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ABSTRACT To address the shortcomings of the basic GrayWolf Optimization (GWO) algorithm in solving
complex problems, such as relying on the initial population, converging too early, and easily falling into
local optimality, a chaotic reverse learning initialization strategy, a nonlinear control parameter convergence
strategy, and a dynamic position update strategy are introduced to develop a multi-strategy fusion Improved
GrayWolf Optimization (IGWO) algorithm, and thismethod is used to solve function optimization problems.
First, a chaotic backward learning initialization strategy, based on logistic mapping and backward learning,
is adopted to improve the random initialization of the GWO algorithm and enhance the traversal and diversity
of the initial population. Second, a nonlinear control parameter for local perturbation is constructed to avoid
the problem of premature convergence of the GWO algorithm due to linear convergence and to balance the
exploration and exploitation ability of the GWO algorithm. Finally, a location guidance strategy based on
dynamic weights and individual memory is proposed to effectively improve the algorithm’s optimization
accuracy and computational efficiency; meanwhile, the Gaussian-Cauchy mutation strategy of superior
selection is introduced to optimize the location update of optimal individual α wolves and improve the ability
of the population to jump out of local extremes. Simulation experiments are conducted for 11 classical test
functions, and the results show that the proposed improved algorithm IGWO for gray wolves is superior to
10 other standard swarm intelligence optimization algorithms and 4 other improved optimization algorithms
in terms of solution accuracy, convergence speed, and algorithm stability. It provides a new optimization
algorithm for solving complex optimization problems.

INDEX TERMS Gray wolf optimization algorithm, population intelligence optimization, chaotic mapping,
lenticular imaging backward learning, nonlinear control parameters.

I. INTRODUCTION
As an emerging interdisciplinary field, swarm intelligence
optimization algorithms have been developed comprehen-
sively and rapidly, both in terms of theoretical exploration
and application expansion [1], [2], [3], [4], and they have
gradually received attention from local and international
scholars due to their simple structure and robustness [5], [6].
For instance, the genetic algorithm (GA) [7], particle swarm
optimization (PSO) [8], sparrow search algorithm (SSA),
Moth-Flame Optimization(MFO) [9], Sailed Fish Optimizer
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(SFO) [10], and so on. In addition, several scholars use
swarm intelligence optimization algorithms to solve practical
problems. Lu et al. put forward a hybrid ensemble algorithm
combining AdaBoost and GA for cancer classification with
gene expression data [11]. Wei et al. proposed a novel self-
adjusted particle swarm optimization algorithm (SAPSO) is
proposed for selecting the optimal feature subset for classifi-
cation datasets [12]. Wu et al. propose a novel greedy genetic
sparrow search algorithm based on a sine and cosine search
strategy (GGSC-SSA) and apply this algorithm to solve the
problem of easily falling into local optima in the travel sales-
man problem [13]. Khurma proposes an effective wrapper
approach by integrating the Levy flight and evolutionary
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selection operators into the MFO algorithm and applying this
method to solve the feature selection (FS) problem in medical
applications [14].

As a new algorithm of bionic swarm intelligence, the Grey
Wolf Optimizer (GWO)was proposed byMirjalili et al [15] in
2014. It was inspired by the gray wolf pack hierarchy, hunting
behavior, and swarm intelligence, and it makes this method
easy to understand and helps some scientists engaged in
different research fields to quickly learn algorithms and apply
them to their problems Compared with some other swarm
intelligence algorithms, the GWO has stronger optimization
capabilities and faster search efficiency, good stability, and
strong robustness.Moreover, this method has good applica-
tion prospects and academic value, and this method is suitable
for solving highly nonlinear, and multimodal function opti-
mization problems. [16], [17], [18].

