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ABSTRACT Most of the tasks based on pose-guided person image synthesis have obtained accurate target
pose, but still have not obtained reasonable style texture mapping. In this paper, we propose a new two-stage
network to decouple style and content, which aims to enhance the accuracy of pose transfer and the realism
of a person appearance. Firstly, we propose an Aligned Multi-scale Content Transfer Network(AMSNet) to
predict the target edge map for pose content transfer in advance, which can not only preserve clearer texture
content but also alleviate spatial misalignment through advancing to transfer pose information. Secondly,
we propose a new Style Texture Transfer Network(STNet) to gradually transfer the source style features
to the target pose to for reasonable distribution of styles. To achieve highly similar appearance texture to
the source style, we use a style-content-aware adaptive normalization method. The source style features
are mapped into the same latent space as aligned content images (target pose and edge), and consistency
between style texture and content is enhanced through adaptive adjustment of source style and target pose.
Experimental results show that the proposed model can synthesize target images consistent with the source
style, achieving superior results both quantitatively and qualitatively.

INDEX TERMS Person image synthesis, pose transfer, style-content-aware adaptive normalization.

I. INTRODUCTION
Pose guided person image transformation is an image
generation task that synthesizes arbitrary target poses con-
ditioned on the person source image. It has many poten-
tial applications such as data augmentation for person
re-identification [1], [2], [3], video generation [4], [5], [6]
and virtual try-on [7], [8], [9], [10]. In recent years, the con-
version of source images into target poses using conditional
GAN has achieved significant success, such as PATN [11],
XingGAN [12], ADGAN [13], PoNA [14] and so on. These
methods based on the conditional GAN method insert mul-
tiple repetition modules and learn sparse correspondences
between poses through neural networks to reassemble source
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image features to target poses. However, these methods can-
not retain the features of the source style, making it difficult
to predict clear and reasonable target images. To solve this
problem, flow-based methods [6], [15], [16], [17] guide the
source features to be warped to a reasonable target pose by
predicting the correspondence of the position between the
source and the target, so as to obtain more accurate and
realistic texture image, but the source and target poses will
face large deformations to produce noticeable artifacts.

In order to alleviate the misalignment problem caused by
large pose variations, some methods [18], [19], [20], [21]
introduce human parsing map to provide semantic relation-
ships corresponding to the target pose to synthesize the target
image closer to the source style. These methods can synthe-
size a more satisfactory target person images, but they still
cannot generate realistic texture details. The aforementioned
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methods encounter three challenges to synthesize satisfac-
tory images: 1) Insufficient information on style textures,
2) Difficulty in pose transfer, 3) Difficult to predict regions
that are not present in the source image. To generate vivid
target images and decouple content and style for person image
synthesis, we propose a two-stage network structure that
maps aligned pose information and non-aligned style features
into an aligned feature space.

In the first stage, the aligned multi-scale content transfer
network is utilized to learn a source-to-target edge mapping
as an intermediate result. This network explicitly highlights
high-frequency signals of content information, which helps to
alleviate the difficulty of pose transformation while providing
spatial contextual clues for character identity features and
clothing features. To better preserve the source image style
and predict the information of invisible regions, flow-based
operations are used. These operations accurately extract the
texture of the source image by assigning local feature patches
to each target location. They also preserve the source image
details by warping multi-scale source features at the pixel
level, predict invisible regions using feature-level local warp-
ing, and obtain a coarse target image that is similar in style
and very close to the target pose jointly using soft weighting.
However, due to the limitations of the flow operation, such
as fuzzy garment boundaries and a lack of spatial contextual
relationship, image artifacts are apparent, and the clothing
texture differs from the source image. To solve this prob-
lem, the authors propose the style-content-aware adaptive
normalization method in the second stage. By acquiring the
correspondence between the source image and the rough tar-
get image, similar style features in the source image and target
content information are mapped to the same latent space.
Content and style information with learnable parameters are
injected to adjust the style distribution of the rough target
image so that its style texture and content information can be
evenly and reasonably distributed. This adjustment leads to
the generation of more accurate content and detailed appear-
ance styles. The model has the following three contributions:

1) To address the absence of content information, the
authors utilize an edge map as an added constraint
on the bit-pose heat map. This constraint guides the
network to enhance texture details and better preserve
the original content of the image.

2) The proposed method, namely the style-content-aware
adaptive normalization, explicitly distributes the style
features of the source image to the target bit pose.
Moreover, it injects the source style layer by layer to
ensure a high consistency between the image style and
the source image, while minimizing output artifacts.

3) Our proposed model involves a two-stage approach
of explicit perception, which effectively decouples
the shape and style of clothing. Through extensive
experiments using the DeepFashion dataset, we have
demonstrated the effectiveness of our model. In fact,
our synthesis quality has significantly improved in
terms of both quantitative metrics and user studies.

