pure states can be
illustrated on the surface of a sphere with a radius |r⃗|= 1
which is called a Bloch sphere. A Bloch sphere was used
to represent a single-qubit. A superposition can be created
for state using Eq.(3) and Eq. (4). An example is shown in
Figure 1.

|+⟩ =
1
√
2

(|0⟩ + |1⟩) (3)

|−⟩ =
1
√
2

(|0⟩ − |1⟩) (4)

A. QUANTUM GATES AND CIRCUITS
Simple quantum circuit that uses a few qubits are known
as a quantum gates or quantum logic gate [6], [39]. The
most prevalent quantum gates operate in one- or two-
qubit spaces. In general, 2 × 2 or 4 × 4 matrices with
orthonormal rows can be used to model quantum gates
as matrices. Table 1 shows the commonly used quantum
gates and gate implementations in terms of the number of
qubits.

Quantum wires connect the quantum gates to form up
a quantum circuits. A unitary transformation U, performed
by a circuit determines the actual structure of a quantum
circuit, the number and types of gates, and the connecting
scheme. However, the input and output registers of qubits
are also used in the description of quantum circuits, and it
should be noted that physically, a quantum circuit’s input and
output are not separated from one another as their classical
counterparts are. This convention enables us to describe the
effect of unitary transformation performed by the circuit more
coherently.

B. QUANTUM COMPUTING AND MACHINE LEARNING
The differences between classical and quantum machine
learning have been discussed in several publications on
quantum machine learning approaches [11], [21]. Quan-
tum states are necessary for storing quantum information
in quantum random access memory (QRAM). One of the
newest disciplines for combining machine learning and
quantum computing is quantum machine learning. Classical
datasets were processed using a classical-quantum method.
The dataset is available in the traditional forms of observa-
tion, such as pictures, text, and spreadsheets. These datasets
should be transformed into quantum states to be used as input
for quantum machines. It is necessary to encode classical
data into quantum data states. A quantum computer receives
encoded data as input, after which additional processing is
required, such as circuit creation and output measurement
[4], [32], [33].

1) MACHINE LEARNING
Machine learning algorithms can be classified into two
types: supervised and unsupervised. The supervised learning
algorithm use labelled examples. By contrast, Unsupervised
learning, discovers structures in a sample. To analyze and
interpret the data, machine learning searches for patterns in
the data. Feynman observed that modelling quantum systems
on classical computers becomes impossible as the system size
increases, although quantum particles are not constrained in
the same manner. The goal of the machine learning model is
to learn the pattern from the data to draw inferences. Machine
learning requires data such as pictures, videos, spreadsheets
and numerical and categorical [34]. The data with N samples
can be represented as given in Eq. (5)

data = [X⃗1 + X⃗2 +−−−+ X⃗n] (5)

Sample X⃗1 hasm features as X⃗1 =


f1
f2
.

.

fm

where f1, f2, f3 . . . fm

are features of the data. These samples were taken as input
and processed in the model as follows,

X⃗ → f (X⃗; θ ) → ŷ (6)

ŷ is output label or predicted value for each sample. The
model score is calculated as follows:

outcome← cost[f (x⃗; θ),True] (7)

Mean square error is considered as a metric to evaluate the
model performance. Samples are used for supervised learning
as, ⃗(X1, y1), ⃗(X2, y2) . . . ⃗(Xn, yn)

In the case of linear model input, n samples having n output
labels referring Eq. (8). for sample training data

ŷ = ⃗(X1 + y1)+ ⃗(X2, y2) . . .+ ⃗(Xn, yn) (8)
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The cost of training sample is calculated as,

costtr =
1
N

n∑
i=1

(y⃗i − yi)2 (9)