It has been shown that the GWO algorithm has good
performance when finding the best function optimization
[19]. However, this method still has the shortcomings of (1)
relying on the initial population and (2) easily falling into the
local optimum, which makes the algorithm suffer from slow
convergence speed and low convergence accuracy when find-
ing the best solution. For this reason, several scholars have
proposed corresponding hybrid strategies to integrate the
advantages of other algorithms into the GWO algorithm, fully
utilizing their respective advantages for collaborative search,
and enhancing the overall optimization ability of GWO. Their
work mainly includes population initialization, designing
mutation strategies, and combining other optimization algo-
rithms. For example, Abdel et al [20] used sigmoid function
and two-phase mutation to improve the GWO algorithm,
significantly improving algorithm mining ability and classi-
fication accuracy. Zhang and Zhou [21] Zhang proposed a
method combining the GWO algorithmwith lateral inhibition
to effectively reduce computational costs in solving image
extraction problems. Cheng et al. [22] used a contribution-
based strategy to initialize the population, a reinforcement
learning method to determine the global and the local search
parameters, and a two-level variable neighborhood and four
replacement strategies to improve the local search capability.
Zhang and Zhou [23] integrated the ranking based mutation
operator into the GWO to accelerate the convergence speed,
and thus enhance the performance. Li and Shen [24] used
the good point set method to generate the initial population
of the gray wolf individuals; combined with the teaching
and learning algorithm and the PSO algorithm, the proposed
method optimizes the original position update formula in
order to improve the algorithm’s search performance. More-
over, Duan and Yu [25] used the sine function to adjust the
control parameters nonlinearly and dynamically, and used the
Sine Cosine Algorithm (SCA)was used to update the position
of the alpha wolf in the GWO algorithm; moreover, the
weight-based individual position update and its combination
with the individual best were used to improve the search
ability of the algorithm. Kewen & Li [26] introduced the

Gaussian-Cauchy mutation operator in the alpha wolf search
in theGWOalgorithm, and retained the outstanding graywolf
individuals through the greedy selection mechanism; thus,
this method increased the alpha wolf population diversity and
the global search capability of the algorithm. Finally, Singh
and Bansal [27] combined four different strategies with a
new update search mechanism; therefore, this methodology
improved the control parameters, a mutation-driven scheme
and a greedy approach to fully expand the optimization per-
formance of the GWO algorithm, and achieved better global
search capability and convergence. Nadimi Shahraki et al
[28] proposes a novel GWO algorithm based on a dimension
learning hunting (DLH) search strategy, which uses different
methods to construct neighbors for each wolf, enabling infor-
mation sharing among wolves, enhancing the search balance
between individual gray wolves and the population in the
GWO algorithm, and ensuring population diversity. Ma et
al. [29] proposed an improved Grey Wolf algorithm based
on the Aquila Optimizer (AO), which expands the search
range to improve global search ability, reduce the likelihood
of falling into local optima, and balance the exploration and
development stages.

In summary, most of the proposed methods can improve
the performance of one aspect of the GWO algorithm, but
it is still difficult to strike a balance in terms of algorithm
convergence speed, search accuracy, and ease of falling into
local optimum. Thus, these potential defects need to be taken
seriously and addressed, this paper proposes an improved
gray wolf algorithm with multi-strategy fusion using (1)
chaotic backward learning initialization strategy, (2) non-
linear control parameter convergence strategy, (3) position
update strategy with dynamic weights and individual mem-
ory, and (4) Gaussian-Cauchy variation strategy based on
merit selection. On 11 groups of standard test functions,
IGWO is comparedwith some swarm intelligent optimization
algorithms and improved GWO algorithms. The experimen-
tal results show that the IGWO algorithm can effectively
improve convergence accuracy and significantly improve the
performance of optimal value search, while avoiding pre-
mature convergence and enhancing local and global search
capabilities

The innovative points and main contributions of this paper
are as follows.

1) Chaotic reverse learning strategy to expand population
diversity: The chaotic reverse learning strategy, based on
logistic mapping strategy, combined with the lens imaging
reverse learning strategy that changes with iteration, is pro-
posed to improve the method of randomly generating the
initial population in the original GWO algorithm in order to
expand the population diversity, expand the range of initial
optional solutions, and realize the quality improvement of the
initial population individuals;

2) Sinusoidal law-change convergence strategy to improve
convergence speed and solution accuracy, and balance the
exploration and exploitation ability of the GWO algorithm:
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FIGURE 1. Schematic diagram of the update mechanism of GWO.

The convergence strategy, based on the normal random
strategy and the adaptation-related sinusoidal law-change
convergence strategy, is adopted to improve the linear con-
vergence method in the original GWO algorithm. Therefore,
a nonlinear and dynamic change with the increase of the num-
ber of iterations, which can fully improve the convergence
speed and solution accuracy of the algorithm, and guide it to
avoid local optimum, will be obtained;

3) Proportional weighting strategy and individual histor-
ical optimal memory strategy to avoid local optimum: The
dynamic proportional weight, based on the Euclidean dis-
tance of the step size, is used to adjust the position formula
of GWO as well as the individual history optimal memory
strategy in PSO is introduced to improve the method of popu-
lation position update in the original GWO, expand the search
range, and avoid the algorithm to fall into local optimum to
some extent;

4) Gaussian-Cauchy mutation strategy, based on superior-
ity and inferiority, to improve the search efficiency of the
algorithm: In order to further improve the ability of the
algorithm to get out of local optimum and fall into early
maturity, it adopts the strategy of determining the winners and
losers based on the idea of ‘‘greedy’’ selection. The algorithm
performs Gaussian-Cauchy mutation on the optimal solution
obtained from the original GWO with a certain probability
to determine whether to accept the new location of the opti-
mal gray wolf individual after the mutation; moreover, the
improved algorithm enables the population to evolve towards
the optimal solution faster.

