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ABSTRACT Cloud computing provides simple on-demand access to a centralized shared pool of computing
resources. Performance and efficient utilization of cloud computing resources requires accurate prediction of
cloud workload. This is a challenging problem due to cloud workloads’ dynamic nature, making it difficult
to predict. Here we leverage deep learning which can with proper training provide accurate bases for the
prediction of data center workload. Deep Learning (DL) models, however, are challenging to train. One
challenge is the vast number of hyperparameters needed to define and tune. The performance of a neural
network model can be significantly improved by optimizing these hyperparameters. We recognize two
of the essential issues to predict data center workloads using deep learning efficiently. First is the high
dimensionality which requires removing superfluous information via some form of dimension reduction.
Secondly, is the learning rate. Small learning rates can make the time for training very excessive while long
learning rates can miss optimal solutions. Our approach is therefore dual-pronged. First, we use Sparse
Auto-Encoder (SAE) to retrieve the essential workloads representations from the original high-dimensional
historical cloud workloads data. Secondly, we use Gated Recurrent Unit with a Step-Wise Scheduler for
the Learning Decay (GRU-SWSLD). The proposed system is demonstrated with data from Google cluster
workload traces to predict Central Processing Unit (CPU) usage using the data center’s workload traces at
several consecutive time steps. Our experimental results reveal that our proposed methodology provides a
better tradeoff between accuracy and training time when compared with other models.

INDEX TERMS Cloud computing, deep learning, sparse auto-encoder, gated recurrent unit, learning rate.

I. INTRODUCTION as possible. However, cloud providers must meet QoS

Cloud computing enables end users to access remotely
allocated services from any location at any time over the
internet [1]. Large cloud service providers have built large-
scale data centers connected to the internet to market their
resources as services. Many businesses found it to be more
cost-efficient to shift their local services to the cloud [2].
End users adapt their applications to the cloud and make
requests with varying Quality of Service (QoS) needs. These
are called Service Level Agreements (SLAs) [3].To maximize
profit, cloud providers want to receive as many new requests
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criteria per the agreed-upon SLA with end-users. As such,
there is a need for effective resource provisioning systems
to accomplish this objective [3]. To satisfy user requests,
the allocation of resources should address SLAs such as
availability, dependability, response time limit, and cost
cap [4]. The cloud resources needed to handle user requests
depend on the incoming workloads. To meet this demand,
there are two options: either long-term reservations or on-
demand resource provisioning. If long-term reservations are
used, there may be many unused cloud resources, while with
on-demand provisioning, only a few requests can be handled
at once. In addition, users often have unpredictable access
to cloud resources and the workload can change rapidly [5].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

64586

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0009-0002-1296-0028
https://orcid.org/0000-0003-4868-7932

D. Algahtani: Leveraging Sparse Auto-Encoding and Dynamic Learning Rate

IEEE Access

When there is inconsistency in the amount of workload to be
done, it can lead to problems of not having enough or having
too many resources allocated to complete the tasks. This can
result in both wasting time and resources. Over-provisioning
happens when there are more tasks assigned to a particular
resource than it can handle while under-provisioning happens
when there are idle resources that are not being utilized
efficiently [6]. Based on the evaluation report, the Google
cluster recorded an average 20 % CPU utilization and 40 %
memory utilization. Alibaba cloud data centers recorded an
average CPU utilization of their entire cluster ranging from
5 % to 80 % percent with considerable variances during the
day [7]. Predicting workloads accurately in data centers can
be challenging due to the significant variability in task trends.
Cloud data centers have high-dimensional workload traces
with lots of information, including machine specifications.
It’s important to extract essential information from these
traces for training models, but these cloud traces have noise
and redundancy making it difficult to predict workloads
accurately [8]. To address these challenges, we need to learn
the patterns and relationships of workloads over time and
create efficient and accurate prediction algorithms that can
adapt to workload fluctuations. Additionally, we can process
the cloud data center traces to extract necessary data while
maintaining prediction accuracy.

Host load prediction has been a topic of interest for
researchers for a long time due to the potential for financial
benefits. Many previous studies have focused on traditional
high-performance computing (HPC) or grid systems [9],
[10], [11]. When analyzing the workloads of cloud and grid
systems, it was found that the amount of fluctuation or
noise in the cloud was much higher, up to 20 times more
than in a grid system [12]. Therefore, forecasting the host
load in a cloud is much more complex and difficult than
in grids.

Currently, the most commonly used methods for predicting
cloud workloads are autoregressive (AR) and traditional
neural networks. [13], [14], [15], [16], [17]. However, these
methods are not always effective for large-scale public
cloud data centers, where the workload patterns are more
complex and difficult to capture. Traditional neural networks,
which generally consist of shallow networks with only 1 or
2 hidden layers, may be helpful for tasks that involve
repetitive patterns, such as those found in small data centers
or grids. But to achieve better accuracy, more advanced
neural networks need to be applied to capture the correlation
between complex workloads in data centers.

Deep learning approaches based on Recurrent Neural
Networks (RNNs) have been effective in modeling cloud
workloads due to their superior capacity to analyze sequential
data [18]. RNNs are especially useful for forecasting random
workloads, but classical RNNs are unable to effectively
capture the dependency information of long-term sequences
because of the vanishing gradient problem. The vanishing
gradient problem occurs when an RNN is used to train long-
sequence data, and the trained model’s weights eventually
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fail because the network cannot be updated [19]. To address
the vanishing gradient problem, variants of RNN, such as the
Long Short-Term Memory Network (LSTM) [20] and Gated
Recurrent Unit (GRU) [21], have been proposed. LSTM is
more complex than GRU since it has more sets of gates and
requires more memory, making it slower than GRU.

Nevertheless, training an RNN-based system on high-
dimensional cloud workload traces can be time-consuming,
so we need to use dimensionality reduction techniques
like Principal Component Analysis (PCA) [22] and auto-
encoder [18] to compress the data. PCA is primarily
a linear transformation while auto-encoders can model
complex nonlinear functions. Since cloud workload traces are
nonlinear, auto-encoders are a better option. Of the five types
of auto-encoders [30], Sparse Auto-Encoder (SAE) is the best
for cloud workload traces due to its ability to provide a noise-
resistant feature representation that selectively activates
regions in the input data.