C. NEED OF QUANTUM MECHANISM IN CLOUD DROPLET
DYNAMICS
Numerous industries, including those dealing with land
slides, earthquake prediction, and catastrophe preparedness,
would greatly benefit from improved weather forecasting.
The data used in this study were obtained from the sim-
ulation of droplet dynamics in cloud turbulence, which
contains complex eddy structures. Owing the complexity of
data, the traditional method requires considerable computa-
tional resources. Quantum computers can provide a better
option for determining how to handle with these data and
investigate their complex properties. Quantum computers
can model for static and real-time climate data analyse
in cloud turbulence [24], [25]. Quantum computing can
manage the complex nature of data and can be used for
additional analysis to produce findings that are superior to
those of traditional calculations. The analysis of cloud data
quantifies the changes over time in the droplet character-
istics of the cloud [20], [22], [27]. One of the objective
is to apply quantum computing to analyze the turbulent
properties from droplet dynamics data obtained from the
DNS. In this study, we used quantum computing to apply
machine learningmodels to the analysis of cloud droplet data.
Superposition and entanglement were used to identify the
characteristics of the turbulent eddies. Fault-tolerant quantum
machines were employed for this purpose. Encoded clas-
sical data are required to generate a parameterized model
for a quantum machine learning algorithm, which is then
applied to a variational circuit. The use of variational quantum
circuits for modelling quantum machine learning and pro-
cessing quantum information is discussed in the next section
[12], [14], [28].

D. CLOUD PROCESSES
Clouds are extremely important for ecosystem. When water
vapor condenses, a cloud is created. Meteorologist Luke
Howard divided clouds into three groups: cumulus, stra-
tus, and cirrus. Cloud processes range from millimeter to
many kilometers. Figure 2 shows the scale of cloud from
large to small domains. Cloud data processing can be per-
formed easily using computer simulations of cloud models.
The microphysical characteristics governed by numerous
dynamic cloud processes involved in cloud formation deter-
mine the role of the cloud. Entrainment and detrainment
are terms used to describe the passage of ambient air into
and out of the clouds, respectively. These activities have
the ability to alter droplet features as well as the evolution
of the cloud’s overall structure Vaillancourt et al. [37]. The
dynamics of metres to the submeter scale can be explic-
itly resolved in cloud models that combine a cloud-scale

FIGURE 2. Cloud scales rages from Kiolmeters to few meters.

atmospheric flow models with cloud processes. Two types of
cloudmodels that are frequently used: Direct Numerical Sim-
ulation(DNS) and Large Edgy Simulation(LES). Small-scale
turbulence simulations were performed using DNS. At the
edge, where ambient air and cloud droplets interact, addi-
tional fascinating characteristics are observed. Droplets that
are near dry entrained air are either severely or not impacted.
In the natural world, ambient air continuously entrains clouds.
Therefore, a numerical model with continuous entrainment
and millimeter-scale resolution is ideal for examining the
effects of extremely small turbulence on droplet formation
[29], [36]. The DNS configuration employed by Kumar et
al., which includes entrainment and mixing, can be used to
investigate a variety of dynamic cloud phenomena. In this
study, we compare several droplet properties between highly
vortical and less vortical areas in three-dimensional regions
of turbulent cloudy and clear air interaction. We utilized a
DNS configuration identical to Kumar et al 2014. The setup
is more realistic and incorporates the critical entrainment and
mixing processes. droplets are represented as particles, with
their locations and velocities traced in the Lagrangian frame.
Kumar et. al. studied the analysis of cloud droplet properties
based on a classical method, as well as an investigation
of high and low vorticities zones in DNS data using unsu-
pervised learning [19]. Handling complexity and its timely
behavior is the main challenge when using conventional
mechanisms to study meteorological data [19], [26]. The
goal of the proposed research was to use a quantum process
to locate high and low vorticity zones in a simulated envi-
ronment. In this work, we compare several droplet-related
metrics with a data obtained from three-dimensional DNS of
turbulent cloudy and clear air interaction containing high and
low vortical regions.

II. SIMULATION DATA
A. DATA AVAILABILITY
Direct numeric simulation (DNS) output data were obtained
at the IITM Pune. The data are made available for research
purposes upon request [38].
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FIGURE 3. Cloud genera based on height and appearance (Image credits:
https://scijinks.gov/).