II. DESCRIPTION OF THE IMPROVED GREY WOLF
ALGORITHM BASED ON MULTI-STRATEGY FUSION
Gray wolves live in packs and have a strict social hierarchy,
as shown in Figure 1. The leader of the pack is called the
α wolf, and he is responsible for making decisions such as

hunting, food distribution, and resting place. β wolves of the
second rank are called wolves and are mainly responsible
for assisting in decision making. The wolves of the third
level are called δ wolves and they are mainly responsible for
scouting and sentry duty. The ω wolves at the lowest end
of the hierarchy are mainly responsible for maintaining the
balance of relationships within the population.

Suppose that the solution space dimension of the GWO
algorithm to solve the optimization problem is d , and the size
of the gray wolf population isN . The position of the first gray
wolf individual is denoted as follows:

Xi =

{
X1
i , X2

i , . . . .., Xdi
}

, i = 1, 2, . . . .,N (1)

The optimal solution, sub-optimal solution and 3rd optimal
solution in the gray wolf population are noted as α, β, and
δ, respectively, and the rest of the solutions are noted as ω.
In order to find the optimal solution or the optimal position,
ω will continuously update the position based on the position
of α, β, and δ to reach the optimum, and the position update
formula of the gray wolf is shown in Eq. (2)

X (t + 1) = Xp(t) − A ∗ |C ∗ Xp(t) − X (t)| (2)

where t is the number of iterations, Xp(t) represents the
position of the prey, and X (t) indicates the position of the
gray wolf after the t th iteration. Moreover, A and C are matrix
coefficients where A is the convergence factor, and C is the
oscillation factor. Both factors are defined in Eqs. (3) and (4)

A = 2a ∗ r1 − a (3)

C = 2r2 (4)

where r1 and r2 denote, respectively, two random variables
varying between [0,1], and a is the distance control parameter
whose value decreases linearly from 2 to 0 with the increase
of the number of iterations to gradually approach the optimal
solution, and the expression is shown in Eq. (5) aw follows:

a(t) = 2(1 − t/Tmax) (5)

where t is the number of iterations, Tmax denotes the maxi-
mum allowed number of iterations.

After encircling the target prey, β and δ wolves pursue
the prey under the leadership of α wolf. Furthermore, in this
process, the position of the individual gray wolf population
will change due to the escape of the prey; thus, the gray wolf
population can update the gray wolf position based on the
position Xα,Xβ ,Xδ of α, β, δ, and the expression is shown in
Eq. (7).

X1(t + 1) = Xα(t) − A1 · |C1 · Xα(t) − X (t)|
X2(t + 1) = Xβ (t) − A2 · |C2 · Xβ (t) − X (t)|
X3(t + 1) = Xδ(t) − A3 · |C3 · Xδ(t) − X (t)|

(6)

X (t + 1) =

∑
j=1,2,3

WjXj(t + 1) (7)

where t is the number of iterations, X(t+1) denotes the final
updated position where the gray wolf is, XαXβ ,Xδ represents
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the position of wolves α, β, and δ in turn X1X2X3 denotes the
estimated prey position based on the position of α, β, and δ,
respectively and, finally, Wj(j = α, β, δ) denotes the weight
coefficient of α, β, and δ, as shown in Eq. (8):

Wj =
||Xj||

||X1|| + ||X2|| + ||X3||
(8)

where ||Xj|| represents the Euclidean distance of the graywolf
population individuals from locations α, β, δ.

To sum up, the mechanism for updating the position of the
GWO algorithm is shown in Figure 1.

A. POPULATION INITIALIZATION STRATEGY BASED ON
CHAOTIC BACKWARD LEARNING
The GWO algorithm initializes the population randomly,
which limits the gray wolf population individuals in the initial
stage. In order to distribute the population of individuals X ti
as evenly as possible, this paper uses the logistic chaotic
mapping and lensing imaging backward learning strategy to
improve the population initialization; therefore, the conver-
gence speed of the algorithm will accelerate.