II. RELATED WORKS
A. HUMAN POSE TRANSFER
Since the introduction of the Pose-Guided Image Generation
(PG2) task [22], it has garnered a lot of attention from schol-
ars worldwide. However, existing pose transfer methods, such
as Def-GAN [23] and LiquidGAN [6], use rigid geometric
deformation, which lacks the flexibility needed to extract
accurate motion and can blur the body boundaries. To address
these issues, PATN [11] employs a local attention mechanism
to gradually guide the image information from the source
pose to the target pose, while ADGAN [13] uses a decom-
posed style code in a texture encoder to obtain a style vector
and the AdaIN [24] residual block to inject style features into
the target pose for image synthesis. XingGAN [12] proposes
a cross-attention block between style and pose to repeatedly
fuse features from the target pose and source appearance.
However, these methods lack alignment operations between
source appearance and target pose and cannot generate ideal
appearance textures. Other methods attempt to alleviate the
difficulties of pose distortion, such as GFLA [16], which esti-
mates 2D flow and occlusion masks based on source images,
source, and target poses, and warps the source local patches to
match the desired pose, or Li [15] and LiquidGAN [6], which
use 3D models to guide geometric deformations within the
foreground region. These methods generate realistic textures
but cannot extract accurate motion for complex deforma-
tions or severe occlusions, resulting in significant artifacts.
Recently, some researchers have used a two-stage network
structure, such as PISE [20], PINET [25] and SPGNet [18],
to synthesize a target resolution map with the source semantic
map, source pose, and target pose as inputs to broadcast
the appearance image to the corresponding semantic region.
These approaches show that pose transfer of target pars-
ing mappings has excellent potential but lacks significant
texture constraints and generates smoother images. Addition-
ally, CoCosNet [26], [27] computes dense correspondences
between cross-domain images through attention-based oper-
ations, while DPTN [28] aids source-to-source reconstruction
for source-to-target learning, and [29] uses unsupervised
methods. CASD [30] generates very accurate target poses
using cross-attention style blocks, and Scam [31] modulates
the stylistic information of semantic regions based on cross-
attentive methods. However, these methods still fail to retain
detailed source style features.

B. IMAGE TRANSLATION
Generative adversarial networks (GANs) [32] have been suc-
cessfully applied to image translation tasks by minimizing
the domain discrepancies between generated images and real
samples using generators and discriminators. Pix2Pix [33] is
an effective method for conditional image translation based
on specific input constraints. With the proposed Spatial
Adaptive Normalization (SPADE) [34], the activation in the
normalization layer is adjusted using a variant of Adap-
tive Instance Normalization (AdaIN) [24] to inject content
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information and synthesize a new image for a given semantic
input. Similarly, StyleGAN [35] also uses Adaptive Instance
Normalization (AdaIN) to achieve scale-specific control of
image synthesis. A further improvement to SPADE [34] is
seen in SEAN [36], which controls the per-region encoding to
effectively broadcast the style to a particular region. However,
these methods have relatively limited editing capabilities in
human pose transformation due to sparse correspondence of
keypoints, large pose and texture variations.

III. METHOD
Given the source image Is and the target pose Pt , a realistic
person image Ig with the same pose Pt and the consistency
in appearance Is is generated. Direct prediction of target
images often fails to achieve the expected results due to the
large variation in the field of view and poorly characterized
regions brought about by self-occlusion. To reduce the com-
plexity of the target image synthesis, the image content is
pre-transferred and the constraints on the pose features and
the refinement of the style texture features are strengthened.
So we propose a new two-stage pose-guided person image
generation model, where in the first stage the source edge
map Es, source pose Ps and target pose Pt are input to an
aligned multi-scale content transfer network (AMSNet) to
gradually generate the target edge map Eg, while in the sec-
ond stage, the predicted target edge map Eg, source pose Ps,
target posePt and source image Is are used to generate a target
pose image Ig that preserves the source style features through
the appearance texture transfer network (STNet). The general
framework of the method is shown in Fig.1, Please refer to the
appendix for the detailed network structure.

A. ALIGNED MULTI-SCALE EDGE CONTENT TRANSFER
NETWORK
The feature space of the source image Is includes style
features and content information, and it is difficult to map
the features of the source image Is to the target image Ig
directly due to the intermixing of these two types of infor-
mation. Therefore, the content information of the image
is pre-transferred, which is used to reduce the complexity
of target image synthesis and to strengthen the constraints
of stylistic features. Experimentally, it is demonstrated that
prior transfer of content information using pixel-level edge
mapping can highlight the high-frequency signals of identity
features. In order to compute the accurate transformation
relationship between source and target poses and generate
content-rich edge information. In this paper, we propose
aligned multi-scale attention blocks that differ from pre-
vious approaches that implicitly compute the relationship
between source and target poses to predict the attention mask.
We explicitly compute the pose relationship between the
source and target, and place the sampled source edge features
at the locations indicated by the target pose according to this
pose alignment relationship. This computational mechanism
is able to maintain edge Features better and predict clearer
and more accurate target edge information to accurately

guide the appearance of the second stage of texture transfer.
As shown in Fig.1, the source image Is is used to perform edge
detection to obtain the corresponding edge map Es. And then
Es, source pose Ps and target pose Pt are input to an AMSNet
to estimate a grayscale edge content map Eg∈ (0,1) aligned
with Pt . AMSNet consists of the aligning multiscale attention
decoder and three encoders. The formulation is defined as:

Eg = GE (Es,Ps ,Pt) (1)

where GE (·) denotes AMSNet. The use of sparse key points
to represent the pose information only provides limited body
structure, ignoring the inter-connection and correspondence
of various parts, and thus cannot handle some complex
poses (e.g., legs crossed, hands on head, arms crossed, etc.).
To align source and target poses better, content-rich edge
information is generated. As shown in Fig.1, we propose
AlignedMulti-scale Attention Blocks to compute the similar-
ity of all pixel points between the source pose and the target
pose, which guides the transfer of content information. The
formulation is defined as:

Mst = soft max
(
Convρ

(
fps

)
×

(
Convτ

(
fpt

)T))
(2)

feg = fse +
(
Convγ (fse) ×Mst

)
(3)

where Convγ (·), Convρ (·) and Convτ (·) denote the 1 × 1
convolution layer, × represents the matrix inner produc-
tion. fse, fps and fpt represent the extracted features of the
source edge map, source pose and target pose, respectively.
Mst denotes the similarity of all spatial location corre-
spondences, and the sum of each row is 1. The content
is transferred by weighted matrix summation. In addition,
to ensure less information loss during the transfer process,
the source edge information is added to the edge information
pixels after the pose attention calculation, which also accel-
erates the convergence of the model.

B. STYLE TEXTURE TRANSFER NETWORK
The main objective of the target image generation network
is to transfer the texture information and style features from
the source image to the target pose to obtain a highly similar
appearance of the person image to the source image. This is a
translation problem of mapping edge information to images
conditioned on the source image, but the variation between
the source image and the target image is large, and some
visible regions in the target image are not visible in the source
image. So in addition to predicting the target edge map,
existing flow-based operations are used to warp the source
image to the target image to obtain a coarse target image Icrs.
More specifically, the Pt , Is and Pt are stitched in the channel
dimension, their correspondence is calculated, and the source
image is globally and locally warped according to the corre-
spondence, thus synthesizing images with invisible regions in
style yet with realistic local details.

To conclude, a technique similar to the existing normal-
ization is applied to regulate the style of Icrs by adjusting its
scale and bias. However, previously used techniques tend to
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FIGURE 1. The overview of our model. We perform content transfer through the AMSNet at first, and then use the transferred edge content and target
pose to guide style injection. The STNet is responsible for progressively synthesizing a realistic-looking person image using SCSBlock.

lose spatial information and texture details from the source
image. To address this issue, the style-content-aware adaptive
normalization method is proposed. This method dynamically
adjusts the content and style activation mapping to allow
for flexible demodulation of the target feature distribution,
using feature maps of Pt , Is, and Eg as input. The main
advantage of this method is that it preserves the spatial con-
textual relationship of the source image while highlighting
the high-frequency signal of the texture through informa-
tion from the target edge. As a result, the clothing style
appears much more realistic. Finally, the target image is gen-
erated using multiple upsampling blocks in the multi-scale
feature space following the style-content-aware adaptive

normalization. The formulation is defined as:

Ig = G
(
Pt , Is,Eg,Ps

)
(4)

where G (·) denotes the Style texture transfer generation
network. We utilize the same encoder structure to extract
pose features, edge features, and style features from input
layers with different channel numbers. Specifically, we have
30 channels for pose features, 1 channel for edge features,
and 3 channels for style features. The encoder consists of
two down-sampled convolutional layers. To better capture
the positional information of the pose, we include straight
lines between points to model the pose structure. There are
a total of 18 keypoints and 12 lines, which results in 30 input
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FIGURE 2. Residual structure of the SCSBlock.

channels for the pose encoder. Inspired by [16], we employ
the feature deformation operation (ATBlk) to warp the source
image into a coarse target image Icrs with an ambiguous style
and target pose. To refine the style, we apply the style content
adaptive normalization layer based on the appearance similar-
ity between the source and target. The final output image is
generated through multiple stacks of ResBlock, SCSBlock,
and ResUpBlock in the multi-scale feature space. Overall,
this method produces realistic clothing style transfer results
while preserving spatial information and texture details.

