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ABSTRACT Developing computationally efficient semantic segmentation models that are suitable for
resource-constrained mobile devices is an open challenge in computer vision research. To address this
challenge, we propose a novel real-time semantic scene segmentation model called Multi-encoder Context
Aggregation Network (MCANet), which offers the best combination of low model complexity and state-
of-the-art (SOTA) performance on benchmark datasets. While we follow the multi-encoder approach, our
novelty lies in the varying number of scales to capture both global context and local details effectively.
We introduce suitable lateral connections between sub-encoders for improved feature refinement. We also
optimize the backbone by exploiting the residual block of MobileNet for resource-constrained applications.
On the decoder side, the proposed model includes a new Local and Global Context Aggregation (LGCA)
module that significantly enhances semantic details in the segmentation output. Finally, we use several known
efficient convolution techniques for the classification module to make the model more computationally
efficient. We provide a comprehensive evaluation of MCANet on multiple datasets containing structured
and unstructured urban street scenes. Among the existing real-time models with less than 3 million
parameters, the proposed model is more competitive as it achieves the SOTA performance without ImageNet
pre-trained weights on both structured and unstructured environments while being more compact for
resource-constrained applications.

INDEX TERMS Semantic segmentation, feature scaling, feature aggregation, deep learning, scene under-
standing, convolutional neural networks.

I. INTRODUCTION
Scene understanding is a crucial task in many learn-
ing systems and has numerous applications, including
self-driving vehicles [1], [2], human-computer interaction,
virtual reality [3], object detection [4], [5], medical image
analysis [6], [7], [8] and online video surveillance [9].
Semantic scene segmentation is a fundamental step towards
achieving scene understanding. The goal of semantic seg-
mentation is to recognize and localize different categories
in a scene, assigning a class or a label to every pixel. The
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categories can vary depending on the specific application,
as shown in Figure 1.
A semantic segmentation model usually follows an

encoder-decoder structure, where the encoder extracts seman-
tic information, and the decoder projects it back to the
input space for individual pixel classification. Inspired by the
success of Deep Convolutional Neural Networks (DCNNs)
in general classification tasks, many offline semantic seg-
mentation models have been developed with deep architec-
tures [10], [11], based on well-known backbone networks,
usually ResNet [12], which is suitable for the segmentation
task. For instance, DeepLab [11] is an approach that exploits
ResNet by removing the striding operation from the last few
ResNet blocks. Additionally, by utilizing high dilation rates
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FIGURE 1. Labelling class to each pixel in semantic segmentation.
(a) Original input image, (b) colored annotation of the input image where
each pixel of the image has a specific color code.

in the feature scaling module, DeepLab ensures a wider field
of view for context inclusion.

Later, the ResNet model pre-trained on ImageNet with
dilated convolutions has become a popular choice as a
feature extractor for scene segmentation models, including
DeepLabV3 [13], PSPNet [14], HANet [15], and OCR [16].
Although these DCNN-based models have shown outstand-
ing performance, many of them are not designed for mobile
devices and other resource-constrained applications. There-
fore, they cannot achieve satisfactory real-time performance
on embedded devices.

In many practical applications, such as mobile and IoT
devices [17], [18], the available computing resources are
limited. Therefore, deploying large models that can achieve
satisfactory real-time performance is prohibitive. This has
led to a growing interest in developing lightweight seman-
tic segmentation models [19], [20], [21] for these specific
applications. These real-time models aim to reduce the com-
putational cost of existing offline models while still achieving
satisfactory segmentation performance.

One major challenge in developing real-time models for
mobile devices and resource-constrained applications is the
high input resolution with a large field of view, which can sig-
nificantly increase memory usage. To address this problem,
some real-time models, such as BiSeNet [21], ICNet [22],
RefineNet [23], and ContextNet [24], have introduced a new
encoder design called a multi-branch encoder. This design
consists of a shallow branch for high-resolution input and
a deep branch for low-resolution input. By using a shallow
branch with fewer layers, this approach effectively reduces
the computational cost while controlling the field of view and
maintaining global contextual information through the deep
branch. Although several models have achieved computa-
tional efficiency, there is still a considerable performance gap
between existing offline and real-time semantic scene seg-
mentation models. Developing real-time lightweight models
suitable for mobile devices and resource-constrained applica-
tions is still an open research question.

In this work, we address the above challenge for mobile
devices and other embedded devices with inadequate hard-
ware facilities through a novel architecture. Our solution
starts with the observation from the literature on real-time
semantic segmentation that the input needs to be processed
at multiple scales with larger receptive fields to capture
better contextual details for improved scene understanding.

FIGURE 2. Test accuracy vs parameters among real-time models.

We introduce a completely new multi-encoder architecture
in this study. Here, the number of stages in each succes-
sive sub-encoder is reduced, while the repetition of inverted
residual blocks is increased in the successive sub-encoder.
Consequently, each sub-encoder becomes deeper than the
previous one, allowing for extraction of more semantic infor-
mation from the scene. Lateral connections are also used
at the same stage. After the complete encoding process,
we obtain five rich global feature maps at different scales,
which are then used for feature fusion at the decoder end.
We demonstrate that MCANet enables excellent semantic
segmentation performance while keeping the model com-
plexity relatively low. Our design is at least two times
smaller than existing real-time scene segmentation models
that achieve state-of-the-art results, giving our model a com-
petitive advantage in resource-constrained applications.

Wemake the following contributions in this research study:

• Introduce a novel backbone architecture, with multiple
sub-encoders designed specifically for optimal feature
scaling. At the same time, we also reduce the number
of stages in each successive sub-encoder to control the
number of model parameters.

• Introduce an effective multi-stage module for local and
global feature aggregation at the decoder, which com-
bines feature maps at different levels produced by the
proposed backbone network.

• Relying on this novel backbone architecture and
an efficient multi-stage feature aggregation module,
introduce an efficient semantic segmentation model
named MCANet that achieves the optimal trade-off
between model accuracy and model efficiency for
resource-constrained mobile devices. This can be
viewed in Figure 2.

• Finally, we provide comprehensive experiments on both
structured and unstructured environments with various
numbers of classes and demonstrate themodel’s superior
performance in all circumstances among the existing
real-time semantic segmentation models having fewer
than 3 million (M) parameters.
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FIGURE 3. Different architectures of semantic segmentation models: (a) One-branch, (b) One-branch with feature scaling technique, (c) Multi-branch,
(d) Dual-branch with down-sampling, (e) Feature re-use in sub-encoders with increasing stages, and (f) Feature re-use in multiple sub-encoders with
decreasing stages, but increasing depth in each sub-encoder, and feature refinement through multiple decoding paths.