B. DNS DESCRIPTION
DNS data were used to analyze the cloud droplets. Before
delving into the data, we describe the many forms of cloud
representation and the cloud’s structure. The World Meteo-
rological Organization later adopted this classification and
currently recognizes ten cloud genera based on their height
and appearance. Figure 3 shows various levels of clouds.
High clouds in the top panel, middle clouds in center and
low clouds in the bottom panel. We used simulation data of
the low cloud of cumulus type. These clouds represent fair
weather and look like white cotton balls. Clouds play a variety
of roles in the atmosphere, ranging from influencing the
radiation budget to influencing the hydrological cycle. The
role of diverse cloud types is determined by themicrophysical
features that are governed by the various cloud dynamics pro-
cesses involved in cloud formation. Non-precipitating cloud
types play a significant role in radiation budgeting [37].
Clouds are responsible for the majority of the precipitation
that falls on Earth. Many mechanisms can affect precipita-
tion dynamics and cloud longevity, including entrainment,
instability, mixing, updraft strength, and moisture supply.
The clouds are constantly interact with the surrounding
sub-saturated air. Clouds primarily change structure owing
entrainment, detrainment and air mixing [19], [38]. Kumar
et al. employed. DNS numerical model used in this study.
The fluid model is the in Eulerian frame and solves the
Navier-Stokes equation for incompressible viscous fluids.
Water droplets were considered as Lagrangian points. The
particle positions, velocity, and radius were tracked inside a
Eulerian grid. The equations were solved in periodic domains
of 128mm3 with 1mm grid length. For the purposes of this
study, a 128mm3 domain size was selected. There werel 128∗

128 ∗ 128 points in the entire volume. The entire simulation
domain was divided into two parts: a clouded slab with
specific-sized droplets and unsaturated air in the rest. The
fluid is incompressible which is mathematically represented
by Eq.(10) and Eq.(11). ‘u’ and ‘v’ are horrizontal velocity
components while ‘w’ represents verical velocity.

▽.u = 0 i.e.
∂u
∂x
+

∂v
∂y
+

∂w
∂z
= 0 (10)

Momentum equation is refer Eq. (11),

∂ t + u.▽ = −
1
ρ0
+ ϑ▽2u+ Bez + f LS (11)

Here, Eq. (12) is takes care of local temperature change as
well as advection.

∂ tT + u.▽T = k▽2T +
L
Cp
Cd (12)

where, ϑ is kinematic viscosity, k is thermal diffusivity of
air, L is latent heat for condensation of water vapour, Cp is
specific heat for constant pressure. B is Buoyancy.

Figure 4 shows the attributes of the simulation data. Quan-
titie such as the flow velocities, temperature, water vapormix-
ing ratio, domain-averaged Turbulent Kinetic Energy(TKE)
and TKE dissipation rate were saved as the simulation output.

C. VORTICITY AND ITS MEASURES
The term ‘‘vorticity’’ refers to a three-dimensional vector
measure of fluid spins and rotations. The velocity at each
point has three components in the Eulerian frame. The
vorticity at each grid point was determined using velocity
components. The following three factors that make up the
vorticity were calculated: Equations (13), (14) and (15) are
the associated velocity components.

w(i component) =
∂w
∂x
−

∂v
∂z

(13)

w(j component) =
∂u
∂z
−

∂w
∂x

(14)

w(k component) =
∂v
∂z
−

∂u
∂y

(15)

Magnitude of vorticity at each point is defined as,

wnet = (w2
i + w

2
j + w

2
k )

1/2 (16)

Figure 5 shows a 3D view of the vorticity. The purpose of
this study is to examine cloud droplet properties in high-
and low-vorticity cloud turbulence zones. The vorticity mag-
nitude of each grid point is first estimated using Eulerian
data, which contain components of velocity in the x, y, and
z directions.
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FIGURE 4. Visualization of Uvel, Vvel and Wvel components from simulation data.

FIGURE 5. 3D view of vorticity.

III. EXECUTION ENVIRONMENT
The computation required for this study was performed using
IBM’s free and open-source QISKIT [29], [30] quantum

software development kit and Python programming language.
Quantum circuit can be execute on both local quantum simu-
lator and actual quantum computers. Using anAPI access key,
IBM Quantum Experience offers access to actual quantum
computers. The answers described in this work’s quantum cir-
cuits were initially tested on a local quantum simulator before
being run on a quantum computer (quantum_statevector).
We also performed experimental work on Qauntum QASM
simulator. In order to obtain a reliable estimation of the
probabilities of the final quantum state, each run of the circuit
was performed 8192 times.

A. NOISY INTERMEDIATE SCALE QUANTUM COMPUTERS
The next generation of quantum computers will include
50- 100 noisy intermediate-scale quantum (NISQ) qubits.
These computerscan solve problems considerably faster than
traditional computers. Nonetheless, the efficiency of NISQ
computers is constrained by several factors. The size of the
quantum circuit that can be completed is constrained by
noise in quantum gates, and short qubit coherence durations.
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FIGURE 6. Support vector classification on 2D and 3D plane.