1) LOGISTIC CHAOS MAPPING STRATEGY
The logistic chaos mapping was proposed by Robert May in
1976 to model the way birds and insect populations change
their complex behavior over time [30], [31]. The proposed
method is ergodic, regular, and stochastic; moreover, it is
suitable to be combined with swarm intelligence optimization
algorithms and it is commonly used to adjust the initialization
of populations with good determinism, and convergence, and
it is particularly sensitive to initial values. It has been demon-
strated, in the literature, that the logistic chaotic mapping
is less computationally intensive compared to other chaotic
mappings [30] and can effectively help the algorithm to
increase the population diversity and reduce the operational
complexity, whose mathematical expression is shown in Eq.
(9).

X t+1
i = u1X ti (1 − X ti ) (9)

where, X ti ∈ rand(0, 1) the population size is i=1,2,..,N, t is
the number of current iterations, and the chaos parameter is
u1 ∈ rand(0, 4).
However, the logistic mapping based on a simple linear

relationship suffers from the defect of uneven distribution
of sequence values with blank windows. Therefore, in this
paper, an improved logistic mapping strategy, using a sinu-
soidal variation-basedmapping is proposed tomake the initial
solutions X ti uniformly distributed and enhance the diver-
sity of individuals. As for its mathematical expression, it is
expressed as shown in Eq. (10).

X t+1
i = r · sin(3π · (X ti (1 − X ti ))) + (1 − r) · u2X ti (1 − X ti )

(10)

where r ∈ rand(0, 4), X ti ∈ rand(0, 1), and the chaos
parameters are u2 ∈rand(0,4).

2) LENS IMAGING REVERSE LEARNING STRATEGY
This strategy considers both the solution and its opposite.
By expanding the scope of bidirectional search in the search
space to find the optimal solution Xi, the combination of the
swarm intelligence algorithm and Reverse learning strategy
can significantly improve the optimization performance of
the algorithm [32]. Therefore, this paper adopts the lens imag-
ing reverse learning strategy, whose mathematical expression
is represented in Eq. (11)

Xd∗

i =
Xdmin + Xdmax

2
+
Xdmin + Xdmax

2k
−
Xdi
k

(11)

Xdi where Xdmin and X
d
max denote the minimum and maximum

values of the d th dimension vector in all initial solutions,
respectively; Xd∗

i is the lensing inverse solution of and k
represents the scaling factor of the lens, and its mathematical
expression is shown in Eq. (12) as follows:

k(t) = kmax −
(kmax − kmin)t

Tmax
(12)

where the maximum scaling factor of the lens is kmax =1 and
the minimum scaling factor of the lens is kmin =0.
According to the above definition, the steps to initialize the

population for the chaotic backward learning strategy of the
IGWO algorithm are as follows:

1) The logistic chaotic sequences are used to generate N
initial solutionsXi, and the inverse pointX∗

i of each individual
position xi is computed using the lens imaging backward
learning.

2) The set of the initial solutions Xi and inverse solutions
X∗
i as well as their fitness values are calculated separately,

and they are sorted in ascending order (to find the minimum
value).

3) The top N better solutions are selected as the final initial
population according to the ranking result of the fitness value.

B. IMPROVED NONLINEAR DISTANCE CONTROL
PARAMETER STRATEGY
In the GWO algorithm, when |A| ≥ 1, individuals of the
gray wolf population will expand their search for the optimal
solution to perform global search; however, when |A| < 1,
these individuals will narrow their search to refine the search
for the optimal solution. Referring to Eq. (6), the value of A
depends on the distance control parameter a. That is, the value
of a plays a decisive role in the global and local search of the
balancing algorithm. While a is linearly decreasing from 2 to
0 with the number of iterations, the early convergence speed
is too fast leading to a smaller search range and poorer
population diversity, whereas the late convergence speed is
too slow solving efficiency is low, which cannot really reflect
the actual nonlinear search process, leading to get algorithm
falling into local optimum.

Therefore, this paper adopts a convergence strategy based
on sinusoidal variation; in a such way, the distance control
parameter a can change nonlinearly and dynamically with the
number of iterations. In order to ensure population variety
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and increase the algorithm’s capacity to search globally, the
value of a is improved in the early iterations to retain a
higher value for a longer length of time with a smaller change
in magnitude and speed. In the late iteration, the distance
control parameter a is improved to keep a smaller value for a
longer period of time and the magnitude and speed of change
is also smaller, which makes the gray wolf strengthen the
local search ability of the algorithm and improve its solution
efficiency; at the same time, the random perturbation term
randn(), with normal distribution, is combined so that a can
be dynamically adjusted using the perturbation term to reduce
the probability of the algorithm falling into a local optimum.
Therefore, the specific formula is shown in Eq. (13).

a(t) = ainitial −
(ainitial − afinial)(fi − fmin)

favg − fmin
· sin(

2
π

·
t

Tmax
)

+ randn() (13)

where and are the initial and termination values of the dis-
tance control parameter a, respectively.