On structured datasets such as CamVid [25], BDD100K [26],
and KITTI [27], as well as on unstructured datasets such as
IDD-lite, the proposed model produces the state-of-the-art
(SOTA) performance among the existing real-time seman-
tic segmentation models. On Cityscapes [28], the proposed
model generates a test accuracy of 73.4% without using
ImageNet [29] or any pre-trained weights, which is the best
performance among the existing real-time semantic mod-
els with fewer than 3M parameters. It can be visualized in
Figure 2, which plots Cityscapes test mIoU (%) against FPS.
The size of the circle in Figure 2 depicts the size of the
model. Figure 2 clearly demonstrates the proposed model’s
superiority in terms of achieving the best balance between
model accuracy and model efficiency.

The paper is organized as follows. In Section II, we present
related work in semantic segmentation. Section III details
our design, and Section IV discusses numerous experiments.
Concluding remarks are given in Section V.

II. BACKGROUND
A. ONE-BRANCH DESIGN
As shown in Figure 3(a), a simple encoder-decoder archi-
tecture [10] was used in the early days of semantic seg-
mentation, such as FCN [10], DeepLab [11], BiSeNet [21],
and UNet [30]. The encoder typically contains a deep neu-
ral network to extract contextual details of the scene, and
large backbone networks such as ResNet [12], VGG-16
[31], and Xception [32] are common choices. An extension
of the one-branch approach is to include feature scaling
(see Figure 3(b)), which is known to capture contextual

details through a larger receptive field. For instance, PSPNet
[14] introduced the Pyramid Pooling Module (PPM), which
uses four image pooling branches with different bin sizes.
DeepLabV3+ [13] introduced Atrous Spatial Pyramid Pool-
ing (ASPP), which utilizes five dilation branches with
different dilation rates. Using ResNet-101 [33] as the back-
bone, it achieved 82.1% test accuracy on Cityscapes [28].
Similar to feature scaling, a few semantic segmentation mod-
els [21], [34], [35], [36] have started to use the attention
mechanism to guide the feature learning process using high-
level information.

Recently, a newmodel known asMGSeg [37] has emerged,
aiming to improve model efficiency further. It achieves this
by utilizing a lightweight backbone (ResNet-18) and incorpo-
rating a hybrid feature attention and feature scaling module.
It achieves impressive performance, achieving 77.8% test
accuracy on Cityscapes. However, it should be noted that the
model has 13.3million parameters and requires 96.5GFLOPs
(Giga Floating Point Operations) at an input resolution of
1024 × 1024. Although MGSeg has made strides in improv-
ing efficiency, the large number of parameters in the whole
design can still pose computational challenges, particularly
for high-resolution input images. As a result, these models
may not be suitable for resource-constrained applications
where computational resources are limited.

B. MULTI-BRANCH DESIGN
The multi-branch encoder approach has been intro-
duced recently to address the computational burden of
the one-branch approach. Figure 3(c) shows the general
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architecture of multi-branch encoders used in ICNet [22],
RefineNet [23],ContextNet [24], and SwiftNet [38]. These
models typically have a dedicated deep branch that accepts
lower resolution input images and produces rich global fea-
ture maps. Additionally, several parallel shallow branches are
deployed to extract low-level feature maps at higher resolu-
tions. Therefore, a multi-branch encoder can handle higher
resolution input images without incurring high computational
costs. Despite being more efficient, the open challenge with
the multi-branch encoder approach is to close the perfor-
mance gap with the one-branch deep encoder approach. For
instance, recently a new multi-branch semantic segmentation
model, called SwiftNet [38], is introduced which has almost
4 times less parameters than DeepLabV3+ [13]. However, its
test accuracy on Cityscapes is still 10% lower.

C. DUAL-BRANCH WITH DOWN-SAMPLING TECHNIQUE
This approach, as shown in Figure 3(d), is a deviation
from the multi-branch approach. In this design, the encoder
network takes a single input and employs a few convolu-
tion layers to down-sample the input image. Subsequently,
two branches are formed: a deep branch is designed to
extract rich global feature maps by exploiting a series of
residual blocks whilst a shallow branch is to uproot local
features using few convolution layers. Models such as such as
BiSeNet [21], Fast-SCNN [39], FANet [40], and ESPNet [41]
achieve improved accuracy and efficiency by employing this
approach, which requires less data pre-processing.

D. FEATURE REUSE IN SUB-ENCODERS
It is known that deep convolution layers learnmore contextual
details than the layers at the initial stage, and problems like
vanishing gradient can be diminished. Based on this fact,
DFANet [42] has introduced the concept of feature reuse in its
sub-encoders. Figure 3(e) demonstrates that the global feature
of the first sub-encoder is used as input for the second sub-
encoder. Before being fed to the next sub-encoder, the global
feature is upsampled 23 times and passed through a fully
connected (FC) attention module for better refinement. Thus,
the features from a previous sub-encoder are reused in the
next subsequent sub-encoder. Due to feature reuse, DFANet
achieves 71.3% test accuracy on the Cityscapes test set while
having 7.8 M parameters.

In contrast to the aforementioned designs, we propose
a novel approach called the multi-encoder network, which
leverages feature map reuse through dynamic sub-encoders
and generates refined output through multiple decoding
paths. Figure 3(f) provides an overview of the feature reuse
in the multi-encoder design. The specifics of our proposed
design will be discussed in the following section.

III. PROPOSED METHOD
Figure 4 depicts the end-to-end design of our proposed
MCANet. The encoder architecture is based on the concept of
reusing feature maps in a multi-encoder design. Specifically,
features at lower resolutions contain rich semantic details

TABLE 1. Bottleneck residual block.

that require multiple refinements to capture the full context.
To achieve this, we employ multiple encoders that effectively
utilize these features.

A. MULTI-ENCODER
Figure 4(a) outlines the design of our proposedmulti-encoder.
In this design, we carefully select individual components to
target mobile devices and other resource-constrained applica-
tions and optimally construct an encoder network to achieve
the best extraction of semantic features.

Empirically, it has been shown that MobileNet [43] bot-
tleneck residual convolution blocks (MBConv) are more
efficient for mobile devices than other existing residual
blocks [43], [44], [45]. The optimized architecture of these
residual blocks and the utilization of depth-wise separable
convolution layers in the bottleneck intermediate expansion
stage make MBConv much more computationally efficient.
For that reason, we decided to use MBConv blocks to build
our multi-encoder. The layered architecture of an MBConv
block is shown in Table 1. As can be seen, an input feature
Fi with spatial dimensions h× w and channel dimension c is
first filtered by a standard convolution layer and produces an
output of size h×w× tc. The number of channels of the input
feature is increased by an expansion factor t . The intermediate
expansion stage uses a lightweight depth-wise convolution
layer that reduces the computational cost by 8 to 9 times
compared to a standard convolution layer. Thus, it optimizes
the overall number of model parameters and GFLOPs count.
Following [43], we utilize MBConv6 blocks to design our
backbone. Except for the first residual block, we use an
expansion ratio of 6 for other blocks. To better preserve
contextual details, we do not apply ReLU non-linearity in the
last layer of each MBConv block.