In the field of deep learning, optimizing the performance
of amodel is a critical task. The selection of hyperparameters,
or parameters that are established before the training process
starts, is one of the crucial elements that affect how well
deep learning models perform. The learning rate is a
hyperparameter that controls how big of a step the optimizer
algorithm makes when training to reduce the error function.
The learning rate is the most crucial hyperparameter, despite
the fact that there are several to take into account [24]. The
optimization procedure may be ineffective or perhaps fail
entirely if the learning rate is improperly configured.

This paper’s primary contributions are as follows:

« A Sparse Auto-Encoder neural network is constructed to
learn the representation from cloud workloads traces and
perform dimensional reduction by training the network
to disregard signal noise. Along with the reduction side,
a reconstructing side is learned, in which the Sparse
Auto-Encoder attempts to build a representation as close
to the raw data as possible from the reduced encoding.
This enables Sparse Auto-Encoders to learn essential
features in the data.

o A step-wise scheduler for the learning decay is inte-
grated with the GRU model to improve prediction
performance over multivariate intervals of time and
different sliding windows.

o« We apply the proposed methodology to actual cloud
center workload traces from Google’s cluster to verify
its performance.

The remainder of our work is structured as follows:
Section II introduces the fundamentals of Sparse Auto-
Encoder (SA), stochastic gradient descent and the learning
rate, and the Gated Recurrent Unit (GRU) model. Section IIT
examines related work on cloud workloads prediction.
The system model is described in Section IV, along with
the proposed model. Section V examines the proposed
methodologies through simulated studies using real-world
cloud workload traces. Finally, Section VI draws this paper’s
conclusion.
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Il. PRELIMINARIES

In this section, we’ll look at how to solve the problem of
high dimensionality in cloud workloads prediction, extract
essential representation from the CPU usage at different
scales, and optimize the deep learning model. We will
introduce the three techniques that will be used in the paper:
Sparse Auto-Encoder (SA), stochastic gradient descent and
the learning rate, and Gated Recurrent Unit (GRU).

A. SPARSE AUTO-ENCODER

The Sparse Auto-Encoder (SAE) network is an unsupervised
learning algorithm that learns features from n unlabeled data
(X!, X2 Xx3..., X"} where each X’ € RN. The Sparse Auto-
Encoder network is made up of three layers: the input layer,
the hidden layer, and the output layer, and the dimensionality
reduction in the SAE process consists of two steps: encoding
and decoding. The encoding stage, as shown in equation (1),
converts the input data x into the representations of the hidden
units where x = (x1, x2, x3, ..., X;) is the high-dimensional
input data vector.

X = g(Wx + b) (1

The encoding stage, as shown in equation (2), maps the
hidden units’ representations into the reconstructed data
z = (X1, X2, X3, X;) where X; is the low-dimensional output
of the ith sample in the dataset from the hidden layer.

X =g(Wz+b) 2

In both equations (1) and (2) g is the activation function for
the hidden unit, W and W are the wei ght matrices, and b and
b are the encoder and decoder bias vectors, respectively. The
Sparse Auto-Encoder uses back-propagation to set the target
values to be equal to the inputs x ~ x'.

The Sparse Auto-Encoder will still find interesting patterns
in the data even if there are many hidden units if we apply a
sparsity constraint on them. In the Sparse Auto-Encoder, the
aj2 indicates that hidden unit j is activated. ajz(x,-) expresses
the hidden unit’s activation when the network gets a particular
input x. Equation (3) is to estimate each hidden neuron’s
average activation value. m is donated for the number of
samples in the dataset, (x;) is donated for the input vector for
the i sample in the dataset.

) 1 m
B =~ _lefaﬂxm 3)
=
pj is enforced by the constraint p, where p is a parameter for

sparsity, usually a small value near zero. We can use equation
(4) to calculate the sparsity cost:

§2

P 1
E P10g7+(1—P)10g =
j=1 Pj 1 —pj

“

52 is the number of neurons in the hidden layer, and the index
(j) is summing over the hidden units in the Sparse Auto-
Encoder. (2) is based on KL divergence [26] and can also be
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written as:
S2 Sz
R P -
D KL(p || ) =D plog =+ (1 —p)log—— (5
j=1 j=1 Pi I =pj

KL divergence is a standard function for measuring how
different two distributions are, and the function has the
property that KL(p || p;) = O if p;= p, and otherwise
it increases monotonically as p; diverges from p. Thus,
minimizing this penalty term has the effect of causing p; to
be close to p [50]. The overall cost function is now:

52

Isparse(W, b) = J(W, b) + B ZKL(P I Bj) (6)
j=1

The term B controls the weight of the sparsity penalty term.
The term p; depends on W, b also because it is the average
activation of hidden unit j, and the activation of a hidden unit
depends on the parameters W, b.

B. STOCHASTIC GRADIENT DESCENT AND THE
LEARNING RATE

The Stochastic Gradient Descent (SGD) algorithm is used
to train deep-learning neural networks. Stochastic gradient
descent is an optimization process that calculates the goal
function, which is the sum of the loss functions for each
example in the training dataset. Given a training dataset
of n examples, we assume that f;(X) is the loss function
with respect to the training example of index i, where X is
the parameter vector [29]. Then we arrive at the objective
function.

1 n
fe=— 2 fi0 @)
i=1
The gradient of the objective function at X is computed as

1 n
Vo=~ VAX) ®)

i=1

Stochastic gradient descent (SGD) reduces computational
costs at each iteration. At each iteration of stochastic gradient
descent, we uniformly sample an index i € 1, ..., n for data
examples at random, and compute the gradient [29] Vfi(X) to
update X

X < X — nVfi(X) 9

where n is the learning rate. The learning rate is a
hyperparameter that controls the speed at which the model
learns. In particular, it regulates the amount of error that the
weights of the trained model are updated with each time they
are updated, such as at the end of each batch of training
examples.
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Candidate hidden state

FIGURE 1. Basic structure of memory cell in GRU.