C. INDIVIDUAL HISTORY OPTIMAL MEMORY STRATEGIES
In the GWO algorithm, individual gray wolves learn from the
optimal position of the group to achieve position update; how-
ever, the influence of individual gray wolves’ own experience
on its position update is not considered in this process. There-
fore, this paper introduces the individual memory function of
the PSO algorithm, based on Eq. (7), so that the population
individuals Xi learn from the population optimal position Xα

and also learn from the individual historical optimal position.
Thus, by adjusting the values of b1 and b2, the influence of
the group communication and the individual memory on the
search can be balanced, and the ability of the algorithm to
jump out of the local optimum is enhanced. To sum up, the
specific formula is shown in Eq. (14).

X (t + 1) = b1
∑

j=1,2,3

WjXj(t + 1) + b2r3(pbesti(t) − X (t))

(14)

where b1 and b2 denote the group communication coefficient
and the individual memory coefficient, usually constants
between [0,1]. By adjusting these two values, the impact of
group communication and individual memory on search can
be balanced. Therefore, this article makes the algorithm’s
position update formula half affected by group communica-
tion and half affected by individual memory, fully avoiding
falling into local optima during the position update process,
i.e. b1=b2=0.5, r3 is a random number uniformly distributed
varying between [0,1], and pbesti(t) denotes the best individ-
ual historical position of the ith gray wolf individual during
the t th iteration process.

D. MUTATION STRATEGIES FOR ELITE INDIVIDUALS
To further improve the ability of the algorithm to jump
out of the local optimum in the process of finding the
best solution, while maintaining the population diversity of

FIGURE 2. The flowchart of the IGWO.

the algorithm at the late stage of convergence, a Gaussian
mutation strategy, based on superior selection, is introduced
so that the algorithm can mutate the current optimal solu-
tion Xα(t) with a certain probability. Therefore, the specific
expression of the Gaussian mutation operator is shown
in Eq. (15).

Xbest (t + 1) = Xα(t)(1 + Gaussion(σ )) (15)

where Xbest (t+1) denotes the location of the individual after
the mutation and Gaussion(σ ) represents a random variable
following the Gaussian distribution.

However, the Gaussian mutation has a strong local
exploitation ability, but it has a slightly weaker perturbation
ability, while the Cauchymutation has a stronger perturbation
ability and a stronger global exploration ability [31]. There-
fore, in this paper, we propose Eq. (16) that is an upgrade
of Eq. (15), which combines the advantages of Gaussian and
Corsi variants as follows:

Xbest (t + 1) = Xα(t)(1 + r4 · Gaussion(σ )

+ r5 · cauchy(0, 1)) (16)

In order to determine whether to accept the optimal gray
wolf individual position Xα after the mutation based on
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TABLE 1. Standard test functions.

the superior selection probability p, the following update is
shown in Eq. (17).

Xα(t + 1) =


Xbest (t + 1), other
Xα(t), f (Xbest (t + 1)) > f (Xα(t))
and rand < p

(17)

where rand() represents a random number uniformly dis-
tributed varying between [0,1]; f (·) is the fitness value of
the individual gray wolf population; and the two weighting
factors take the values r4=r5=0.5.

E. IGWO ALGORITHM PSEUDO-CODE
To sum up, this paper proposes a multi-strategy fusion
improved gray wolf algorithm (IGWO), whose features make
the algorithm avoid falling into local optimum and improve
its convergence speed and accuracy. The flowchart of the
algorithm is shown in Figure 2, and the algorithm steps are
shown as follows:

Inputs: population size N , search space dimension d , the
maximum number of iterations Tmax , initial value ainitial and
termination value afinial of the distance control parameter
a, population communication coefficient b1 and individual
memory coefficient b2, and, finally, maximum value kmax and
minimum value kmin of the lens scaling factor.
Output: Xα .

Algorithm description:
1) Initialization using Eqs. (10) and (11) to generate gray

wolf populations Xi =
{
X1
i ,X2

i , . . . .., Xdi
}
, where i =

1,2,. . . .,N.
2) Calculate the fitness value of individuals in the pop-

ulation f (Xi) = {f (X1) , f (X2), . . . ., f (XN )} and record the
current optimal individual α, the next optimal individual β

and the third optimal individual δ, and their corresponding
positions Xα , XβXδ .