After down-sampling the original input image using a
standard convolution layer, we use 11 MBConv blocks of
varying expansion ratios to construct the first sub-encoder of
our proposedmulti-encoder. The literature suggests that using
MBConv blocks of different expansion ratios at the initial
stage can retain more contextual and spatial details due to its
squeeze and excitation architecture [43]. The depth and width
of each block are controlled by two tunable hyper-parameters:
the width (Mw) and depth (Md ) multipliers. For an input
feature map Fi of size hi × wi × ci, each MBConv block
produces an output feature map Fo of size hi/s×wi/s×Mwci.
Here, hi, wi, and ci denote the height, width, and number of
channels of the input feature map, respectively. The stride s is
used to control the number of stages in the encoder.Whenever
s becomes 2, one new stage is created by down-sampling the
input featuremap size by half. Thus, we generate all six stages
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TABLE 2. Layer architecture of the proposed multi-encoder.

FIGURE 4. Complete pipeline of our proposed MCANet: (a) Multi-encoder design: Feature re-use in sub-encoders. Black dotted lines define the lateral
connections from the previous sub-encoder at the same levels and green dotted lines show reusing of global feature map in the next sub-encoder. Feature
F7 is produced using a simple pooling operation. (b) Decoder Design: Local and Global Context Aggregation (LGCA) module and Classifier module.

in the first sub-encoder. Hyper-parameter Md controls the
depth of the encoder by controlling the number of repetitions
of eachMBConv block. To keep our design simple, we repeat
each block in the first sub-encoder twice, except the first
block. Following [43], we set the range of the widthmultiplier
from 0.75 to 1.5 and generate a maximum of 128 chan-
nels for the global feature maps. Models like DeepLab [13],
PSPNet [14], and HANet [15] have global features with a
maximum of 2048 channels, which contribute to large-scale
parameters and GFLOPs. By setting the lower range for the
width multiplier, we achieve the best trade-off betweenmodel
performance and efficiency for mobile devices. Thus, the first
sub-encoder generates rich spatial and global features without
contributing a large number of parameters and GFLOPs. The
complete layer architecture of our proposed multi-encoder is
illustrated in Table 2.

Empirical studies have shown that high-level features at
lower resolutions contain rich semantic details that are con-
ducive to attentionweight learning [13], [37], [42]. Therefore,

many models, such as DRANet [35] and DFANet [42], intro-
duce an attention module in the later stages of their encoder
networks. The attention mechanism utilizes global pooling
to capture global contexts and guides the feature learning
process by computing an attention vector. In DFANet, the
final global feature of each sub-encoder passes through a
fully connected (FC) attention module before being used as
an input feature map for the next sub-encoder. It has been
demonstrated that deploying the FC module enhances model
performance by 4-6%. However, the effective design of our
proposed multi-encoder eliminates the need for an attention
module on top of each sub-encoder [42], thereby reducing the
number of parameters and computational cost.

In DFANet, each sub-encoder has the same layered archi-
tecture, but the spatial dimensions of the input feature map
for each sub-encoder differ. Consequently, an additional deep
stage is created after each sub-encoder. The drawback of
this architecture is that the deep features are not optimally
reused. For instance, in DFANet, features at the fourth, fifth,
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and sixth stages are reused three, two, and one time, respec-
tively. However, high-level features (the sixth stage) should
be processed more extensively compared to intermediate and
shallow features. Additionally, the uniform layered archi-
tecture of each sub-encoder is ineffective in acquiring any
additional knowledge while reusing deep feature maps:

F2
l3 = Conv(Upsample8(F1

l6 )), (1)

F2
l3 = F1

l3 + F2
l3 . (2)

In contrast to DFANet, our first sub-encoder consists of
all six stages, producing both local and deep global features.
The final feature at the sixth stage of the first sub-encoder
is upsampled 23 times and added to the output of the third
stage of the first sub-encoder, as described mathematically in
Equations 1 and 2. In the feature maps F ilj , where i represents
the sub-encoder number and j represents the level (l) position,
F1
l6
and F1

l3
denote the output of the sixth (l6) and third (l3)

stages of the first sub-encoder (i = 1), respectively. The
feature map F1

l6
from the sixth stage of the first sub-encoder

is used to produce the feature map F2
l3
, which is subsequently

used as an input for the second sub-encoder and refined
through its fourth, fifth, and sixth stages. Lateral connections
are used to reuse features from the last three stages of the first
sub-encoder. Similarly, the third and fourth sub-encoders are
designed, and their operations are described mathematically
in Equations 3, 4, 5, and 6, which define the operations
performed before processing feature maps with the third
and fourth sub-encoders. ‘Upsample8,’ ‘Upsample4,’ and
‘Upsample2’ refer to scaling up the feature map by 23, 22,
and 21 times, respectively:

F3
l4 = Conv(Upsample4(F2

l6 )), (3)

F3
l4 = F2

l4 + F3
l4 , (4)

F4
l5 = Conv(Upsample2(F3

l6 )), (5)

F4
l5 = F3

l5 + F4
l5 . (6)

We show in Table 2 that the layered architecture of each
sub-encoder is different. In the first sub-encoder, we have
11 MBConv blocks, whereas in the successive sub-encoders,
we have 7, 5, and 3MBConv blocks, respectively. The reason
for reducing the number of MBConv blocks in subsequent
encoders is that the repetition of shallow and intermediate
stages does not contribute significantly to context assim-
ilation, as these stages contain more spatial details than
contextual information. While the repetition of intermediate
stages is reduced, reusing deep features in the successive
sub-encoder is strategically increased to enhance context
assimilation.

Furthermore, Table 2 also illustrates that by increasing
the value of the depth multiplier Md , the repetition of deep
MBConv6 blocks is increased in the subsequent sub-encoder.
This allows us to increase the depth of the model without cre-
ating additional stages. Compared to DFANet, our proposed
multi-encoder design reuses deep semantic features more
effectively and eliminates the need for FC attention modules,

as it scales the feature maps at different levels through a
specially designed multi-encoder network.