C. GATED RECURRENT UNIT (GRU)
Recurrent Neural Networks (RNNs) are commonly utilized
for processing sequential data due to their ability to capture
temporal relationships. Traditional RNNS, on the other hand,
suffer from vanishing and exploding gradient issues, which
restrict their usefulness in learning long-term dependencies.
The Gated Recurrent Unit (GRU) is a form of RNN that
tackles these issues through the use of gating mechanisms.
GRU introduces two major gates: r; is a reset gate, and z; is
an update gate. These gates enable the model to selectively
reset or update information within the hidden state, allowing
for effective information flow and memory management.
Figure (1) depicts the single-cell structure of GRU. The
following represents the calculation of the GRU cell:

rr =0 (Wyx, + Wyphy—1 + by) (10)

The reset gate r; plays a crucial role in determining what
information from the previous hidden state 4;_; should be
forgotten or reset when calculating the candidate hidden
state fz,. To compute r;, it takes into account the current
input x; and the previous hidden state /;_1. These two are
combined through a weighted sum W,.x; + Wy, h;_1, and a
bias term b, is added. This combined value then undergoes
a sigmoid function o, which transforms the values to a range
between 0 and 1. By applying the r;, the model can determine
which specific aspects of the previous hidden state need to
be focused on or disregarded during the current step of the
computation.

2 = 0 (Wyxy + Wighy—1 + b) (1D

The update gate z; controls how much old memory informa-
tion A, should be merged with the candidate hidden state
hy to generate the current hidden state %;. It is computed
similarly to the reset gate by taking the current input x; and the
prior memory content /;_1, merging them through a weighted
sum W, x; + Wy h;_1, and adding a bias term b,. The result is
then run through a sigmoid function . The sigmoid function
output determines the proportion of past memory material to
keep, with values near 1 suggesting more retention and values
near 0 indicating lesser retention.

~

hy = tanh(Wypx; + Wip(ry © hi—1) + by) (12)
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The candidate hidden state fll, indicates the information that
might possibly be added to the current hidden state &;. It is
calculated by integrating the current input x; with a modified
version of the previous hidden state h;_;. The change is
accomplished by element-wise multiplication © of the reset
gate r; and the previous hidden state h;—;. The current
input and the modified previously hidden state are merged
using a weighted sum Wp,(r; ® hy—1), and a bias term b,
is added. The output is then processed via the hyperbolic
tangent function tanh to verify it is within the range of
—1tol.

h=z0h 1+ —2z) Qilt (13)

The hidden state /;, indicates the recurrent neural network’s
current state. It is calculated by utilizing the update gate
7 to combine the previous hidden state #,_; and the
candidate hidden state /,. The element-wise multiplication
©® and addition operations are used to accomplish this. The
proportions of the previous hidden state and the candidate
hidden state are determined by the update gate. If the update
gate z; is close to 1, it signifies that the model wants to
retain most of the previous hidden state. Conversely, if z; is
close to 0, the model emphasizes the candidate’s hidden state.
The resulting hidden state s; combines previous relevant
information with new information supplied by the candidate
hidden state iz,.

lll. RELATED WORK

Workload prediction in cloud services has gotten much
attention in the research community, and many scholars have
contributed significantly to solving this issue. This section
will review traditional regression models, classic machine
learning methods, and classic deep learning methods.

A. TRADITIONAL REGRESSION METHODS

Traditional regression or statical methods consist primarily
of Moving Average (MA), Autoregressive (AR), AutoRe-
gressive Integrated Moving Average (ARIMA), and Autore-
gressive Moving Average (ARMA). Hu et al. [32] overcome
the cloud workload prediction problem to attain elasticity
in cloud computing. For workload prediction, they employ
some classic time series analytic approaches and a Kalman
filter model. Moving Average (MA), Auto Regression
(AR), and Auto Regression Integrated Moving Average
(ARIMA) models are among the mathematical models
used in their time series approach. Calherios et al. [33] also
use ARIMA for workload prediction and evaluate their
results regarding resource utilization improvements and
efficiency. Saripalli et al. [34] developed a two-step method
that included workload tracing (LT) and load forecasting
(LF). The proposed cubic-spline LT outperforms other linear
LTs based on the Moving Average in modeling the high
variance of the loads. Kumar et al. [36] attempted to lower
the cost of electricity by conducting a better workloads
forecast. They utilized CPU, RAM, and network trace data
gathered from Wikimedia Grid to evaluate the prediction
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performance of the ARIMA, seasonal integrated ARMA, and
fractionally integrated ARMA with the singular spectrum
analysis method. They demonstrated that while the ARFIMA
model suffers from lengthy calculations when the input
size rises, increasing the input size may produce better
forecasting outcomes. Liao et al. [38] predict VM CPU usage
using traditional time series prediction methods such as
autoregressive moving average, moving average, and auto-
regressive as an ensemble approach.

These regression-based approaches have demonstrated
their suitability for workload prediction. However, most of
these approaches are only appropriate for workloads with
clear trends, such as those found in grid or HPC systems,
which have lower variance than large-scale cloud data
centers. The high variance of modern cloud workloads makes
these approaches challenging to depict the relationships
between various components. While regression models are
simple and based on linear workloads correlations [35], they
cannot capture nonlinear variations in could workloads. As a
result, more advanced learning methods, such as machine
learning (ML) and deep learning (DL)-based techniques,
have already been examined to capture the variations of cloud
workloads successfully.