Smaller depth quantum circuits are preferred in light of these
restrictions to be safely run on NISQ computers [15], [31].

IV. CML AND QML IN CLASSIFICATION OF DATA
Support vector machines (SVM) are popular supervised tech-
niques for classifying data. Data are represented on a higher
dimension using the kernel method so that they may be
separated linearly when a function is applied [8], [23], [40].

Given M training points with the following form,

(x⃗j, yj) : xj ∈ RN ,R = ±1(True or False) (17)

The decision boundary on two hyperplane are created as,

w⃗.x⃗ − b⃗ = ±1 (18)

Training data classified as,

w⃗.x⃗i − b⃗ ≥ +1 if yi = +1 (19)

w⃗.x⃗i − b⃗ ⩽ −1 if yi = −1 (20)

w⃗ denotes the decision boundary. The margin is given by two
parallel hyperplanes, separated by a distance ∥ 2w∥.

Kernel Matrix is Formulated as,

Kij = k(x⃗i, x⃗j) = xi.xj (21)

The classical performance of SVM is the product of
Nfeatures andN 2

samples. The time complexity for SVMmethod
was O(N 3). Referto Figure 6 for SVM classifier hyperplane
in 2D and 3D planes.

A. HYPERPLANE SEPARATES DATAPOINTS ON HIGHER
DIMENSION
Locating high and low vortex points separated by a hyper-
plane using the support vector machine of the supervised
quantum learning method. The algorithm is used to find the
hyperplane that separates the high and low vorticity points.

B. VISUALIZATION OF DATAPOINTS
Figure 7 shows a scatter plot of the datapoints in a certain
range in 3-dimension. These are 40000 datapoints plotted to
view distribution of vorticity. Here, the vorticity ranges from
0-20 magnitude. The value of w ranging from 0 − 200s−1.
The hyperplane separates datapoints on a higher dimension

FIGURE 7. 3D scatter plot for droplet datapoints ranging vorticity from
0-20 magnitude.

FIGURE 8. 2D Scatter plot for vorticity against temperature feature.

C. QUANTUM TIME ANALYSIS
Vector and tensor product manipulation in high-dimensional
areas is an effective method for quantum computers. The
quantum states of log2 N qubits may be transferred to the
classical data of N-dim complex vectors. Data storage in
the qRAM requires O(log2 N ) steps. The time required for
post-processing the quantum data was O(poly(logN ). Large
vector inner products and distances was evaluated faster in
the quantum domain than in the classical domain.

D. HIGHER DIMENSIONAL FEATURE SPACE
High-dimensional vectors can be handled effectively using
quantum computers [33]. d-times tensor product feature map
|8(x⃗i)⟩ = |x⃗i⟩⊗ . . . .⊗ |x⃗i⟩ and the Kernel function Xi and Xj
defined as

|8(x⃗i)⟩⟨8(x⃗j)| = (⟨x⃗i|x⃗j⟩)d (22)

A non-linear surface in the original space results from the
linear hyperplane optimization in the d-times tensor product
space.

V. METHODOLOGY
A. DATA COLLECTION AND PRE-PROCESSING
Cloud droplet data was taken from the model output.
To improve data clarity, we built quantum featuremaps, quan-
tum kernels, and quantum guided data categorizations. As is
commonly known, the behavior of droplet data changes with
time, making it challenging to manage. Labelled/supervised
machine learning is used to process data using a near-term
quantum gadget [7]. The text below displays different data
attributes.
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Mul t i I nd ex : ( 0 , 0 , 0 ) t o ( 127 , 127 ,
127)
Data columns ( t o t a l 5~ columns ) :
# Column Dtype
−−− −−−−−− −−−−−
0 Uvel f l o a t 6 4
1 Vvel f l o a t 6 4
2 Wvel f l o a t 6 4
3 qv f l o a t 6 4
4 temp f l o a t 6 4
d t yp e s : f l o a t 6 4 ( 5 )
memory usage : 92 .0~MB

These numbers represent the fluid velocities measured in
the x, y, and z planes. The velocity attributes Uvel, Vvel,
and Wvel are depicted in Figure 4. We must normalize the
dataset and divide it into training Dtrain and Dtest samples
in accordance with classical classification. We must lower
the dimensionality such that the number of qubits we wish
to utilize is equal to the number of features in the dataset
and scale the range to between -1 and 1, to use the dataset
for quantum classification. A classical-quantum model was
considered for the machine learning method used in this
study. Using a quantum feature map, we encoded classical
data in the quantum state space. The essential decision for the
selection of the feature map may be influenced by the dataset
that has to be classified. In the next section, we take a closer
look at the feature maps that Qiskit offers before choosing
and tailoring one to encode our data.