1) DEFORMATION OF STYLE FEATURES
Numerous academics have proposed appearance warping
methods [15], [16], [19], [23] to achieve the effect of source
style warping by learning global or local spatial transfor-
mations. The flow-based operation can extract vivid source
textures by assigning a very local patch to each target
location, but it cannot capture the complex deformation
capabilities between source and target, so a combination of
pixel-level and feature-level flow-based operations is used to
ensure non-rigid transformation of source and target poses.
The flow field of relative motion between source and target
poses is calculated by sampling local source regions for each
output, using average pooling to force the correlation matrix
to a sparse matrix. Thus this operation can help to reconstruct
vivid source textures. Specifically, the flow estimator F takes
the source image Is, source pose Ps and target pose Pt as
inputs to generate the flow field w ∈ RH×W×2 and occlusion
mask m ∈ RH×W×1 by analyzing the difference between the
source image and the predicted target image. The formulation
is defined as:

w,m = F (Is,Ps,Pt) (5)

where w is the 2D coordinate offset between source and
target, and m denotes the presence or absence of target loca-
tion information in the source image. F (·) is the structure
of the auto-encoder, which first extracts features from the

FIGURE 3. Details of the style-content-aware adapation normalization.

input information, and then decodes them into flow fields and
occlusion masks based on the extracted features, preserving
local and global contextual relationships through some jump
connections. The flow-based approach warps the input data at
the pixel level to preserve high-frequency details but may be
warped by coarse flow maps and occlusion. However, warp-
ing the input data at the feature level can generate occlusion
or new content. So after obtaining the flow field, the output
of performing the flow-based operation using the joint feature
layer and pixel level is:

Icrs = m · Ipcrs + (1 − m) · I lcrs (6)

where Icrs denotes the output result of the flow-based oper-
ation, I lcrs denotes the feature layer flow-based warping
operation and Ipcrs denotes the pixel-level warping operation.
Use the occlusion mask w with continuous values between
0 and 1 to select features between I lcrs and I

p
crs. Where the

pixel-level flow-based warping operation Ipcrs = Wp (Is,w)

uses a bilinear difference method to sample the flow field of
the input source image. Feature-level flow-based operations:

I lcrs = Wf (Is,Pt ,w,m) (7)

where Wf is a fully connected network that uses the source
image Is, target pose Pt , flow field w, and occlusion mask m
as inputs to transform the information from the source to
the target feature space by sampling the source features to
obtain warped results I lcrs at local locations. This operation
is achieved using a local attention module similar to the
one used in [16]. In order to make the appearance style of
Icrs closer to the target image, the similarity between Icrs
and the pre-trained VGG-19 features of the target image is
increased to constrain them to be more consistent with the
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target features in the latent space, thus constraining them to be
in the same domain. By doing so, the model can better capture
the appearance transfer between the source and target images,
resulting in more visually appealing and realistic results.

2) STYLE-CONTENT-AWARE ADAPTIVE NORMALIZATION
In Section III-B1 of the paper, it is mentioned that the
flow-based operation leads to blurring of image boundaries,
which causes loss of spatial context relationship in the source
image, resulting in less realistic appearance in the resulting
image. To enhance the level of style refinement in the gen-
erated image, in addition to adding similarity constraints,
a 3 × 3 convolution layer is used to extract the spatial scale
and bias from the source image feature map to inject the style
details of the source image into the corresponding positions
of the target image. But due to the misalignment of the
spatial positions of the source image Is and the ground-truth
It , texture refinement is performed directly using the source
image to extract spatial scales α (fs, f ) and bias β (fs, f ),
resulting in the generation of incorrectly spatially located
image textures (e.g., the appearance of the side of the source
image is placed in front of the body of the generated image).
As depicted in Fig.3 of the paper, a potential solution to
address the misalignment problem involves computing the
similarity relationship between the coarse target image fea-
tures Icrs and the source image features fs. The similarity loss
is first used to constrain the similarity between the VGG-19
features with the target pre-training such that the features are
aligned with the ground-truth It in the same spatial domain.
Then the correspondence between the features of the source
image and the correlation matrix M is calculated, and the
correspondence layer [37] is used to calculate the correlation
matrix.

M (u, v) =
Icrs (u)T fs (v)

∥Icrs (u)∥ ∥fs (v)∥
(8)

where Icrs (u) and fs (v) denote the channel-level centrated
features of Icrs and fs at the locations of u and v, respectively.
By multiplying with the correlation matrix M , αs · M and
βs ·M , which represent the similar styles of the source image
and the target image, can be transformed from the source
image to the target image. Also, to obtain a more accurate
pose and texture, the aligned content information (target pose
and target edge mapping) is mapped to the same hidden
space as the style features, and the content and style of the
target image are adaptively adjusted. Suppose I ′crs denotes the
normalized image, then it is expressed as

I ′crs =Conv
(
LReLU

(
α (fs, f )

(
Icrs − µ

σ

)
+ β (fs, f )

))
(9)

α (fs, f ) = φα

(
αs ·M

)
+ (1 − φα) α (10)

β (fs, f ) = φβ

(
βs ·M

)
+

(
1 − φβ

)
β (11)

A set of modulation parameters α and β of the target edge
map or target pose is learned by a separate convolutional

neural network, and the weight of the modulation parameters
is adjusted using a set of learnable weight parameters φα

and φβ . The modulation scale and bias are used to gradually
refine and update Icrs to I ′crs. Thus, after Icrs has gone through
the style content-aware normalization module, it not only
has the target image content and details, but also retains the
source image style and spatial context relationships. Finally,
the spatially adaptive style content encoder is constructed
from a series of style-content-aware adaptive encoding blocks
as shown in Fig.2, and the output of the style content encoding
block:

Îcrs = p(fe, fs) + q(ft , fs) (12)

where p (·) and q (·) denote the style-content-aware normal-
ization module with the residual links. Icrs is superimposed
multiple times by ResBlock, SCSBlock, and ResUpBlock
on different feature scales to generate an image close to the
source image style Ig.