B. CLASSIC MACHINE LEARNING METHODS

Singh et al. [37] introduced a resource provisioning approach
that relies on heterogeneous workloads’ Quality of Service
(QoS) requirements. The proposed solution allocated cloud
resources to serve highly variable workloads by clustering,
analyzing, and classifying workloads based on common
patterns. Furthermore, the workload evaluation was carried
out using a K-Means-based clustering method with weights
assigned to quality characteristics in each cloud computing
workload via QoS requirements. Their simulation results
showed that the proposed solution effectively reduces the
execution time and cost of cloud workloads while meeting
the QoS requirements of customers. Rahmanian et al. [43]
developed an ensemble cloud resource utilization predictive
model based on the learning automata theory. The algorithm
used two techniques for cloud resource forecasting: single
window and multiple windows. Ghobaei-Arani et al. [44]
developed a Markov decision process-based hybrid method.
The Markov decision process is established when there
are finite states and transitions between them. Bi et al. [45]
introduced a workloads prediction approach that combines
the Savitzky-Golay filter and wavelet decomposition with
stochastic configuration networks. Liu et al. [46] proposed an
adaptive workloads prediction strategy based on workloads
classification, in which multiple prediction models can be
allocated to the various workloads classifications.

Machine learning has limitations in its effectiveness. While
conventional machine learning and classical artificial neural
network techniques can extract non-linear characteristics of
workloads without relying on restrictive assumptions, they
often fall short in their ability to make accurate predictions.
The primary reason for this is that these methods rely heavily
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on heuristic algorithms, which may require workloads with
apparent regularity or trends to predict precisely. However,
in real-world scenarios, workloads are often complex and
unpredictable, and may not exhibit such clear trends or
patterns. This lack of predictability can make it difficult for
machine learning algorithms to accurately forecast future
workloads.

C. CLASSIC DEEP LEARNING METHODS
Several efforts have been made to use deep learning
approaches to predict data center resource use. As an exam-
ple, Janardhanan et al. [40] demonstrated the weaknesses of
traditional ARIMA models in predicting nonlinear patterns
of extremely variant cloud workloads and propose the
LSTM model to predict the cloud workloads of Google
cluster machines. Compared to ARIMA, the memory cells
that store temporal dependencies over long periods help
LSTM make better forecasts. Duggan et al. [39] used RNN
to forecast the cloud workloads of virtual machines on a host
in a CloudSim-simulated environment. Back Propagation
Through Time (BPTT) is used by RNN to optimize network
weights. The authors find that RNN has better learning
and higher convergence speeds than Back backpropagation
Neural Networks, Random Walk Forecasting, and MA.
Yang et al. [23] predicted host load on Google clusters using
auto-encoder features as input to Echo State Networks (ESN).
The auto-encoder represents the essential CPU load patterns
with reduced dimensionality. However, the choice of initial
weights and extracted features may limit the learned model’s
capacity to generalize. Gao et al. [42] use bidirectional long
short-term memory to predict task failure, saving resource
waste from failure recoveries while maintaining service
availability and reliability. The model was validated on
Google workloads traces and outperformed Hidden Semi-
Markov Models, SVR, RNN, and LSTM regarding accuracy.

Shietal. [25] and Kong et al. [26] demonstrated that RNNs
could not effectively ensure excellent long-term prediction
performance. This is due to the classic RNN’s inability
to solve the gradient vanishing problem during training.
As the gap between the information and the predicted value
increases, the RNN will lose its capacity to connect and
interpret relevant data.

To overcome these open problems, we first develop
a Sparse Auto-Encoder to improve learning efficiency in
response to the high dimensionality of the workloads
data. To better deal with the high variance of workloads
patterns and increase the performance of the DL models for
prediction, the step-wise scheduler for the learning decay
is then utilized to optimize the GRU for attaining highly
accurate forecasts of cloud workloads traces.

IV. INTEGRATION OF DEEP LEARNING FOR CLOUD
WORKLOADS PREDICTION

A. SYSTEM MODEL DESIGNING

This section presents our system model for addressing the
challenge of predicting highly dynamic cloud workloads.
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Predicting cloud workload accurately is a difficult task
due to the possibility of significant changes occurring in
a short time span. An inaccurate workload prediction can
result in unnecessary costs or violations of Service Level
Agreements (SLAs). To address this challenge and improve
the performance of deep learning models, we aim to develop a
system model that accurately predicts future workloads while
being efficient for service providers to use.

To optimize resource utilization, our proposed model
combines workload forecasting with auto-scaling techniques
to adjust the number of active or idle servers. However,
traditional regression models or machine learning techniques
are impractical for accurate prediction due to the close
coupling of cloud workloads with time series. Therefore,
we present a workload forecasting model for cloud data
centers that reduce the differences between expected and
actual workloads by considering the high dimensionality
of workloads and improving the prediction of an opti-
mizing deep learning model over a multivariate time. Our
proposed system model, named GRU-SWSLD, consists of
four components, as depicted in Figure (2). By leveraging
this system model, service providers can make accurate
workload predictions and optimize resource utilization,
thereby reducing unnecessary costs and complying with
SLAs.

To begin, the Real Time Resource Usage Monitor system
in the cloud center records VM workloads and stores them
in a repository in real-time. The historical workloads used
in this research are taken from this monitoring system. The
proposed forecasting model utilizes historical workloads data
from the cloud data center as inputs. The workload traces
are first preprocessed and compressed before being fed into
the prediction processor module. The main function of this
processor module is to convert the generated unsupervised
multivariate time series workloads traces into supervised
data that can be used as inputs in the predictor model. The
processor module used to handle cloud workloads traces
involves several steps, including:

« Extracting the historical workload’s CPU usage.

« Normalizing data.

o Creating sliding windows and grouping data into

multivariate time series.

« Utilizing Sparse Auto-Encoder (SAE) to reduce the

dimensions of the data.

After pre-processing the workload traces, the output data is
fed into the predictor model to generate the prediction using
our proposed GRU-SWSLD model.

Finally, the prediction model’s output is utilized to predict
future workloads by the forecaster model. The predicted
workloads are sent to the cloud resource manager, who will
use the forecasts to identify the best resource provisioning
techniques for autoscaling VMs in a cloud data center.