B. ENCODING DATA TO QUANTUM STATES
Classical data were used for processing. Converting classical
data into a quantum state space using a quantum feature
map is called data encoding. This section discuss various
feature map design methods that can to be used for data
encoding [13]. Feature maps with and without englements are
implemented. More quantum benefits on computations were
measured using entanglement in the feature map design. The
Entanglement is linear and circular. Classical vector x has a
feature set φ(x) in quantum state. U8(x) is a unitary operation
performed during intial state of the qubit. n is the number of
qubits used for feature map design. Quantum circuit without
entanglement is classically easy to implement; Therefore,
if there is no entangling effect on the quantum circuit, there
are no quantum benefits. (Referring to Eq. (23))

U8(x) =

exp

i∑
j

φ{j}(x)Zj

 H⊗n

N

. (23)

To comprehend and analyze droplet dynamics using quantum
computing, we have studied cloud droplet data using a quan-
tum feature map under various conditions [10], [14], [16].
A key component of the proposed data analysis is the quan-
tum benefit of handling classically complex data sets. φ(x)
represents quantum feature map from classical feature vector
x to the quantum state |8(x)⟩⟨8(x)|. The unitary operation

FIGURE 9. Quantum circuit using H gate interleaving with entanglement.

U8(x) is applied in the starting state |0⟩n, where n is the
number of qubits used for encoding. One can build a feature
map on near-term quantum devices, which is challenging to
simulate using classical models [39]. These circuits are called
short depth circuits on near-term quantum devices, as men-
tioned in Havlicek et al. [35]. The encoding the classical data
in the circuit diagram for r=N is shown in Figure 9.

U8(x) =
∏
N

U8(x)H⊗n, U8(x) = exp

i ∑
S⊆[n]

φS (x)
∏
k∈S

Pi


(24)

The quantum circuit schematic in Figure 9 uses a layer of
Hadamard gates to obtain the superposition of a data fea-
ture before interleaving with an entangling box. Entangling
effects U8(x) : Pi ∈ {I ,X ,Y ,Z } using Pauli matrices.
In other word we can say that, an angle encoding is performed
by entangling the given datapoints.

For the given data X rotation is applied to the feature, and
n is the number of qubits interleaving with H gate to make
following circuit (refer to Eq. (25)).

U8(x) =

exp

i∑
j

φ{j}(x)Xj

 H⊗n

d

. (25)

C. VARIOUS CONDITIONS TO DESIGN QUANTUM
PARAMETERIZED CIRCUIT FOR FEATURE SET
1) FEATURE MAP WITH ENGLEMENT
As parameterized quantum circuits, we constructed feature
maps [9], [17] as given in the Eq.(26) In this design quantum
circuit takes N repeatations with ‘FULL’ entaglement effect
of linear type. The feature dimension is equal to the number of
qubits n. The quantum feature maps using linear and circular
entanglement are shown in Figure 10 and 11.

U8(x) =

exp

i∑
jk

φ{j,k}(x)Zj ⊗ Zk


exp

i∑
j

φ{j}(x)Zj

 H⊗n

N

(26)

2) FEATURE MAP USING PAULI GATES
The Pauli gates in the feature map can also be customized;,
for instance, P0=X,P1=Y,P2=ZZ:
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FIGURE 10. Feature map with linear entanglement.

FIGURE 11. Feature map with circular entanglement.

FIGURE 12. Feature map with pauli gates.

FIGURE 13. Feature map with block rotations.

Figure 12 shows the proposed parameterzed circuit using
pauli gate customization.