Figure 4(a) shows that the four sub-encoders produce rich
semantic featuremapsF6,F5,F4, andF3. Lateral connections
between encoders at the same level are used to address the
gradient vanishing problem. We downsample the feature map
F6 by a pooling operation to create an additional feature map
F7. At this stage, the feature map may lose the contextual
details of tiny objects in the scene due to the smaller spatial
dimensions; however, it retains the context of large objects.
Tomake the model more efficient, we utilize a simple pooling
operation to create the feature map F7 as this operation does
not add any additional parameters. The rich features F7 to
F3 will then be utilized by our decoder network.

B. DECODER NETWORK
Like most semantic segmentation models, our decoder is
deployed to produce an output of the same size as the input by
employing a series of upsampling techniques. Rich semantic
features at different scales from the output of the encoder
network need to be fused together at different levels. Similar
to feature reusing in the encoder network, fusing features
from multiple paths in both directions enhances the ability of
object localization in the scene. Figure 4(b) displays the com-
plete architecture of our proposed decoder network. Next,
we describe key innovative steps.

1) LOCAL AND GLOBAL CONTEXT AGGREGATION MODULE
To motivate our proposed design, we first make an important
observation from the literature [4], [46], [47] that aggregating
features at different scales enhances the entire feature hierar-
chy with accurate object localization in the scene. Therefore,
we introduce a novel component called the Local and Global
Context Aggregation (LGCA), for this purpose. The blue
dotted box in Figure 4(b) displays the complete architecture
of LGCA. First, it takes deep and intermediate features (F3 to
F7) produced by the multi-encoder network described pre-
viously. We adopt a channel reduction mechanism in which
all feature maps at various stages will be filtered by a stan-
dard point-wise convolution layer to generate features with
reduced channel Pli = Conv(Fli ). It is required to provide
similar depth of each feature map before being fused with
each other. Moreover, by reducing the depth of the deep
feature maps, the model complexity is also reduced. Later
on, high-level semantic features are propagated downward
through a top-down path to boost the semantic representation
and improve multi-scale in-variance. Equation 7 shows that
before fusing a higher-level feature Pli with a previous level
feature map Pli−1 , Pli is bi-linearly upsampled. This top-down
path provides the first decoder path which helps in achieving
context assimilation in the feature hierarchy. However, the
spatial details of local feature maps need to be added with
rich semantic details of the global feature maps for better
object localization. This necessitates one bottom-up path to
send the accurate localization signals from a lower level to
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a higher level. Equation 8 shows that a low level feature
Pli−1 is down-sampled before it gets added with the next
higher-level feature map Pi. The downward arrows define
top-down path and the upward arrows signify the bottom-up
path in Figure 4(b):

Pli−1 = Pli−1 + Upsample2(Pli ), (7)

Pli = Pli + MaxPooling(Pli−1). (8)

Every downsampling or upsampling operation typically
causes a loss of spatial details. To minimize this loss,
we deploy a separable convolution (SC) block after every
pooling operation. This block contains a depth-wise separable
convolution (DSConv) layer followed by a batch normaliza-
tion layer (BN). DSConv first filters the feature map along
its depth, then deploys a point-wise standard convolution for
better refinement. By standardizing the output of the DSConv
layer, the BN layer enhances the independent learning ability
of every layer of the network. We set the dilation rate to 2 for
the DSConv layer in order to achieve a better receptive field
while refining the feature maps.

After the bottom-up path, we finally introduce another
top-down path for final context engrossment. Similar to
feature reuse in the multi-encoder, we aggregate seman-
tic features through multiple channels for better context
accumulation and accurate object localization. Some skip
connections among the paths of the decoder are introduced
to address the degradation problem and help the loss function
converge quickly. At the end of the second top-down path,
we receive a semantically rich feature map, which is upsam-
pled 2 times to fuse with the coarse local feature map F2. This
completes the pipeline of LGCA.

2) CLASSIFIER
This final module of our proposed decoder network assigns a
class label to every pixel based on their contextual details. The
literature has shown that adding a few layers in the classifier
module supplements model performance [24], [39]. Hence,
we employ two depth-wise separable convolution layers, one
standard convolution layer, one upsample layer, and one soft-
max layer. In each DSConv layer, we use a 3 × 3 filter with
a dilation rate of 2 as this provides a better receptive field
while refining the feature map. Since the input feature map in
the classifier module has 64 channels, the choice of DSConv
layers helps reduce the number of parameters and GFLOPs.
We implement one standard convolution layer for the finest
segmentation, setting the number of channels to be the same
as the number of classes in the target dataset. The spatial
dimensions of the feature map in the classifier module are
one-fourth of the original input. To ensure equal height and
width, we utilize a bilinear upsampling layer that upscales the
feature map by 22 times. Additionally, we employ a Dropout
layer to addressmodel overfitting. Finally, the softmax activa-
tion function is used to assign a class label to each individual
pixel.

IV. EXPERIMENTS
As this work targets resource-constrained mobile devices,
so we mainly compare the proposed model’s performance
with the existing real-time semantic segmentation models
having a less than 5 M model parameters.

A. DATASETS
To benchmark our proposed model against others, we con-
ducted extensive experiments on structured and unstructured
public datasets. We strictly followed the evaluation protocols
of these datasets for training, validation, and testing.

1) STRUCTURED DATASETS
Cityscapes [28] is the most widely used dataset for semantic
segmentation. It provides urban street scene images at a
resolution of 1024 × 2048, where objects are classified into
35 classes and grouped into 8 different categories. Following
the protocols used in the literature for Cityscapes, we used
19 classes for pixel annotations. The dataset consists of
around 5,000 finely annotated images, out of which 2,975
images are used for training, 500 samples are used for val-
idation, and the remaining 1,525 images are used for testing.
However, annotations for the test set are not provided with the
dataset. To evaluate our model on the test set, we submitted
the test results of the proposed model to the Cityscapes
online evaluation server, and the results were published on the
server.

CamVid [25] is a small structured dataset that provides
267 images for training, 101 for validation, and 233 for test-
ing. Consistent with the evaluation protocols in the literature,
we used only 11 fine-tuned classes out of the 32 classes in
the dataset. To improve performance on CamVid, we utilized
transfer learning by pre-training the model on the Cityscapes
dataset with appropriate class mapping between the two
datasets.