B. PROCESSOR MODEL
In cloud computing, the data associated with workloads
comprises various measurements that reflect the system’s
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FIGURE 2. The architecture of the proposed GRU-SWSLD model.

operational condition. These measurements typically include
CPU usage, memory utilization, RAM, bandwidth, disk
space, disk I/O, and other relevant metrics. Of these, CPU
usage is considered the most significant and restricted
resource in computer systems and is often the primary bot-
tleneck in cloud platforms [47]. This importance is reflected
in the industry, where companies such as Google [47] and
Amazon [49] view CPU utilization as a critical factor in
enhancing appropriate provisioning in cloud data centers.
Proper allocation and resource management decisions can
be made at any moment by ensuring that the system has
adequate CPU resources. In this paper, from the historical
workloads traces, we are going to extract the CPU usage,
which is donated as X = (x,xp,x3,...,x,)and n € R and
X, is the CPU usage at time n.

One of the critical data preprocessing steps in deep learning
is the normalization of historical workload traces. This
step is particularly important due to the highly dynamic
nature of the cloud data center environment, which leads to
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Historical Workload Predicted Workload

FIGURE 3. The scenario of formatting a predicting workloads traces.

significant variations in CPU usage over time. Additionally,
normalization helps to speed up the convergence of deep
learning algorithms by addressing the issue of differing
feature ranges within the dataset. Without normalization,
numerically larger distance values would be produced when
algorithms compute distances among features.

To address these issues, we utilized Z-score normalization,
which is one of the most commonly used normalization
approaches in deep learning. Z-score normalization involves
transforming the data so that it has a mean of zero and
a standard deviation of one. This normalization technique
effectively scales the data to a standard range and enables the
deep learning algorithms to converge more quickly. Z-score
normalization is expressed by the following equations:

X
Z:J%() (14)
N (o ¥\
o — thl(x]:]—x) (15)

whg)e in equation (14), x is the original value, the mean value
of X is represented as (X ), and the standard deviation is
represented in equation (15) where x; is a data point and the
number of data points in the workloads traces represented
as N.

Next step, we preprocessed the CPU usage in the multi-
variate time series window form. The historical workloads
represented as X; = (x1, x2, x3, . . ., x;) the CPU usage record
value at time ¢ is x; which is a sequence of data points
sorted sequentially with fixed time intervals. y, symbolize
the forecasts for a prediction interval of s consecutive time
steps (Xy+1, Xr+2, X143, - - - , X5). The scenario of formatting
and predicting workloads traces are presented in Figure (3).

Where t; is the number of predicted consecutive time
steps and s >= 1, the final step in the prepossessing is
applying the Sparse Auto-Encoder (SAE), as the historical
workloads are high in dimension. Many researchers [51],
[52], [53], [54] show the efficiency of using SAE in reducing
the dimensions of the high and variant data. In our proposed
model and as shown in Algorithm 1, we used the historical
CPU Usage workloads to input the Sparse Auto-Encoder. The
SAE attempts to learn an estimate of the identity function
durmg the encoding stage X = g(Wx + b) and decoding stage

= g(Wz + b) so that the output X is close to the input x.
We used for the activation function g the sigmoid function as
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shown in equation (16):

1
gx) = Tter (16)

The reconstructing cost function between the input x and
the decoded input x is represented as in equation (17) to
calculate the average sum square errors for all N input data.

1 N
=~ 2 i+ 5l (17)
i=1

We add a sparsity constraint to the hidden layer to force
the Sparse Auto-Encoder to learn the number of variables
required to encode the model’s input data. The sparsity
penalization determines the underlying dimensionality of the
low-dimensional data x even if the hidden layer has a fixed
number of units s2, so the average activation of the hidden
unit p; is calculated as:

1l ,
= — Z ai” ()] (18)
m i=1

And to calculate the sparsity cost, we use the formula in
equation (19):
S2 S2 1
A 14 4
QUKL I ) = D plog 5 + (1 = p)log -—

j=1 j=1 J —Ppi

19)

where p is a sparsity constraint parameter that ranges from
Oto 1.

As a result, the overall cost function is to compute the
weights and bias elements by minimizing the objective
function J (W, b), which has the following form:

L ) 2 sl si+1 O
J(W,b):EZHxi-i-Xi” —(ZZJFZ(Wﬁ )
j=1 =1 i=1 j=1
SZ
+B D KL(p || B)) (20)

j=1

The first term in the cost function ensures that each input x;
is well reconstructed by minimizing the sum average squares
error. The second term is a regularization term used to fine-
tune the weights between the hidden and output units in order
to enhance performance and prediction while preventing
overfitting, s/ is the number of units in layer /, and the third
term ensures that the activations are sparse, where it indicates
that the majority of the activations are zero.

C. THE PREDICTOR MODEL

When training a neural network, specifying the learning
rate hyperparameter is crucial. The learning rate parameter
adjusts the number of weight updates required to minimize
the network’s loss function. Setting the learning rate too low
slows down the training process due to minimal changes
in network weights. Conversely, setting the learning rate
too high can cause divergent behavior in the loss function,
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Algorithm 1 Sparse Auto-Encoder For Dimensionality
Reduction

1: Input: Historical workloads Y = (X1, X2, X3, ...,X)
2. Initialization: number of hidden units s, number of
epoch, weight matrices W, W, bias vector b, l;, and
activation function a;?
for each training epoch n=1,2,3,...n do
for each hidden units j=1,2,3.., s2 do
Encoder X = sigmoid(Wx + b)
Decode X = sigmoid(Wz + b)
Compute the average activation of hidden units:
pi = 2iti [ ()]
8: Calculate the sparsity cost: z;il KL(p || p) =

s? » _ 1-p

>jiplog £ + (1 —p)log T
9:  end for
10:  Calculate the overall cost function: Jyarse(W, D) =

2 A
JW.b)+ B2, KL || p))
11:  Backward propagation to update weight parameters
12: end for
13: Output: The compressed cloud workloads traces X, =
(Xe1 X2y Xc3y -+ o5 Xen)

AN O

as depicted in Figure (4). Previous research [55], [56], [57],
[58], [59] has demonstrated the effectiveness of various
learning rate schedulers in enhancing machine and deep
learning model accuracy. This study proposes the adoption
of the step-wise decay scheduler for the GRU-SWSLD
model, which decreases the learning rate by a factor at
specific intervals or epochs. The step-wise decay scheduler
is computed using the following formula:
For each (T /T gyop):

LR = LRO x

Mactor @
where LR is the new learning rate, LRO is the initial learning
rate, A factor is the amount the learning rate decay should
change at each drop, T is the iteration/epoch number, and
Tyrop 1s the frequency with which the rate should be dropped
(step size).