C. LOSS FUNCTION
In this paper, we first train AMSNet and flow generator
separately. The complete image generation model is then
trained end-to-end with a joint loss consisting of sampling
correctness loss Lf , bidirectional consistency loss Lbfc, simi-
larity lossLsim, reconstruction lossLL1, adversarial lossLadv,
perceptual loss Lper , style loss Lstyle, contextual loss Lcx and
LPIPS loss LLPIPS .

L = λf Lf + λbfcLbfc + λsimLsim + λL1LL1 + λadvLadv
+ λperLper + λstyleLstyle + λcxLcx + λLPIPSLLPIPS

(13)

Among them, λf , λsim, λbfc, λL1, λadv, λper , λstyle, λcx and
λLPIPS correspond to different hyperparameters to optimize
and control the results, respectively.

1) SAMPLING CORRECTNESS LOSS
The pre-trained VGG can provide information about the spa-
tial distribution of the image at the feature layer, so the VGG
features of the source image vls,wf are wraped with the VGG
features of the ground-truth vlt using a flow-based operation,
and the sampling correctness loss minimization predictionwf

is calculated for all N locations in the featuremap�. This loss
function is expressed as

Lf =
1
N

∑
l∈�

exp
[
−c

(
vls,wf , v

l
t

)]
(14)

where c (∗) denotes the cosine similarity operation, but the
flow field computation uses only forward mapping to super-
vise flow learning is sensitive to disturbances in regions
with similar features, and then a backward and forward
mapping check with bidirectional consistency loss is added to
distinguish the locations of similar features with
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FIGURE 4. Qualitative comparisons with state-of-the-art methods on DeepFashion [38] and Market-1501 [39] respectively. From left to right are the
results of PATN [11], PoNA [14], ADGAN [13], GFLA [16], SCAGAN [21], SPGNet [18], PISE [20], DPTN [28], CASD [30] and ours on DeepFashion [38],
respectively. From left to right are the results of PATN [11], PoNA [14], GFLA [16], SPGNet [18], DPTN [28] and ours on Market-1501 [39], respectively.

a loss function of

Lbfc =

∑
l∈�

mfl · η
(
wf (l) + wb

(
l + wf (l)

))
+ mbl · η

(
wb (l) + wf

(
l + wb (l)

))
(15)

where η (·) denotes the Charbonnier function, which com-
putes the forward flow wf and backward flow wb and the
masking mask mf and mb by two directions (i.e., source-to-
target and target-to-source).

2) SIMILARITY LOSS
Pose-guided figure image generation requires the same pose
as the target and the appearance to be consistent with the
source image. Due to the large pose variation between the
source and the target, it is impossible to precisely locate the
style similarity between the target and the source occlusion
region. Therefore, in this paper, in order to warp the source
image to obtain a coarse target image Icrs aligned in the same
domain with the target image features φi (It) extracted by pre-
training VGG-19. The similarity loss is used to calculate the
L2 distance between the rough image and the target image
and to constrain the style similarity between the generated
image and the occluded region of the target image It . So as to
improve the image generation qualities, which is defined as

Lsim =
∥∥Icrs − φi (It)

∥∥
2 (16)

3) RECONSTRUCTION AND PERCEPTUAL LOSS
Reconstruction loss evaluates the consistency of the gener-
ated image Ig with ground-truth It at the pixel level, which

is written as LL1 =
∥∥Ig − It

∥∥
1. Perceptual loss is used to

compute L1 distance between features extracted from the pre-
trained VGG-19 network in the multi-scale space. It is written
as Lper =

∑
i

∥∥ϕi
(
Ig

)
− ϕi (It)

∥∥
1, where ϕi (·) denotes the

features extracted from the first layer of the pre-trained
network.

4) ADVERSARIAL LOSS
We take the generated image Ig and the ground-truth It as the
input of the image generation discriminator D, and penalize
the distribution distance between them so that the distribution
of the generated image Ig is getting closer to that of the target
image It .

Ladv=E
[
log (1−D (G (Is,Ps,Pt ,Es)))

]
+E

[
logD (It)

]
(17)

5) STYLE LOSS
Style loss calculates the statistical difference in activation
maps between the generated image and the target image and
enhances the similarity of the color and style of the generated
image to the target image.

Lstyle =

∑
j

∥∥∥Gϕ
j (It) − Gϕ

j

(
Ig

)∥∥∥2
2

(18)

where Gϕ
j (·) is the Gram matrix of the activation mapping ϕj

of the j-th layer of the VGG-19 network. Feature extraction
is performed using features with the same weights.

6) CONTEXTUAL LOSS
The normalized cosine distance between feature maps is
calculated by using the contextual loss proposed in [41] to
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TABLE 1. Quantitative comparison with state-of-the-art methods.