Similarly to Cityscapes, the BDD100K [26] and
KITTI [27] datasets use the same class labeling technique
(19 classes) for training and testing. Due to this compatibility
in class labeling, we can use Cityscapes pre-trained weights
to train the model with BDD100K and KITTI datasets.
BDD100K provides a total of 10,000 images, out of which
7,000 images are used for training, 1,000 for validation,
and the remaining 2,000 images for testing. Fine-grained
annotations are provided only for the training and validation
sets. The original input resolution of this dataset is 720×1280
pixels. On the other hand, KITTI is a small urban street scene
dataset that provides only 200 training images with fine-tuned
annotations and 200 test images without annotations. Each
input image has a resolution of 375× 1280 pixels. Similar to
Cityscapes, KITTI also provides an online evaluation server
for the test set. We submitted the test set results of our
proposed model to the KITTI evaluation server to obtain the
test results.
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2) UNSTRUCTURED DATASET
The four datasets mentioned above primarily focus on urban
street scenes captured in western countries, such as Europe or
the USA, where the road environment is well-structured and
there are fewer variations in the objects present. However,
such well-defined traffic environments are not represen-
tative of the road conditions in Asian countries, such as
India. To evaluate the performance of the proposed model
in unstructured road conditions, we trained the model using
the IDD-lite (Indian Driving Dataset lite version) [48]. This
dataset consists of 1,404 urban and rural training images,
204 validation samples, and 404 test samples, each with a
resolution of 227× 320. The dataset divides the entire object
space into seven classes: drivable, non-drivable, living things,
vehicles, roadside objects, far objects, and sky. We reported
the performance of the proposed model on each of these
classes.

Furthermore, we also trained the proposed model using
IDD part 1 and part 2, which contain approximately 14,027
training samples and 2,036 validation samples. Similar to
IDD-lite, we reported the performance of the proposed model
on the seven classes of both IDD and Cityscapes validation
sets.

B. IMPLEMENTATION DETAILS
All compared models were trained on a server equipped with
three Nvidia GeForce TITANRTXGPUs, each with 24GB of
memory. For effective utilization of all GPUs in data-parallel
distributed training, we used the horovod framework [49].
The software components included CUDA 10.2 for par-
allel processing, tensorflow 2.1.0, and keras 2.3.1.
We employed the polynomial learning rate strategy, with a
base rate of 0.045 and power of 0.9. Using a polynomial
scheduler, we found the optimal learning rate at the steepest
slope of the training loss vs. learning rate plot for 5 epochs.
We used the distributed synchronous stochastic gradient
descent (SGD) optimizer, which divides SGD mini-batches
over a pool of parallel GPUs to find the best learning rate.
Following [50], we also employed a gradual warm-up strat-
egy in the horovod distributed framework to overcome
optimization challenges, especially in the early stages of the
training process.

To improve training, we employed various on-the-fly data
augmentation techniques such as resizing, cropping, clipping
by value, horizontal and vertical flipping, adjusting bright-
ness, saturation and contrast of the input images to increase
the effective size of the training set. We also employed differ-
ent regularization techniques to address model over-fitting,
such as ℓ2 regularisation for all top layers and a dropout layer
with a dropout rate of 0.3.

C. ABLATION STUDY
In this ablation study, we aim to demonstrate the impor-
tance of each component of our proposed model in achieving
the best segmentation performance. Firstly, we highlight

TABLE 3. Results of ablation study.

the significance of the multi-encoder design. To do this,
we initially trained the proposed model with only the first
sub-encoder (as described in Table 2). Subsequently, we pro-
gressively added the second, third, and fourth sub-encoders.
The validation results reported in Table 3 were obtained
after training the model on the Cityscapes training set for
500 epochs at the full input resolution of 1024 × 2048 px.
In the results section, we reported the best validation and test
mIoU achieved by our proposed model after fine-tuning the
model and training it for a large number of epochs. Initially,
we did not utilize multiple paths at the decoder side and only
employed the first top-down path of the LGCAmodule to fuse
features at different levels. Therefore, the first five rows of
Table 3 do not include LGCA. The table clearly demonstrates
that with the addition of each sub-encoder, the model’s per-
formance noticeably improves and reaches a validation mIoU
of 70.7% after 500 epochs.

We also explored the use of ASPP (Atrous Spatial Pyra-
mid Pooling) [13] for feature scaling on top of the fourth
encoder. ASPP is known to filter the feature map with various
sizes of receptive fields and has the potential to improve
segmentation performance. However, we observed a slight
drop in performance. This could be attributed to the fact that
the model’s backbone produces a low-resolution feature map
that is 26 times smaller than the original input size. Due to
this performance reduction, we did not incorporate ASPP in
our model design. Furthermore, the different layered archi-
tectures of each sub-encoder already provide feature scaling
capability, makingASPP unnecessary. The last row of Table 3
demonstrates that with the inclusion of LGCA on top of the
multi-encoder network, our proposedmodel, calledMCANet,
achieves a validation mIoU of 71.8% after 500 epochs, while
having only 2.72 million parameters and 31.2 GFLOPs. If we
upsample the global feature map by 23 times at the decoder
end, the GFLOPs count would be reduced to 27.5 at full input
resolution. However, this may lead to boundary degeneration
effects in the output. Therefore, we perform upsampling of
the global feature map at two stages: the first upsampling by
21 times occurs inside LGCA, and the second upsampling
by 22 times occurs inside the classifier module (as shown in
Figure 4(b)).
From Table 3, it is evident that the model’s performance

improves with the addition of each sub-encoder and LGCA
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FIGURE 5. Illustration of feature similarities of a group of pixels using score map. Bright and hotter color means
more similar feature among the pixels. Weights of intermediate Conv layers are used to produce score map at
various levels for an (a) input image. (b) Score map after first sub-encoder, (c) Score map after second
sub-encoder, (d) Score map after third sub-encoder, (e) Score map after forth sub-encoder, (f) Final score map
overlaying with the input image.

TABLE 4. Class-wise MCANet performance on Cityscapes validation and test sets.

TABLE 5. Category-wise MCANet performance on Cityscapes validation and test sets.

module. To visually demonstrate this improvement, we gen-
erated score maps (before the softmax function) at various
stages using feature maps from different levels, and these
score maps are presented in Figure 5. In each score map,
pixels with similar features are highlighted using a hotter
color. We used feature maps at 16 × 32 resolution after the
first, second, third, fourth sub-encoders, and after LGCA (as
depicted in Figure 4). In Figure 5, we highlighted two main
sections (car and pedestrian) in the input image using red
and white boxes. It clearly illustrates that with the successive
addition of each sub-encoder and LGCA module, the model
becomes capable of identifying more pixels with similar
features.

Therefore, both the quantitative and qualitative studies
provide clear evidence of the effectiveness of the multiple
sub-encoder design for feature extraction at various levels and
the use of LGCA for constructing the segmented output using
the extracted features from different levels.

D. MODEL EVALUATION
The proposed model is evaluated on the four urban
street scenes datasets. Following the literature and eval-
uation servers, we present the following metrics: class

and category-wise mean Intersection over Union (IoU),
mean instance-level Intersection over Union (iIoU), model
parameters, GFLOPs and Frame Per Second (EPS). As the
proposed backbone is designed from scratch, so we did
not use any existing pre-trained weight to train the model
with Cityscapes. Moreover, We did not train the proposed
backbone with ImageNet [29] dataset like other exiting
models.