We integrated the step-wise learning decay scheduler
with the Gated Recurrent Unit (GRU) model, as shown in
Algorithm 2. We used the Mean Square Error to measure
the performance of our proposed model for cloud workloads
prediction as follows:

I < -

MSE = ~ ;(x, %) (22)

The complexity of Algorithm 2 in terms of big O
notation is determined by many factors, including the size
of the input sequence, the number of hidden units in the
network, and the size of the input and output layers. The
computational complexity of complete iterations of forward
and backward passes through a GRU network can be
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Algorithm 2 Integration of Gated Recurrent Unit (GRU) and
Step-Wise Scheduler for the Learning Decay (SWSLD)

1: Input: The compressed cloud workloads traces X, =
(Xel X2y X35« v s Xen)

2: Initialization: weight W, Bias b, time sequence f,
number of iteration/epoch T, initial learning rate RLO,
Aactor, iteration/epochs drop Tgyop

3: for each training epoch n=1,2,3,...T do

4. for each epochs drop 74y, apply the SWSLD do

5: LR = LRO  -2—

Mactor

6: calculate the update gate z; at time f: z; =
sigmoid(Wxzxer + Wpzhi—1 + by)

7: calculate the rest gate r; at time t: r,, =
sigmoid(Wyyxet + Whrhy—1 + by) R

8: {rom the rest gate ry, start a new memory content /;:
hy = tanh(Wypxer + Win(re © hy—1) + by)

9: Using the updated gate z;, compute the 4; vector to

determine what to hold in the current 4; and prior
memory i,y states: iy =z, © hy—1 4+ (1 —2) O Iy
10:  end for
11: end for

i | |
' \_

weight weight weight
‘Small Learning Rate Learning Rate with the Step-wise Decay Scheduler

Cost
Cost

Large Learning Rate

FIGURE 4. Different learning rate parameters.

expressed as O(Z,{: | NH 2 + NHD). The first term in the
equation represents the computational complexity associated
with the hidden state computations. It is directly influenced
by the length of the input sequence N and the square of
the number of hidden units H2. With each iteration n out of
the total T iterations, the computational complexity increases
quadratically as the number of hidden units grows. The
second term in the equation represents the computational
complexity associated with the output layer computations in
the GRU network. It is influenced by the length of the input
sequence N, the number of hidden units H, and the size of
the output layers D. This term accounts for the computations
involved in generating the output based on the hidden
state. As N, H, or D increases, the complexity grows
linearly, suggesting that larger input sequences, more hidden
units, or larger output layer sizes contribute to increased
computational demands.

Finally, the forecaster module estimates new values for
resource provision in cloud data centers using the predictor
model output.

V. EXPERIMENTS

This section of the paper outlines our experimental setup
and the real-world cloud workload traces used in our study.
We evaluate the effectiveness of the GRU-SWSLD model for
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predicting workload in cloud data centers and compare its
performance against that of other models.

A. REAL-WORLD CLOUD WORKLOADS TRACES

Our experimental evaluation employs real cloud workloads
obtained from Google. The dataset was publicly released by
Google in May 2011 [47]. The dataset presents a diverse
range of computing platforms and workloads that were
performed on them, as it covers a span of 29 days and
comprises 40 million and 670,000 jobs, respectively. The
trace encompasses various cells, where each cell represents
a collection of machines administered by a common cluster
management system. Each job within the trace is composed
of one or multiple tasks, each of which may comprise several
processes targeted at executing on a single machine.

The following five tables comprise the trace data: the Task
Constraints Table, the Task Resource Usage Table, the Task
Events Table, the Jobs Events Table, and the Task Attributes
Table. We will use a Task Resource Usage Table that contains
500 files for our experiment. Each file contains a summary
of resource usage, and it records 20 features such as start
and finish timestamps, task indexes, mean CPU usage rate,
memory usage information, the total amount of allocated
memory, cache memory usage, disk I/O times, sampling
rates, cycles, and memory accesses per instruction (MAI)
[47]. In our experiment, we will use the mean CPU usage
rate.

B. CLOUD WORKLOADS TRACES PREPROCESSING
In this research study, the input feature and the goal output
for our model were selected to be CPU usage. To collect the
necessary data, we randomly extracted information on the
CPU usage of 1877 machines over a period of 29 days from
Google Traces. This involved extracting task resource usage
from 500 task usage files to obtain machine-specific CPU
usage values. To aid in the convergence of gradient descent
for model learning and optimization, we normalized the CPU
usage by a zero mean and a standard deviation of one.
Additionally, to train and validate our proposed model,
we divided the Google workload traces into 20 days for
training, 6 days for validation, and 3 days for testing.
Figure (5) provides a graphical representation of the daily and
hourly variations in workload for a particular machine based
on the Google Cloud data center workload traces.

C. EXPERIMENTAL RESULTS

We conducted experiments for the proposed approach using
Python version 3.9.12 and Tensorflow version 2.10.0. The
machine specification was Dell PowerEdge C8220X, Dual
6-Core 2.1GHz Intel Xeon E5-2620v2 CPUs, with Dual
NVIDIA K20 GPU accelerator card. To compress real-
world cloud workload traces, we first determined the optimal
number of hidden units for the Sparse Auto-Encoder (SAE).
To this end, we utilized Google workload traces to assess
the SAE with various hidden units and compared their
cost functions and compression results. The cost function
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FIGURE 5. Google datacenter workloads traces for one machine.

was used to evaluate the model’s accuracy in determining
the relationship between the input and output concerning
the hidden units. Our findings, presented in Table 1 and
Figure (6) (a-f), demonstrate that the cost function is
high when the number of hidden units is low, ranging
from 32 to 64. However, when the number of hidden units is
increased from 128 to 1024, the cost function values become
relatively close, indicating that the models with these hidden
units are capable of learning the important representations
from actual cloud workload traces.