TABLE 2. Comparison of model size and testing speed and floating point
operations on DeepFashion dataset. ‘‘M’’ denotes millions, ‘‘G’’ denotes
Giga and ‘‘fps’’ denotes frames per second.

measure the similarity of two spatially dislocated images.

Lcx = − log
(
CX

(
φl

(
Ig

)
, φl (It)

))
(19)

where φl (·) denotes the features extracted from the layers l =

[relu3_2, relu4_2] of pre-trained VGG-19, and CX denotes
the cosine similarity measure between features.

7) LPIPS LOSS
In order to reduce distortion and learn perceptual similar-
ity, LPIPS loss was additionally integrated, which has been
shown to better preserve image quality compared to more
standard perceptual losses and increase the realism of the
image.

LLPIPS =
∥∥F (

Ig
)
− F (It)

∥∥
2 (20)

where F (·) denotes the perceptual features extracted from
the pre-trained VGG-16 network.

IV. EXPERIMENT
Dataset: This paper uses the DeepFashion (In-shop clothing
Retrieval Benchmark) [38] and Market-1501 [39] datasets
to conduct experiments. The DeepFashion dataset contains
52,712 high-quality images of people at a resolution of
256 × 256, while the Market-1501 contains 32,668 low-
resolution images at 128 × 64 resolution. These images
vary in terms of viewpoint, background, and illumination.
We adopted the same approach to dataset segmentation as
in [40]. The Extended Difference Gaussian (XDoG) edge
detection method was used to extract the edge information of
the images, and the Openpose pose estimator was utilized to

FIGURE 5. Qualitative comparison with SCAGAN [21].

TABLE 3. Quantitative comparison with SCAGAN [21] about edge image.

generate pose heat maps with 18 channels, with each channel
representing one pose position information.
Evaluation Metrics: This paper evaluates the effectiveness

of the proposed approach using several image quality evalu-
ation metrics, including SSIM [42], FID [43], LPIPS [44],
and PSNR. These are commonly used evaluation methods
in existing image generation tasks. SSIM and PSNR mea-
sure the quality of the generated image at the pixel level.
LPIPS calculates the difference between the generated image
and the real image in the perceptual domain. In addition,
the authenticity of the images is measured using Fréchet
Inception Distance (FID), which calculates theWasserstein-2
distance between the generated data and the real data.
Experiment Details: To train the alignedmultiscale content

edge network and the style transfer network, the Adam opti-
mizer [45] was used with β1 = 0.0 and β2 = 0.999. The
networks were trained end-to-end for approximately 500k
iterations, using the same parameter configuration. The initial
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learning rate was set to 0.0001 and the batch size was 8.
Weights of the learning objectives in the image generation
network were set as follows: λf = 5.0, λsim = 100,
λbcf = 0.1, λL1 = 5.0, λadv = 2.0, λper = 0.5, λstyle = 500,
λcx = 0.1, and λLPIPS = 1.0. The generator and two discrim-
inators were alternately trained using this configuration.

A. COMPARISON WITH STATE-OF-THE-ART METHODS
1) QUANTITATIVE COMPARISON
We conducted both qualitative and quantitative comparisons
with several state-of-the-art methods, including PATN [11],
PoNA [14], ADGAN [13], GFLA [16], SCAGAN [21],
SPGNet [18], PISE [20], DPTN [28], and CASD [30]. The
quantitative results are presented in Table 1, which shows that
our proposed method achieved the best scores on all metrics
except for PSNR on the DeepFashion dataset. This indicates
that our method generated the most structurally accurate and
realistic images. Additionally, our method demonstrated the
best performance on most metrics compared to other state-
of-the-art methods. On the other hand, when evaluated on the
Market-1501 dataset, our method achieved the best results in
all metrics except for PSNR. Furthermore, the visual results
show that our method generated the best images overall.

2) QUALITATIVE COMPARISON
In Fig.4, we compared the results generated by different
methods. The left half of the figure shows some typical
qualitative examples from the DeepFashion dataset. It is clear
that our proposed method produces finer appearance textures
and realistic results (e.g., the first and second rows of the
penultimate row). More importantly, our method is capable
of preserving the identity information and facial features of
the source images (e.g., the first and third rows). Although
some methods such as ADGAN [13], SCAGAN [21], and
PISE [20] can generate structurally accurate images, they fail
to retain complex textures in the source images due to the lack
of spatial deformation blocks. The flow-based GFLA [16]
method can generate realistic textures, but noticeable artifacts
are produced when the pose changes greatly and occlusion
is observed. DPTN [28] introduces a source-to-source task
to assist source-to-target learning by sharing weights and
establishing a fine-grained mapping of all pixels between
source and target. However, it ignores the learning of invisible
regions, resulting in severe facial distortion. SPGNet [18] and
CASD [30] produce results that are very similar to the target
pose, but do not retain the complex texture of the source
style. In contrast, our proposed method generates target pose
features that are highly consistent with the source image.