1) PERFORMANCE ON CITYSCAPES
We trained the proposed model on the Cityscapes dataset for
1000 epochs with a batch size of 4 on each GPU. During the
performance evaluation on the validation set, we utilized the
training set. However, to improve the accuracy on the test set,
we merged both the training and validation sets. Additionally,
we included additional coarse images from Cityscapes for a
small number of epochs, which resulted in a slight improve-
ment of only 0.4% in test performance. Table 4 presents
the class-wise performance of the model on the Cityscapes
validation and test sets. It is observed that the proposed model
performed exceptionally well on the top 5 classes (including
road, building, vegetation, sky, and car), with accuracy above
90% on both the validation and test sets. Overall, MCANet
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TABLE 6. Performance evaluation of different models on Cityscapes validation and test set.

TABLE 7. GFLOPs and FPS at different input resolution.

achieved a validation mIoU of 74.8% and a test mIoU of
73.4% on the Cityscapes dataset. The performance on the test
set was independently evaluated by the Cityscapes evaluation
server, and the results are available on the server.

The 19 classes of Cityscapes are categorized into 7
categories, and the corresponding category-wise mIoU is
presented in Table 5. It demonstrates that MCANet per-
formed exceptionally well in 5 out of the 7 categories. The
average performance in the object and human categories
is relatively lower due to the limited occurrence of classes
within these categories in the entire dataset. This non-uniform
distribution of classes is a common challenge across existing
models. Overall, the proposed model achieved an impressive
category-wise mIoU of almost 89% on both sets.

Performance comparison To illustrate the effectiveness
of our proposed model, we compared its performance with
existing real-time semantic segmentation models. It is gener-
ally acknowledged in the literature that offline models have
a large number of parameters due to their deep network
architecture, while real-time models have significantly fewer
parameters. Therefore, in Table 6, we did not include the
performance of existing offline models to ensure a meaning-
ful comparison. Typically, offline semantic models have over
40 million parameters and achieve mIoU values of 80-84%
on the Cityscapes test set. For example, DeepLabV3+ [13]
and PSPNet [14] achieve test mIoU values of 82.1% and
81.2%, respectively, with 43 and 250.8 million parameters.
In contrast, most existing real-time semantic segmentation
models have less than 10 million parameters and achieve

test mIoU values of 68-72% on Cityscapes. For instance,
STDC1 [51], MGSeg [37], DFANet [42], ICNet [22], and
BiSeNet [21] achieve test mIoU values of 75.3%, 72.7%,
71.3%, 69.5%, and 68.4%, respectively. However, these mod-
els still have moderately large parameter counts ranging
from 4.5-8.4 million. SwiftNet [38], which uses a pre-trained
ResNet-18 (RN18) as a backbone, achieves a test mIoU of
75.9% on Cityscapes with 11.8 million parameters. While all
these models demonstrate good accuracy, they still have a
moderately large number of parameters. On the other hand,
models like ENet [19], ContextNet [24], Fast-SCNN [39],
and FANet [40] have 0.4-1.2 million parameters and achieve
test class mIoU values of 58-68%. These models are more
efficient in real-time environments but their performance lags
behind moderately large real-time semantic models by 4-6%.
Striking a balance between model size and performance, our
proposed model, MCANet, achieves 74.8% and 73.4% class
mIoU on the Cityscapes validation and test sets, respectively,
with only 2.7 million parameters. This clearly demonstrates
the superior performance of our model on the Cityscapes
dataset.

For consistency, we decided to replicate a few existing
real-time models based on publicly available implementa-
tions on GitHub to ensure a more meaningful comparison.
These models are marked with an asterisk ‘*’ sign in the
following tables.We trained thesemodels under the same sys-
tem configurations with the full input resolution. The results
obtained from our experiments on the Cityscapes validation
set are presented in Table 6 and are marked with an asterisk
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FIGURE 6. The plot Input size vs GLFOPs illustrates that with an increase
in input resolution, the GFLOPs count of all models also increases.

‘*’ sign. Our experimental results for the existing models
may differ from the actual literature, but it provides a fair
comparison based on the same system settings.

Table 6 provides the class and category-based mIoU results
for different existing models on the validation and test sets of
Cityscapes. The mean iIoU, as provided by the Cityscapes
evaluation server, is also included, along with the model
parameters and GFLOPs count. However, some real-time
semantic segmentation models did not publish their results on
the Cityscapes evaluation server, resulting in unavailable iIoU
values denoted by the sign ‘‘-’’. Our result on the Cityscapes
test set is available on the benchmark server.

While class mIoU is the primary metric for comparison
as it comes from the Cityscapes evaluation server, we also
discuss GFLOPs count for completeness. However, it is worth
noting that GFLOPs count is not an optimal metric as it
depends on the model size and input resolution. The increase
in input resolution leads to a somewhat polynomial increase
in GFLOPs count, as shown in Figure 6. This has resulted in
inconsistent GFLOPs counts being reported in previous work.
For example, ENet has 3.8 GFLOPs at a 360 × 360 input
resolution with 0.4 million parameters, while STDC1 [51]
claims 0.8 GFLOPs at a 224 × 224 input resolution with
8.4 million parameters.

Since we trained three existing models (FANet [40], Fast-
SCNN [39], ContextNet [24]) using the Cityscapes dataset
under the same system configuration, we measured the
GFLOPs of these models at different input resolutions. The
results are presented in Figure 6 and Table 7. It can be
observed that as the input resolution increases, the GFLOPs
count of all models also increases, with ContextNet [24] hav-
ing the highest GFLOPs count. Our proposedmodel produces
31.2 and 2.0 GFLOPs at input resolutions of 1024×2048 and
256 × 512, respectively.
Another commonly mentioned metric in semantic seg-

mentation evaluation is frames per second (FPS). However,
it is evident that FPS is highly dependent on hardware
and input resolution. For the sake of completeness, we also
discuss this metric here. To ensure a meaningful comparison,

we measured the FPS of all four trained models listed in
Table 7 under the same system configuration at different input
resolutions and presented the experimental results. To mea-
sure FPS, we first converted the TensorFlow model to a
TensorRT optimized model and then used a single Tesla T4
GPU with 16GB memory. We used a batch size of 4 and
averaged the FPS value over 10 iterations. It is evident
from the results that Fast-SCNN [39] achieves higher FPS
compared to the other models at different input resolutions.
We acknowledge that our ownmeasurementsmay differ from
the figures published in the original papers, possibly due to
variations in hardware and measurement methods. However,
what is more important is the relative performance based on
the most intuitive way to measure the overall computation of
the entire pipeline.