Furthermore, we evaluated the SAE with different
input/output layers (32, 64, and 128) and a fixed number
of 256 hidden units. Our results, presented in Table (2) and
Figur (7) (a-c), show that the choice of input/output layers
size can significantly impact the performance of the SAE.
Specifically, the SAE trained with an input/output layers
size of 32 achieved the lowest cost function of 0.907732,
indicating that it was the most effective in reconstructing the
input data. Conversely, the SAE trained with an input/output
layers size of 128 achieved the highest cost function of
3.348493, indicating that it was the least effective in
reconstructing the input data.

In our study, we utilized the Sparse Auto-Encoder with
256 hidden units and 32 input/output layers to compress the
real-world cloud workload traces.

In this study, we presented an evaluation of our proposed
model GRU-SWSLD for predicting workloads using com-
pressed historical data and a combination of Gated Recurrent
Units (GRU) and step-wise scheduling for learning decay.
The effectiveness of our approach is compared with other
deep learning methods for workload prediction such as
Recurrent Neural Networks [59], Gated Recurrent Units [30],
and Long Short-Term Memory [60] with varying learning
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TABLE 1. Comparing the selection of hidden units in SAE and cost
functions.

Hidden Unites | Cost Function
32 2.668244
64 1.954733
128 1.578198
256 1.553476
512 1.564936
1024 1.579853

rates. Furthermore, we compared GRU-SWSLD to state-
of-the-art deep learning models such as Hybrid Dilated
CNN-LSTM [61] and N-BEATS [23]. We evaluate the
prediction accuracy of various techniques using the Mean
Squared Error (MSE) metric and training time, with different
forecasting lengths. A historical sliding window of 24-time
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TABLE 2. Comparing the selection of input/output layers in SAE and cost
functions with 256 hidden unit.

Input/Output Layers | Cost Function
32 0.907732
64 1.553476
128 3.348493

steps is set for the experiment. To assess the multivariate time
series prediction, sliding windows of m =1, 3, 5, 7, 9, and
11 are used, corresponding to sequential CPU usage values
of 5, 15, 25, 35, 45, and 55 minutes. For hours multivariate
time series predictions, sliding windows of h = 12, 24, 36, 48,
60, and 72 are employed, corresponding to sequential CPU
usage values of 1,2, 3,4, 5, and 6 hours. The hyperparameters
used to train the real-world workload traces for the GRU-
SWSLD model are presented in Table (3).

To initiate the training process, the initial learning rate
(LRO) is set to 1, the initial decay set to.l, the A factor is
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FIGURE 8. Comparing the accuracy of various forecasting methods using
the data center workloads traces and various prediction lengths.

set to 10, the number of epochs for the data center workload
traces is set to 60, and the iteration/epochs drop Typ is
set to 20. To improve the performance of the GRU-SWSLD
model, we incorporated a step-wise scheduler that adjusted
the learning rate over the course of training. Specifically:

o For the first 20 iterations/epochs while training the
GRU-SWSLD model, the new learning rate (LR) will
be.01

e For 21-40 iterations/epochs while training the
GRU-SWSLD model, the new learning rate (LR) will
be.001

o For 41-60 iterations/epochs while training the
GRU-SWSLD model, the new learning rate (LR) will
be 0.0001

We conducted a comparative analysis of various neural

network models for time series prediction. Specifically,
we evaluated the performance of the GRU-SWSLD model in
comparison with other models, including Recurrent Neural
Network with a Small learning rate (RNN_S), Recurrent
Neural Network with a Large learning rate (RNN_L),
Long Short Term Memory with a Small learning rate
(LSTM_S), Long Short Term Memory with Large learning
rate (LSTM_L), Gated Recurrent Unit with Small learning
rate( GRU_S), Gated Recurrent Unit with Large learning rate(
GRU_L), a hybrid model of dilated Convolutional Neural
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TABLE 3. Hyperparameters of proposed GRU-SWSLD model.

Hyper Parameters Values

History Window Length 24

Number of Training Epochs 60

Batch Size 128

Initial Learning Rate 1

A .1
iteration/epochs drop Ty, 20
Nactor 10

Network and Long Short Term Memory (CNN_LSTM),
and Neural Basis Expansion Analysis for Time Series
(N-BEATS). the RNN-based models were configured with
a small learning rate of 0.0001 and a large learning
rate of 1.

Figure (8) illustrates the Mean Square Error (MSE) of var-
ious techniques with respect to different forecasting lengths.
The results demonstrate a general increase in the MSE for
all of the considered approaches as the prediction length
increases. Notably, the GRU-SWSLD model outperforms
other Recurrent Neural Networks (RNN)-based methods that
utilize small or large learning rates to achieve accurate
predictions. This can be attributed to the effectiveness of
the Sparse Auto-Encoder in reconstructing low-dimensional
features from the original workload traces, as well as the
integration of the GRU and a step-wise learning decay
scheduler in the model.

In the context of recurrent neural networks (RNNs), such
as RNN_S, LSTM_S, and GRU_S, the application of small
learning rates can result in convergence taking a significant
amount of time, or in some cases, failing to converge entirely.
The use of small learning rates increases the risk of becoming
trapped in a local minimum of the loss function, instead of
finding the global minimum. This is due to the optimization
algorithm being unable to make updates significant enough
to escape the local minimum. Conversely, the use of high
learning rates for RNN_L, LSTM_L, and GRU_L can cause
the prediction algorithm to overshoot the minimum of the loss
function and ultimately result in a suboptimal solution.

The GRU-SWSLD model demonstrated superior perfor-
mance when compared to the dilated CNN-LSTM model. The
latter model may introduce information loss in the feature
maps as a result of the dilation rate which regulates the
separation between filter weights. The combination of the
dilated CNN with LSTM has the potential to compromise
the level of detail retained in the input features, thereby over-
looking important information and leading to a loss of data.
Ultimately, this may impede the LSTM’s capacity to learn
valuable representations and result in a decline in predictive
accuracy. Additionally, it should be noted that N-BEATS is
not well-suited to managing high-dimensional data, including
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FIGURE 9. Demonstration of GRU-SWSLD’s accuracy on google workloads traces by varying the length of prediction intervals.