3) FEATURE MAP USING BLOCK ROTATIONS
In this formation, circuit feature rotations are taken in pairs
and also repeated N times. The following circuit block rota-
tion is shown for Rz and Ry rotations. (Refer Figure 13)

4) QUANTUM PARAMETERISED CIRCUIT WITH COMPLETE
CUSTOMIZAION
The absence of entanglement in the parameterized circuit
indicates that no quantum advantage is gained from the oper-
ation. Complete customization of the circuit enables a very
accurate design further to handle complex data and benefit
from quantum advantages over conventional implementation.

D. QUANTUM PARAMETERIZED CIRCUIT FOR
TRANSITION AMPLITUDE BETWEEN TWO INPUT SAMPLES
Figure 14 shows the circuit for any two training samples on a
high-dimensional scale to generate a single entry in the kernel
matrix. The circuit shows how the layer of Hadamard gate
is used to obtain superposition on each feature and, later,
how entanlement is used to obtain more quantum benefit
on the given DNS data. Classically, these measures have
computational hurdles in studying and understanding data.
In this section we present how computational challenges are

TABLE 2. Quantum classifier performance using different quantum
kernel functions.

fulfilled using quantum mechanisms in near-term quantum
devices [9].

E. FORMATION OF KERNEL AND ESTIMATION
Quantum kernel as a matrix with finite data: Kij =∣∣∣⟨8†(xj)|8(xi)⟩

∣∣∣2 [11]. On a quantum computer, the transition
amplitude for each component of the kernel matrix can be
computed as:∣∣∣⟨8†(xj)|8(xi)⟩

∣∣∣2 = ∣∣∣⟨0⊗n|U†
8(xj)U8(xi)|0⊗n⟩

∣∣∣2 (27)

assuming that the feature map is a unitary transformation, or a
parameterized quantum circuitU8(x) on n qubits. A quantum
kernel matrix can be created, as shown in Figure 15, where a
single entry in the kernel matrix is measured using an 8-qubit
circuit. The measurement part of the circuit, and the entry is
recorded in the kernel matrix.

F. QUANTUM KERNEL FOR TRANING AND TESTING
SAMPLES
Figure 16 shows the quantum kernel matrix for the training
and testing samples of the DNS data. The training kernel
matrix was then filled in for each pair of training data sam-
ples, and the testing kernel matrix was filled in for each pair
of training and testing data samples. Because each matrix is
symmetric, only half of the elements are explicitly calculated
to speed up the calculation [18].

Callable Kernel classification test score:0.95
Precomputed Kernel classification test score:0.897

G. SVC AND DATA TRAINING
In this study, we used a supervised quantum machine learn-
ing quantum support vector machine algorithm to analyze
the droplet data from the DNS output. A quantum kernel
was used by the quantum model for each pair of training
and testing samples to provide the transition probability.
The quantum kernel is a precomputed model that can be
referred to as a function of traditional classification tech-
niques. Table 2 displays the test score values for the provided
data of several types of classical kernel using the quantum
kernel function [5].

H. RUNNING TIME FOR CLASSICAL AND QUANTUM
ALGORITHM
Table 3 shows classical and quantum time comparison for
DNS data. As DNS dataset has 3D data points for pro-
cessing. Processing such huge amount of samples is time
consuming and challenging too. Modelling using quantum
computing on Noisy Intermediate Scale Quantum device is
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FIGURE 14. Quantum circuit for two parameters input.

FIGURE 15. Circuit for single parameter measure using two data sample.

FIGURE 16. Quantum kernel for train and test samples.

another challenge. Sample DNS domain can be partitioned
into small domains as test cases.

VI. POSTPROCESSING OF DROPLET DATA
The primary goal was to compare the droplet properties in low
and high vortical areas of the simulated domain. We inves-
tigated the following droplet propeties in the low and high
votrtex regions.

TABLE 3. Running time analysis of DNS data.