When compared to our proposed model, all three models
listed in Table 7 have approximately 2-3 times fewer param-
eters. They employ a computationally cheaper method for
upsampling the global feature map in the decoder, which
results in boundary degradation in the output and over-
all lower segmentation performance. Our effective upsam-
pling solution, as described earlier, introduces additional
computational cost, leading to a lower FPS. However,
we believe that such a trade-off is worthwhile for signifi-
cantly improved segmentation quality. In Table 6, we reported
the FPS of our proposed model at an input resolution of
512 × 1024.

2) PERFORMANCE ON CamVid DATASET
We also trained our proposed model along with a few exist-
ing semantic segmentation models with CamVid dataset and
present the results in Table 8. To ensure tensor size com-
patibility, we used an input size of 640 × 896 px instead of
the full input resolution of 720 × 960 px. Table 8 clearly
illustrates that our proposed model MCANet achieved the
state-of-the-art (SOTA) performance on the CamVid vali-
dation and test sets among the existing real-time semantic
models. It achieved 81.4% and 80.2% validation and test
mIoU, respectively, which is even higher than many exist-
ing offline models such as DeepLab [11] and PSPNet [14].
The dual deep model DeepLabV3+ with SDCNetAug [52]
achieved the SOTA performance (81.7%) on the CamVid
test set due to its large backbone, joint strategies, and large
synthetic datasets. In comparison, real-time models such as
STDC1 [51] and MGSeg [37] achieved 73.0% and 72.7%
test mIoU on the CamVid set, respectively. Literature [37] did
not report the performance of the smaller variant of MGSeg
(ShuffleNetV2) on the CamVid dataset. Hence, we compared
the proposed model’s performance with the higher variant of
MGSeg (ResNet-18) (refer to Table 8). In terms of size, both
of these models (MGSeg (R18) and STDC1) are 3 to 5 times
bigger than our proposed model. Despite being a smaller
network, our proposed MCANet achieved more than 7% test
accuracy on the CamVid dataset. Thus, Table 8 shows the
superior performance of our proposedmodel among real-time
semantic models.
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TABLE 8. Performance evaluation on CamVid validation and test sets.

TABLE 9. Performance evaluation on validation set of BDD100K dataset.

TABLE 10. Performance evaluation on test set of KITTI.

3) PERFORMANCE ON BDD100K
Table 9 displays models performance on the BDD100K
dataset. We trained the model with 768 × 1280 input
resolution for better compatibility with tensor dimensions.
To improve model performance on BDD100K dataset,
we used Cityscapes pre-trained weight. Due to the diverse
and complex nature of this data set, not many existing
models are trained with this dataset. The only work we
could find is [15] which introduced two different variants of
HANet- HANet with MobileNetV2 (MV2) as backbone and
HANet with ResNet-101 (R101) as backbone, both of which
are clearly off-line models. We present both the variants’
performance along with the proposed model. HANet R101
variant produces the SOTA result (64.8%) on BDD100K
validation set while having as many as 64.2M parameters
and 2137.8 GFLOPs. The smaller variant of HANet (MV2)
which has 14.8M parameters, generates 58.9% validation

TABLE 11. Model performance on IDD-lite validation set.

mIoU. In comparison, the proposed model generates 58.8%
validation mIoU while having 5 to 24 times less parameters
than the both variants of HANet. It clearly shows the superior
performance of the proposed model on BDD100K dataset.
We also trained few existing models (marked by * sign) with
BDD100K dataset and presented the results in Table 9. It can
be observed that among the real-time semantic models, the
proposed model produces the SOTA result on BDD100K
validation set.

4) PERFORMANCE ON KITTI
We followed the same training protocol as BDD100k [26] to
train our proposed model with the KITTI [27] dataset, and
the results on the KITTI test set are presented in Table 10.
The KITTI dataset is primarily used for stereo, visual
odometry, and depth analysis. Therefore, we did not find
any existing real-time semantic segmentation models that
were specifically trained and tested on the KITTI fine-tune
dataset and had their results submitted to the evaluation
server. We came across a few works from the KITTI server,
such as DeepLabV3Plus+SDCNetAug [52], SGDepth [53],
SDNet [54], and PAG [55], which primarily focused on depth
analysis. Although these models incorporate a semantic head
to enhance the model’s performance in addition to the depth
analysis decoder head. Among these models, SGDepth [53]
achieves relatively better results with a class mIoU of 53.0%
on the KITTI test set, followed by SDNet [54] with 51.1%.
The current state-of-the-art result on the KITTI test set is
achieved by DeepLabV3Plus+SDCNetAug [52], which is
a combination of multiple models. It utilizes a joint video
prediction model to augment the training sets for robust
semantic segmentation, leverages a deep semantic model
(DeepLabV3Plus) for feature extraction, and applies a bound-
ary label relaxation technique to reduce noise at the object
edges. Due to the collective efforts of multiple models and the
presence of large synthetic training sets, this model achieves a
classmIoU of 72.8%on theKITTI test set. In comparison, our
proposed lightweight single model is significantly smaller
and specifically designed for scene parsing. It achieves a class
mIoU of 58.5% and a category (Cat.) mIoU of 83.0% on
the KITTI test set, setting the state-of-the-art performance in
the real-time semantic segmentation category. The results of
MCANet were independently generated by the KITTI evalu-
ation server. For tensor dimension compatibility, we used an
input resolution of 384×1280 to train themodel on the KITTI
dataset. All the models listed in Table 10 were pre-trained
with the Cityscapes dataset.
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TABLE 12. Class-wise model performance on IDD-lite validation set.

FIGURE 7. Colour mapping of Cityscapes dataset.

FIGURE 8. Output produced by (a) ContextNet, (b) FANet, (c) FAST-SCNN, (d) MCANet using Cityscapes validation image.

FIGURE 9. Output produced by MCANet using Cityscapes test set samples.

5) PERFORMANCE ON IDD-LITE
he IDD-lite dataset is primarily designed for resource-
constrained devices that lack sufficient hardware resources
to train models with large input resolutions. To ensure ten-
sor size compatibility, we trained our model with a 256 ×

384 input resolution. The performance of different exist-
ing models on the IDD-lite validation set is presented in
Table 11. Among the existing models, Eff-UNet (E.Net
B7) [56] achieves the state-of-the-art performance on the
IDD-lite validation set and won the first prize in the IDD-lite
segmentation challenge held in 2019. Eff-UNet [56] uti-
lizes a large feature extractor called EfficientNet-B7 (E.Net
B7) [57], which has 66M parameters and 37 GFLOPs at a

224 × 224 input resolution. However, despite the IDD-lite
dataset targeting resource-constrained embedded devices, the
evaluated existingmodels on this dataset are still too large and
computationally inefficient for mobile devices.