3)while (t<Tmax) do
4) for i = 1to N do
5) Calculate the value of distance control parameter a

according to Eq. (13);
6) Calculate the values of parameters A and C according

to Eqs. (3) and (4);
7) Update the position of individuals X according to Eq.

(14);
8) Update the position of the individual optimal solution

Xα(t) according to Eq. (17).
9) end for

10) Calculate the fitness values f (Xi) of individuals in the
population and update the optimal individual α, the second
optimal individual β and the third optimal individual δ as well
as their corresponding positions Xα , Xβ ,Xδ and the historical
optimal position pbesti(t).

11) Increase t
12) end while
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TABLE 2. Comparison of the results of IGWO and GWO algorithms.

III. SIMULATION RESULTS AND ANALYSIS
A. STANDARD TEST FUNCTIONS
In order to test the optimization performance and effective-
ness of the proposed IGWO algorithm, 11 widely used global
benchmark test functions were selected for simulation and

experimental validation in this paper [18]. Thus, Table 1
gives the expressions, search intervals (Rang), and theoretical
optimal values (fmin) of the benchmark test functions, where
F1∼ F7 represent the unimodal functions used to test the
convergence accuracy and information mining ability of
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FIGURE 3. Convergence curves of IGWO algorithm and other swarm intelligence. algorithms (d = 50).
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intelligent algorithms; F8∼ F11 represent the multimodal
functions used to test the ability and exploration ability of
intelligent algorithms to solve complex optimization prob-
lems.

B. COMPARISON WITH GWO ALGORITHM
In order to compare the performance of the IGWO algorithm
with the GWO algorithm to find the best performance, the
two algorithms are used to solve for the 11 standard test
functions listed in Table 1. For the comparison and evaluation
of benchmark function test results of different algorithms,
the results are presented in the form of average accuracy
(Avg) and standard deviation (Std). The average will indi-
cate the ability of algorithms in avoiding local solutions,
and the standard deviations show the variation in the results
and stability of algorithms in avoiding local solutions. When
the average value of the optimized function is closer to the
theoretical optimal value in Table 1, it indicates that the
optimization effect of the model is good; When the standard
deviation of the optimized function approaches 0, it indicates
that the model has strong robustness. To ensure the fairness
of the simulation experiment, the same parameter settings are
used for both algorithms, where the population size N =

30 and the maximum number of iterations are Tmax = 500.
In the IGWO algorithm, the maximum value of the scaling
factor K of the lens is Kmax = 1 and the minimum value is
Kmin = 0 whereas the initial value of the control parameter
is ainitial = 2 and its termination value is afinial = 0. The
two algorithms are executed 30 times independently under
dimensions d = 30, d = 50, and d = 100. The average
accuracy (Avg) and the standard deviation (Std) of the two
algorithms for finding the best of the 11 test functions are
recorded.

Note that, in this paper, the used CPU is an I5 processor
with a memory of 16GB, and where the system is Win10
64-bit operating system, and the program is implemented
using Python2018. The solution results are shown in Table 2,
and the bolded numbers indicate the best experimental
results.

Referring to Table 2, the IGWO algorithm achieves bet-
ter search results than the GWO algorithm for all 11 test
functions. where the IGWO algorithm is able to converge
to the optimal result, i.e., the theoretical optimal value of
0, when solving the function F1, F5, F6, F7, F10, F11
in different dimensions. As for the functions F2, F3, F7,
F8, F9, they did not converge to the optimum, but the
IGWO algorithm achieves better convergence accuracy than
the GWO algorithm. Finally, for the function F4, both
algorithms appear to converge prematurely and fall into
the local optimum, and similar convergence results are
obtained. In addition, the standard deviation of the IGWO
algorithm is 0 except for the function F4, yielding in a
strong robustness for the IGWO algorithm. In summary,
the IGWO algorithm has better convergence accuracy and
stability than the original GWO algorithm, which veri-

fies the effectiveness of the IGWO algorithm improvement
strategy.