TABLE 4. MSE Comparison with data center workloads traces of various forecasting methods with different levels of prediction lengths.

60 £

Models 5m 5m 25m 35m 45m 55m 1h 2h 3h h 5h 6h
GRU_SWSLD | 0.001693 | 0.002701 | 0.003021 | 0.003501 | 0.003619 | 0.003729 | 0.003818 | 0.004287 | 0.004627 | 0.004872 | 0.005132 | 0.005966
CNN_LSTM | 0.001701 | 0.002982 | 0.003258 | 0.003661 | 0.003781 | 0.003724 | 0.004031 | 0.004521 | 0.004996 | 0.005810 | 0.005970 | 0.006204

N_BEATS | 0.003954 | 0.004198 | 0.004235 | 0.004661 | 0.004681 | 0.004824 | 0.005214 | 0.006013 | 0.006982 | 0.007001 | 0.007231 | 0.008536

RNN_S 0.013318 | 0.014996 | 0.01443 | 0.014959 | 0.015194 | 0.015927 | 0.015267 | 0.01541 | 0.015136 | 0.015371 | 0.015699 | 0.015467

LSTM_S 001435 | 0.014661 | 0.015223 | 0.014923 | 0.01586 | 0.015036 | 0.014975 | 0.015582 | 0.015305 | 0.015234 | 0.015399 | 0.015417

GRU_S 0.011763 | 0.014421 | 0.014189 | 0.015359 | 0.015735 | 0.015329 | 0.015639 | 0.015706 | 0.016285 | 0.016075 | 0.015226 | 0.015958

RNN_L 0.009343 | 0.007854 | 0.007031 | 0.00841 | 0.007642 | 0.007465 | 0.008837 | 0.008928 | 0.008771 | 0.008722 | 0.010124 | 0.011086

LSTM_L 0.004563 | 0.005901 | 0.003982 | 0.006004 | 0.005883 | 0.006068 | 0.005846 | 0.006414 | 0.006932 | 0.007359 | 0.00731 | 0.007729

GRU_L 0.003537 | 0.003973 | 0.003857 | 0.005011 | 0.0043 | 0.004631 | 0.00548 | 0.005809 | 0.006404 | 0.006526 | 0.006932 | 0.007131

data center workload traces, given its assumption that the time S [
. T . : CNN_LSTM
series data exhibit a periodic pattern. — N pEme
The findings presented in Table (4) demonstrate that the B m——r—t
GRU-SWSLD approach is superior to other methods for cap- — LSTMS
turing long-term memory relationships in high-dimensional i
-_—

cloud data center workloads. This superiority is achieved
through the use of a step-wise scheduler for learning decay,
which enables the model to avoid a fixed learning rate. The
step-wise scheduler adjusts the learning rate at predetermined
intervals throughout the training process, allowing for larger
parameter updates during the initial stages of training when
the loss function is likely to be high. Subsequently, smaller
parameter updates are made as the loss function approaches
a minimum, enabling the model to converge more rapidly to
an optimal solution while avoiding overshooting or becoming
trapped in a suboptimal local minimum.

Next, the training times of various techniques for workload
traces forecasting were examined and compared, as illus-
trated in Figure (10). The investigated methods include
RNN_S, RNN_L, LSTM_S, LSTM_L, GRU_S, GRU_L,
SAE-GRU-SWSLD, dilated CNN-LSTM, and N-BEATS.
The results indicate that RNN_S and RNN_L are the
quickest and require the least training time, but their simple
structure makes it challenging for them to manage long-term
dependencies. LSTM_S and LSTM_L, on the other hand, can
store and access long-term dependencies, but their training
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FIGURE 10. Comparing the training time of various forecasting methods
using the data center workloads traces.

time is longer due to the complexity of their memory cells
and three gates. GRU_S and GRU_L, which have fewer gates
and simpler structures than LSTMs, require less training time
than LSTM approaches but more than RNNs. By integrating
the GRU model with a step-wise scheduler for learning decay,
the GRU-SWSLD model achieved even less training time
than GRU_S and GRU_L when combined with the SAE
method. Finally, dilated CNN-LSTM and N-BEATS, which
have complex architectures and a large number of parameters
that need to be learned, require a longer training time than the
other methods. In comparison to other prediction methods,
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the GRU-SWSLD model has been found to offer a better
balance between training time and prediction accuracy.

Furthermore, Figure (9) illustrates the variance between
the predicted values generated by the GRU-SWSLD model
and the actual values on the Google Cloud workload traces,
across various forecast lengths, both in minutes and hours.
These results highlight the model’s efficacy in handling high-
dimensional data center workload traces, across a range of
prediction lengths.

Given the importance of efficient resource utilization and
workload management in the cloud, the findings mentioned
above thus show how well-suited the GRU-SWSLD is for
handling dynamic and high dimensional data center workload
traces with a range of prediction lengths.

VI. CONCLUSION

This study highlights the importance of accurate workload
forecasting in cloud data centers prior to implementing
auto-scaling. Our proposed approach, which incorporates a
Sparse Auto-Encoder and a Gated Recurrent Unit with a
step-wise learning decay scheduler, offers a novel solution
for predicting cloud workload traces with a better tradeoff
between prediction accuracy and training time. The results
demonstrate that our proposed GRU-SWSLD model out-
performs other RNNs-based models with small and large
learning rates as well as advanced deep learning algorithms
in terms of convergence, optimization, and handling of high-
dimensional data of cloud workload traces with varying
patterns. The step-wise learning decay scheduler also offers
fine-grained control of the learning rate, allowing the model
to quickly adapt to changes in workload patterns. In future
work, we plan to explore reinforcement learning and further
enhance deep learning models to cater to the complex
requirements of cloud computing, fog computing, and IoT
environments. Such endeavors will pave the way for more
efficient, reliable, and scalable cloud systems, enabling better
resource allocation, energy efficiency, and cost savings for
cloud service providers and end-users alike.
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