The right half of the figure shows some examples from
the Market-1501 dataset. Our method can generate images of
people with clearer contours, such as shoes in the second row,
shoulder straps in the third row, and stripes in the fourth row.
In comparison, PATN [11] and PoNA [14] use the attention
mechanism to achieve high transmission accuracy, but due
to the lack of sufficient feature fusion between poses and

FIGURE 6. Qualitative results of ablation study.

images, the generated images still suffer frommissing details.
In conclusion, our method retains the integrity and clearer
boundaries of people and their clothing.

As shown in Table 2. The comparison of the computational
cost of our method with PATN [11], GFLA [16], PISE [20],
SCAGAN [21], SPGNet [18], DPTN [28] and CASD [30] in
terms of computational cost and speed of computation, the
computational cost of our method is slightly increased and
the speed of computation is slower. However, considering the
high visual quality and transmission accuracy we obtained
(see Table 1), this cost tends to be reasonable and acceptable.

3) USER STUDIES
Although quantitative and qualitative evaluation can pro-
vide some insights into the performance of the model, the
human pose transfer task is primarily user-oriented. There-
fore, we recruited 30 volunteers for an experiment to evaluate
the performance of the model in terms of human perception.
The evaluation included two aspects: 1) Comparison between
the generated images and the real images. Thirty pairs of
real and generated images were selected from the test set
for evaluation, and the order of the images was randomized.
Volunteers were asked to select the true or false images
based on their first impression. 2) Comparison with images
generated by other methods. Thirty pairs of images were
selected, including source images, target poses, and images
generated by eight different methods. Volunteers were asked
to select the generated image that was closest to the source
image and true image from the randomized order. The results
of the experiment are shown in Table 1. We used the same
measurementmetrics as in [30]: R2G, which is the percentage
of real images regarded as generated images; G2R, which is
the percentage of generated images regarded as real images;
and Jab, which is the percentage of images judged to be the
best among all models. Higher values of these three metrics
indicate better performance. From Table 1, it is clear that our
model achieved the best results.
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TABLE 4. Quantitative results of ablation study.

B. COMPARISON WITH SCAGAN
The SCAGAN model [21] utilizes pre-generated target edge
mapping to enhance target image generation results. How-
ever, it directly injects source features and edge information
into the spatial adaptive module and employs a progressive
network structure to generate the final image. This approach
leads to a loss of global semantic and texture information,
resulting in less realistic target images. In this paper, we aim
to address this issue by leveraging the region-adaptive nor-
malized SEAN technique [34]. Specifically, we first map the
source styles and rich target content information into the
same latent space to complement the rough image. Next,
we employ a feature-by-feature layer injection of both content
and style to obtain more accurate content, while synthesizing
more detailed appearance styles, resulting in more realistic
target images.

Fig.5 demonstrates that the textures of the generated
images are more reminiscent of the real target images when
compared to SCAGAN [21]. The edge maps produced by
our method (last two columns) preserve more detailed texture
and pose features. Furthermore, the skin and texture of the
person in the first and second rows appear more realistic, and
the texture of the clothing in the second and third rows is
closer to that of the target image. Hence, our method can
generate precise personal images and appearance textures.
Additionally, the edge maps produced by our network have a
clearer definition andmore comprehensive content than those
of SCAGAN. This is supported by the quantitative results
shown in Table 3, which highlight that our approach yields
more accurate outcomes.

C. ABLATION STUDY
Ablation experiments were conducted to verify the valid-
ity of our model, and the contribution of each component
was evaluated. As a result, we found that our model per-
forms optimally when all components are integrated. This
indicates that each component of the model contributes sig-
nificantly towards achieving the final performance of the
model.

1) W/O SCSBlock
By eliminating the SCSBlock and solely combining the
target edge information with the target pose, this model
may struggle to preserve the source image style and gen-
eralize the source style features. Instead, we propose an
alternative approach that involves extracting the content and

TABLE 5. Quantitative results of Lper ,LLPIPS and Lper + LLPIPS .

FIGURE 7. Qualitative results of Lper ,LLPIPS and Lper + LLPIPS .

source style features based on correspondence, and integrat-
ing them into the same hidden space for adaptive fusion.
This enables us to gradually generate the target image
while also preserving the source style features, leverag-
ing the use of residual and upsampling modules. Through
this method, our model is more adept at generalization
and achieving superior preservation of the source image
style.

2) W/O AMSNet
This model removes AMSNet while using the source edge
map as input in the Style-content-aware Adaptive Normal-
ization. Since there is not enough conditional transformation
information to perform detailed spatial alignment, it increases
the difficulty of the pose transformation and reduces
the additional constraints on the texture, thus increasing
artifacts.

3) CHANGE THE SCSBlock (CHG-SCS)
Changing the method of using Style-content-aware Adap-
tive Normalization in the model from using the source edge
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TABLE 6. The structure of the generator G of AMSNet.

TABLE 7. The structure of Flow encoder. w and m are used for ATBlock to wrap source image.

map as input to using spatial-adaptive normalization methods
would lead to a loss of texture details, resulting in unrealistic
images.