1) Drop size distribution (DSD),
2) Evolution of vapor mixing ratio,
3) Variation in Urms,
4) Number density (Nd ) and
5) Mean radii (Rmean)

A. CALCULATION OF VORTICITY
In 3−Dimensional vector vorticity, is a measure of the rota-
tion and spin in the fluid. In the Eulerian frame, three
components such as x, y and z velocities were used to cal-
culate the vorticity at individual grid points. The magnitude
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TABLE 4. High and low vorticity points.

of the vorticity at each point is defined as:-

wnet = (w2
i + w

2
j + w

2
k )

1/2 (28)

The location of the vortices in the form of coordinates must be
determines so that the droplet characteristics can be studied.
The majority of the simulation domain was populated by low
vorticity, with only a small fraction being highly vortical.
As in the given domain, the vorticity ranged between 0-43s−1.
We have set the vorticity value threshold to be greater than
20s−1 to be highly vortical, otherwise low vortical. The
following statistics were used to set the vorticity threshold
shown in Table 4,

B. ANALYSIS OF EULERIAN VARIABLE IN HIGH AND LOW
VORTICITY REGION
Variables such as flow velocity, mixing ratio and temperature
are in the Eulerian frame, which means that every point in
128mm∗128mm∗128mm domain has grain size of 1mm(mean
2097152 are in total). Suppose we want to study how mix-
ing ratio varies in high vorticity regions, we can do this as
follows:
• Classify the points with high vorticity values based on
threshold set for the domain (> 20)

• Identify the coordinates of those points.
• Locate 3D cordinates regions in the available classified
data at time ‘t’.

• Similar steps can be followed to find mean at other time.

C. PROBABILITY DENSITY FUNCTION
The probability density function of the droplet radius is the
likelihood of determining a specific drop size in a collection
of droplets. The probability of finding a drop with a size
between d1 and d2 among a group of ‘n’ droplets with radii
r1, r2, r3 . . . rn is calculated as follows:

P = (Number of droplets having radius

between d1 and d2)/n (29)

where, n denotes the total number of droplets in the domain.
within drop ensembles, we can obtain size ranges between
d2− d3, d3− d4 and so on. these individual size ranges are
called as ‘bins’. If there are Ni droplets in the ith bin, the PDF
is calculated as:-

Pi = (Number of droplets in ith bin)/n (30)

where Pi is Probability of finding size between ith bin.

VII. CONCLUSION
In this study, we have quantum machine learning to analyze
cloud turbulence data obtained from Direct Numerical Sim-
ulation (DNS) of cloud droplet dynamics. Because clouds
play a crucial role in weather forecasting, a cloud dynamics
dataset was selected. Investigation and analysis of these data
present a number of issues, including the collection, storage,
pre-processing, and analysis of different droplet properties in
low and high vortex regions. It is essential to have an under-
standing of various locations within the clouds because cloud
droplets exhibit distinct behaviors in each of these regions,
which, in the end, contributes to an improved comprehension
of the cloud lifetime.

Because cloud droplet is a tiny particle, understanding
its behavior in cloud turbulence using quantum computing
presents several challenges. The use of quantum computer
mechanisms is helpful for obtaining precise and real-time
meteorological data. Quantum machine learning was used to
classify fluid data into zones of high and low vorticity. To cat-
egorize the data, we used a supervised learning algorithm
called the SVM. We investigated a the three-dimensional
cumulus cloud and its quantum simulation using quantum
mechanics. Feature maps and circuirs were created for the
data points provided. Circuits with a parameterized design
depending on their characteristics are used to create a vari-
ational quantum classifier. To further evaluate the outcome
of the classical models, a quantum kernel was created and
employed as a technique. We used a (128mm)3 DNS domain
for this investigation. After categorizing the data into two
different regions, we found that the high vortex region was
below than 2% of total amount. This finding is consistent
with the results obtained by Kumar et al. [19]. The thresh-
old value for determining the high vortex region was take
20s−1 which is smaller than that considered by Kumar et
al.. This is because the domain in their study was taken
(256mm)3, which is 8 times larger, in volume, than the
domain considered in this study. These results match those
reported by Kumar et al. By collecting more parts of DNS
and sewing them together to obtain the outcome for a wide
size domain, we can demonstrate this on a vast scale of
DNS clouds.

VIII. FUTURE WORK
Weather forecasting can be further processed using quantum
computers to analyze cloud, rain, and ocean data. In this
study, the findings were investigated using a DNS cloud
domain size of 128 mm3. The creation of a quantum feature
map and quantum kernel for a specific domain is investigated
to accomplish the categorization of data points in the high and
low vorticity regions. The traditional difficulties in comput-
ing these data are highlighted, and the findings demonstrate
the quantum advantages. These results may be projected onto
larger DNS domains with sizes ranging from 256mm3 to
2048mm3. This projection is beneficial for the study of large
clouds.
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