C. COMPARISON WITH OTHER SWARM INTELLIGENCE
ALGORITHMS
To further verify the effectiveness of the proposed IGWO
algorithm in this paper, it is compared with other swarm
intelligence optimization algorithms, and the compared algo-
rithms are the PSO algorithm [8], SCA algorithm [34],Whale
Optimization Algorithm (WOA) [35], MFO [9], Seagull
Optimization Algorithm (SOA) [36], SSA [37], Salp Swarm
Algorithm (SSA) [38], Crisscross Optimization algorithm
(CSO) [39], SFO [10], and the Tunicate Swarm Algorithm
(TSA) [40] (the sparrow algorithm is labeled as SSAm in
order to distinguish between the sparrow algorithm SSA and
the bottle sea squirt algorithm SSA). In order to test the per-
formance of the proposed IGWO algorithm and the fairness
of the simulation experiments, the population size (N =

30) and the maximum number of iterations (Tmax = 500)
were set equally for all algorithms. It should be noted that
any adjustment of control parameters for each problem can
effectively improve the performance of the algorithm. Gen-
erally speaking, the selection of parameters requires some
experimentation. In this article, the parameters in the above
literature are referenced to set these models. In addition, the
parameter settings of the IGWO algorithm are as described
in the previous section of the experiment. Thus, Table 3
contains the results of the comparative analysis of the above
11 algorithms for the functions shown in Table 1, after being
executed 30 times under the condition of dimensions d = 30,
d = 50, and d = 100, respectively.
Referring to Table 3, compared with the other 10 swarm

intelligence optimization algorithms, the IGWO algorithm
in all three dimensions can fetch better solution results for
all 11 functions and has better convergence performance.
Among them, except for functions F9 and F10, the IGWO
algorithm has a better convergence effect compared to the
other ten swarm intelligence optimization algorithms, and the
search result for functions F1, F5, F6, F7, F10, F11 finds the
theoretical optimal value 0 in all three dimensions. In addi-
tion, when the dimension d increases from 30 to 50 and
reaches 100, the convergence accuracy and stability of each
algorithm tend to decrease; however, the IGWO algorithm
can still maintain a significant advantage in its search results.
In summary, IGWO has the fastest convergence speed in
finding global minima and is significantly superior to all
other algorithms. The standard deviation test of the algorithm
also indicates that IGWO has strong robustness. In order to
compare the convergence performance of several algorithms
more clearly, the adaptation of the 11 functions shown in
Table 1 is visualized and compared. Referring to Figure 3,
among the 11 functions, IGWO achieves faster convergence
speed and higher convergence accuracy compared to the other
10 swarm intelligence algorithms, which is related to the
effective improvement of the local development ability of
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TABLE 4. Comparison of the results of IGWO and improved GWO algorithms.

the algorithm by nonlinear perturbation at the end of the
iteration.

D. COMPARISON WITH GWO ALGORITHM
To further verify the effectiveness of the IGWO algorithm,
it is compared with four improved GWO algorithms (noted as
the EGWO algorithm [41], HGWO algorithm [24], WGWO
algorithm [18], and MGWO algorithm [42]). Similar to
the previous simulations, the five algorithms were executed
30 timeswith the same parameters in dimensions d = 30, d =

50, and d = 100, respectively, and the specific comparative
results are shown in Table 4.

Referring to Table 4, compared to the other four improved
GWO algorithms, the IGWO algorithm in all three dimen-
sions can fetch better solution results, and the search
results for the function F1, F5, F6, F7, F10, F11 can reach

the theoretical optimum value 0 in all three dimensions,
and this result indicates that IGWO has overcome local
optima and achieved the ability to achieve global optima.
From the standard deviation (std), it can be seen that
IGWO is still the most robust method, with more obvious
advantages.

Moreover, Figure 4 shows the convergence curves obtained
by solving the five improved algorithms in d = 50 dimen-
sions, and it can be intuitively seen, from the convergence
plots, that the IGWO algorithm can jump out of the local
optimum faster than other improved GWO algorithms, and
it has a faster convergence speed and a higher convergence
accuracy. In summary, compared to the above four different
improved GWO algorithms, the IGWO algorithm has good
convergence and a good performance in finding the optimum,
resulting in certain advantages for solving the optimal solu-
tion of the function.
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FIGURE 4. Convergence curves of IGWO algorithm and other improved GWO algorithms (d = 50).
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TABLE 5. The p-values of Wilcoxon rank for IGWO and other population intelligence optimization algorithms.

TABLE 6. The p-value of Wilcoxon rank for IGWO with the IGWO algorithm.