4) W/O Lsim
Training the model without using similarity loss would result
in coarse generation of target images with unclear style
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TABLE 8. The structure of the generator G of STNet. In SCSBlocks, the content in bracket is used as side branch to affect the main branch.

textures, which affects the accuracy of similarity relationship
calculation.

5) W/O COR
In this model, the corresponding relationship between source
and target images is not used to extract the style patterns from
the source image. Instead, the scaling and bias of the source
image are calculated directly to adjust the appearance of the
coarse target image.

6) FULL-MODEL
This model includes all components and achieves optimal
performance in all quantitative metrics as shown in Table 2.
It also achieves the best visual effects, as shown in Figure 5.
The proposed Style-Content-Aware Adaptive Normalization
method plays a key role, and the pre-transfer of content results
in highly effective results. It can be seen from the various
indicators in the table that each part of the model is effective.

7) QUALITATIVE COMPARISON
As depicted in Figure 6, the complete framework retains more
appearance features, leading to a more similar and realistic
image with higher resolution compared to the ground-truth
image. The Style-Content-Aware Adaptive Normalization
module plays a crucial role in generating images, as removing
it results in generated images that do not retain the source
image style. Additionally, the Aligned Multi-Scale Content

Edge Transfer Network in the first stage helps in maintaining
high fidelity of the face features while ensuring the conti-
nuity of the clothing. Moreover, since content consistency is
well-preactivated, it facilitates better boundary reconstruction
between some blurred objects. Finally, the adaptive comple-
mentary fusion of the source image style and pose content is
dynamically achieved through the correspondence between
the source image and target, resolving the issue of smooth
appearance in shorts and jeans, hence making the clothing
edges more defined.

In addition, this paper compared Lper and LLPIPS through
experiments. The experiments involved using only Lper or
LLPIPS for model training, as well as using both loss func-
tions together for training. The quantitative and qualitative
experimental findings showed that using both loss functions
together produced optimal results in terms of stylistic features
and image quality. Table 5 shows that the combined use of
Lper and LLPIPS produced the best results for all the metrics.
In Figure 8, it can be observed that clothing waist information
appears in the first row of images, clothing style in the sec-
ond row, shoe information in the fourth and sixth rows, and
clothing texture in the fifth row.

V. CONCLUSION
In this paper, a two-stage person image synthesis model is
proposed to handle the challenging pose transfer task. The
first stage generates target edge maps that can significantly
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FIGURE 8. Qualitative comparison between our method and other state-of-the-arts on DeepFashion dataset. The target ground truths and the
synthesized results from each models are listed in rows.

highlight important content information (pose and texture)
to eliminate the difficulty of pose transfer, acting on the
appearance translation in the second stage. In the second
stage, based on the predicted edge map, a new style-content-
aware adaptive normalization method is used to generalize
and arrange the style and content information in the same

latent space for features to accomplish the realistic character
image generation task more effectively. Experiments show
that the framework proposed in this paper can significantly
improve the supervised and unsupervised perceptual metrics
of the existing state-of-the-art, while generating finer-grained
features of clothing textures and characters.
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FIGURE 9. Qualitative comparison between our method and other state-of-the-arts on Market-1501 dataset. The
target ground truths and the synthesized results from each models are listed in rows.
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FIGURE 10. Given the source image, our model is able to transfer the pose as required. The synthesized person and visualization of the generated
target edge maps are shown.

While the model is able to generate good results, there
are still some artifacts in the generated images. Additionally,
the model has poor generalization capability and limited
generation capability for target poses that have significant
pose variations, such as transitioning from standing to sitting.
It has been demonstrated through experiments that utilizing
real edgemap features can effectively generate people images
that are indistinguishable from the target images. Therefore,
improving the accuracy of the target edge map can effec-
tively enhance the quality of image generation. Furthermore,
it has been found that utilizing a distributed balanced dataset
can also effectively alleviate these issues and improve the

model’s generalization ability by modeling the correlation of
deformation in adjacent regions. This will be the focus of
subsequent work.

APPENDIX I.
In this section, we provide the details of the network structure.
Table 6,7,8 are the network structures of the generator G of
the AMSNet, Flow encoder, and the generator G of STNet,
respectively. F, K, and S respectively represent the output
dimension, convolution kernel size and stride. IN represents
instance normalization.
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APPENDIX II.
In Fig. 8 and 9, we provide additional qualitative comparisons
between our approach and other state-of-the-art approaches
on the DeepFashion [38] and Market-1501 [39] datasets,
respectively.(e.g. PATN [11], PoNA [14], ADGAN [13],
GFLA [16], SCAGAN [21], SPGNet [18], PISE [20],
DPTN [28], CASD [30]) Results show that our method can
generate more consistent appearance and pose with the target.

APPENDIX III.
We also provide more visualization results of the generated
edging maps in Fig.10. It is clear that AMSNet can accurately
predict the target edging map regardless of diverse pose and
viewpoint changes, revealing the effectiveness of the pro-
posed Style-content-aware Adaptive Normalization module.
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