Table 11 presents the results of the top-performing existing
models on the IDD-lite dataset, including their parameters
and GFLOPs at a 128 × 256 input resolution. It is evi-
dent that all these existing models have a large number
of parameters and GFLOPs, making them impractical to
run on resource-constrained embedded devices, especially at
higher input resolutions. In contrast, our proposed MCANet
is 10 to 58 times smaller than all the listed existing mod-
els while achieving a state-of-the-art result (73.8% mIoU)
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FIGURE 10. Colour mapping of CamVid dataset.

FIGURE 11. Output produced by (a) ContextNet, (b) FAST-SCNN, (c) FANet, (d) MCANet using CamVid validation image.

FIGURE 12. Output produced by MCANet using CamVid test set samples.

FIGURE 13. Models prediction on BDD100K validation set. (a) RGB input, (b) Coloured annotation, (c) ContextNet,
(d) Fast-SCNN, (e) FANet, (f) MCANet.

on the IDD-lite validation set, similar to Eff-UNet (E.Net
B7) [56]. Table 11 also provides information on the model
parameters, GFLOPs, and FPS count. It is clear that our pro-
posed MCANet is more efficient compared to all the existing
models, as it processes a higher number of frames (494) per
second while significantly reducing computational usage by
reducing the number of parameters and GFLOPs.

Table 12 presents the class-wise mIoU performance of
Eff-Unet (E.Net B7) [56] and our proposed MCANet. Addi-
tionally, we report the performance of our proposed model

on seven classes of the IDD (part 1 and part 2) [58]
and Cityscapes [28] datasets. Our model achieves 75.5%
and 71.6% mIoU on the IDD and Cityscapes datasets,
respectively.

6) QUALITATIVE RESULTS AND ANALYSIS
In this section, we demonstrate the quality of the output
produced by our proposed model and compare it with other
models. Figure 7 and 10 display the annotation and color map
used for the Cityscapes and CamVid datasets, respectively.
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FIGURE 14. Output produced by MCANet using BDD100K test set samples.

FIGURE 15. Output produced by MCANet using KITTI test set samples.

FIGURE 16. Color map of IDD lite dataset and model prediction using validation sample.

FIGURE 17. Models predictions using Cityscapes and IDD samples on 7 classes. (a) Cityscapes input, (b) Cityscapes prediction, (c) IDD input, (d) IDD
prediction.

Nineteen color codes are used for Cityscapes, while eleven
color codes are used for CamVid. The BDD100K and KITTI
datasets follow the same color codes as Cityscapes. The void
class is excluded for all datasets.

Figure 8 showcases the corresponding segmented output of
the input images depicted in Figure 7. The outputs generated

by ContextNet, Fast-SCNN, and FANet exhibit a boundary
degradation effect due to the 23 times upsampling at the
end of the decoder. On the other hand, our proposed model
MCANet produces outputs with sharp and clear edges for
each object in the scene. The results in Figure 9 demonstrate
that our model accurately positions tiny classes such as poles,
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traffic lights, and traffic signs in the test samples, without
overlooking them amidst the larger classes

Likewise, Figure 11 displays the output produced by dif-
ferent models on selected CamVid images. In contrast to
the original annotation of CamVid, we formed some super
classes by merging related classes. For instance, we grouped
car, truck, bus, and caravan together and formed a single
class called ‘‘car.’’ Thus, the bus is represented by the same
color as the car, as can be observed in Figure 11. Figure 12
displays the output generated by the proposed model using
selected test samples from the CamVid dataset. In line with
the quantitative results presented in Table 8, Figure 11 also
confirms the model’s superiority over other models.

Figure 13 shows the segmented output produced by differ-
ent models using the BDD100K validation set. Classes such
as ice and car hood, which are defined by the black color in the
colored annotation (Figure 8(b)), are ignored during training
of the model. As a result, pixels that belong to ignored classes
are assigned the color of the neighboring classes. This does
not affect the model’s performance, as these pixels are com-
pletely disregarded when calculating mIoU. By inspecting all
the output, it can be clearly seen that the quality of the output
produced by the proposed model is much better than other
three models in Figure 13. In order to provide a better view
of different scenes that contain tiny objects, we also present
the output produced by the proposed model using BDD100K
test set in Figure 14. All of these figures clearly demonstrate
the excellent performance ofMCANet in the field of semantic
segmentation.

Figure 15 shows the predictions of the proposed model on
KITTI test set samples, as generated by the KITTI evaluation
server. Along with the colored predictions, it also provides an
error image for each sample. The second column of Figure 15
displays the proposed model’s predictions, and the third col-
umn shows the corresponding error images. The color red in
the error images indicates wrongly classified pixels. It is clear
that pixels mostly at the boundaries of each object in the scene
are incorrectly classified. However, the proposed model’s
object identification and overall segmentation demonstrate its
excellent performance on the KITTI dataset.

Figure 16 displays the colour map of IDD-lite dataset
and the output produced by the proposed model MCANet,
using IDD-lite validation sample. Like the other datasets,
the quality of the predicted output of the IDD-lite sam-
ple is good, and it justifies the quantitative result produced
by the proposed model. In Figure 17, we also shows the
model’s predictions using Cityscapes and IDD samples. Like
IDD-lite, seven classes are used.

V. CONCLUSION
To improve the performance of existing models in real-time
semantic segmentation for resource-constrained applications
and to reduce the performance gap between offline and
real-time models, we introduced an efficient multi-encoder
network that can handle high-resolution input images and
produce competitive semantic segmentation results. The key

innovative steps in our design are: a novel multi-encoder
network with a dynamic layered structure for better cap-
turing semantic information and sharing information more
effectively across different scales; a new local and global
context aggregation module for better semantic fusion in
the output. Compared to existing real-time semantic seg-
mentation models, our proposed model MCANet produces
competitive performance in both structured and unstructured
environments and sets a new benchmark on all the tested
datasets while having only 2.7 M parameters. The effective
design of our proposed multi-encoder fulfills the needs of
feature scaling techniques and produces rich feature maps
at different scales. By exploiting these feature maps, our
proposed decoder assimilates contextual details in multiple
paths and produces output with accurate object positioning
in the scene. Although the addition of the LGCA module
improves the localization of each object in the scene, it also
slightly increases the processing time of each frame. Hence,
in the future, we will try to optimize the design of the
LGCA module to improve the model’s FPS without sacrific-
ing the model’s performance. We will also exploit the design
of the multi-encoder for instance and panoptic segmenta-
tion. we make an implementation of our model available
at https://github.com/tanmaysingha/MCANet for reproduc-
ing the results presented in this work.
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