E. WILCOXON RANK AND TESTS
Although the average and standard deviation of 11 reference
functions were run independently 30 times to illustrate the
optimization performance and accuracy of different algo-
rithms to a certain extent, it could not verify whether IGWO
and the 14 algorithms mentioned above had significant dif-
ferences in solving complex optimization problems. In view
of this, the Wilcoxon rank sum test is used to compare the
performance test features between algorithms.Wilcoxon rank
sum test is a nonparametric null hypothesis test statistical
method used to evaluate the fairness and robustness of algo-
rithms. The results of 30 independent runs of IGWO and 14

other algorithms were taken as samples and tested with a
confidence level of 0.05. When the p-value of the Wilcoxon
rank sum test was less than 0.05, it was 95% likely that
the two compared algorithms were significantly different.
When the p-value of the Wilcoxon rank sum test is greater
than 0.05, it indicates that there is little difference between
IGWO and the comparison algorithm in overall optimization
results, and Nan indicates that the two groups of samples are
basically the same. Specifically, the P values of the Wilcoxon
rank sum test are shown in Table 5 and Table 6, where ‘‘S’’
indicates discriminatory discrimination, ‘‘+/=/-’’ indicates
that IGWO’s performance is better than/equivalent to/inferior
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to other algorithms, and N/A indicates that the performance
of the two algorithms is comparable.

Referring to Tables 5 and 6, most of the p-values of
the IGWO algorithm are less than 0.05 and the ‘‘+’’ sign
indicates that IGWO outperforms the swarm intelligence
optimization algorithms and the improved GWO algorithms.
The performance is equivalent in the global optimization to
obtain the optimal value. In general, the IGWO algorithm has
significant advantages over the other comparative algorithms,
and this is evidence that the proposed algorithm has high per-
formance in dealing with unimodal, multimodal benchmark
functions.

IV. CONCLUSION
For the shortcomings of the GWO algorithm relying on the
initial population, converging too early, and easily falling into
local optimum, this paper proposes an improved gray wolf
algorithm with multi-strategy fusion. A chaotic backward
learning initialization strategy, based on logistic mapping and
backward learning, is adopted to improve the traversal and
the diversity of the initial population and lay the foundation
for improving the efficiency of the algorithm. Moreover,
a nonlinear control parameter convergence strategy is pro-
posed to increase the population diversity by slowing down
the convergence speed in the early stage and improve the
accuracy of the algorithm by speeding it up in the later stage,
which comprehensively improves the convergence perfor-
mance of the algorithm. Finally, a position update strategy
based on the dynamic weights and the individual memory,
and a Gaussian-Cauchy mutation strategy, based on superior
selection, are used to modify the original position update
formula in order to optimize the algorithm search mode,
avoid the algorithm falling into local optimum, and improve
the convergence accuracy and convergence speed of the
algorithm. Through simulation experiments on 11 standard
test functions, comparedwith ten standard swarm intelligence
optimization algorithms and four improved GWO algorithms
proposed in other literature, the experimental results show
that the IGWO algorithm, proposed in this paper, has bet-
ter convergence speed and robustness, with more balanced
performance in terms of global search and local exploitation
capability.

As for the future work, lots of ideas can be implemented
to enhance this work. The IGWO algorithm can be applied to
feature selection to solve the problem of big data redundancy,
and the performance of the algorithm can be further verified
by practical problems.

V. DISCUSSION
To address the shortcomings of the basic gray wolf optimiza-
tion algorithm in solving complex problems, such as relying
on the initial population, converging too early, and easily
falling into local optimum, a multi-strategy fusion improved
gray wolf optimization algorithm is proposed to be applied
in solving function optimization problems. The improvement
strategy mainly includes the following three aspects: First,

a chaotic backward learning initialization strategy, based
on logistic mapping and backward learning, is adopted to
improve the random initialization of the GWO algorithm and
enhance the traversal and diversity of the initial population.
Second, a nonlinear control parameter for local perturbation
is constructed to avoid the problem of premature convergence
of the GWO algorithm due to linear convergence and to
balance the exploration and exploitation ability of the GWO
algorithm. Finally, a location guidance strategy based on
dynamic weights and individual memory is proposed to effec-
tively improve the algorithm’s optimization accuracy and
computational efficiency; meanwhile, the Gaussian-Cauchy
mutation strategy of superior selection is introduced to opti-
mize the location update of optimal individual α wolves and
improve the ability of the population to jump out of local
extremes.

From the experimental results we can summarize as fol-
lows:

1) Our proposed IGWO method is effective and has high
overall performance. It provides better results than
comparative algorithms for seeking the optimal solu-
tion of functions.

2) The simulation results are statistically validated by the
Wilcoxon rank sum test. Under majority conditions,
IGWO has stronger robustness compared to other algo-
rithms
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