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ABSTRACT Recent advancements in Ising machines, both via quantum and quantum-inspired annealing,
have shown promising results in solving difficult optimization problems. Owing to the potential of these
dedicated machines, there is increasing interest in applying Ising machines to power system operations.
However, despite Ising machines exhibiting computational advantages over conventional computational
resources, modeling capability of Ising machines limits their potential applications. Hence, this study
explores these potential applications in two steps. First, using the known characteristics of Ising machines
and theoretical derivation, this study constructed an Ising machine applicability table for optimization
problems. Then, using the constructed table, this study assessed the suitability of well-known optimization
problems in power system operations to identify potential applications. Furthermore, to understand the
performance of applying Ising machines, this study solved a phasor measurement unit placement problem
using a quantum-inspired Ising machine. The results show the potential of solving large-scale problems that
are unsolvable by conventional methods. The Ising machine usage guideline for power system operations
summarizes the findings of this study.

INDEX TERMS Ising model, power system analysis, optimization.

NOMENCLATURE
H Energy function of the Hamiltonian in the Ising

problem.
σi ith spin under the magnetic field hi.
Ji,j Interaction strength between ith and jth spin.
HQUBO Hamiltonian for QUBO problem.
Q Matrix used in the QUBO problem.
x Array of optimization variables in the QUBO

problem.
xn nth variable in the QUBO problem.
Hobj Main objective Ising problem.
Hconst Ising problem(s) for constraints.
Aeq,beq Matrix and value used for equality constraint(s).
an Coefficient within equality constraint Aeq.
λ Penalty factor used for constraints.
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HQUBO
eq QUBO model for equality constraint.

HQUBO
ineq QUBO model for inequality constraint.
cT Relative weight of variables in the integer linear

programming problem.
y The optimization variables used in Section III.
A,b The matrix and array for equality constraints as

used in Section III.
y, y Lower and upper bounds of optimization

variables.
HQUBO
int,1 Example QUBO model for expressing integer

variables (0 to integer value).
HQUBO
int,2 Example QUBO model for expressing integer

variables (integer value to integer value).
γ An integer for creating a bound included QUBO

model.
HQUBO
int,noeq General form of integer linear programming

problem with lower and upper bounds.
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I Number of integer optimization variables.
HQUBO
int,i Bound included QUBOmodel for one inte-

ger variable.
HQUBO
eqconst,k kth equality constraint for QUBO.

HQUBO
int General form of integer linear

programming problem with lower and
upper bounds, and equality constraints.

EQ Total number of equality constraints.
Qq,Rq Variables used in the quadratic program-

ming problem.
HQUBO
Quad QUBO model for integer quadratic pro-

gramming problem.
qi,l Coefficient from Qq (quadratic program-

ming problem).
θ Phase angles at each bus.
B Susceptance matrix.
P Vector of active power.
P, P Bounds for active power.
Qdc,kdc Matrix and vector for objective function of

DC optimal power flow.
f (Ptg) Cost of generation.
Pg, Pg Bounds for generators.
Rg Generator ramp rate for generator g.
Pt+1
g Generator power of generator g at time t+1.
Ptg Generator power of generator g at time t .
Ptd Demand at time t .
Pshed,i Amount of load shed at i.
xshedi Selection of feeder for optimal load shed-

ding problem.(x ∈ {0, 1}).
Pshed Minimum load to shed.
ci Cost of installing the ith PMU.
xplacei Placement of the ith PMU (x ∈ {0, 1}).
N The number of buses.
L The number of lines.
Qc Diagonal matrix in QUBO for Section VI.
xs,l PMU placement decision (as a binary vari-

able) on sending end.

xr,l PMU placement decision (as a binary vari-
able) on receiving end.

HQUBO
line,l Observability constraint written as a QUBO

problem.
σs,l PMU placement decision (as a spin) on

sending end.
σr,l PMU placement decision (as a spin) on

receiving end.

I. INTRODUCTION
Due to the complexity of the power system, optimiza-
tion is a long-lasting crucial topic within the power
system field. Undeniably, optimization applications have
allowed power systems to operate, evolve, and accommo-
date changing environments in the field. In recent years,
carbon reduction goals set forth by various nations have
accelerated the changing composition of power systems

including the addition of inverter-based resources (IBR),
high voltage direct current (HVDC) lines, and electric
vehicles (EVs). The physical changes to the power sys-
tem brought along with these resources add variability,
uncertainty, and flexibility to the power system, thus driv-
ing interest in allocating these resources effectively using
optimization.

Advancement in mathematical optimization and optimiza-
tion modeling have shown a path for effectively utilizing
the changing composition of the power system. With Ben-
ders’ decomposition becoming a well-known tactic in the
field [1], [2], [3], [4], researchers have tackled stochastic
optimization problems, such as those relating to optimal
scheduling of resources. This allowed solving large-scale
scenario-based problems, granting access to a more robust
solution to combat uncertainty. Furthermore, the recent revis-
iting of optimal power flow (OPF), as a convex optimization
problem with certain assumptions has also opened new
opportunities for using OPFs [5], [6], [7]. As for com-
putational performance of optimization problems, [8], [9],
[10], [11] studied the use of graphics processing units
(GPUs).

Until GPU-assisted computing, algorithmic advancements
have led optimization research in power systems as evidenced
in reviews such as [12] and [13]. Because computing via
central processing units (CPUs) offers limited computing
capabilities with flexibility, these algorithmic improvements
were crucial in optimizing power systems to accommodate
various constraints.

Within this landscape of power system optimization,
there is an increasing opportunity in the field of quantum
computing. Recent research related to quantum comput-
ing, specifically those that employ an Ising problem, which
this research will refer to as ‘‘Ising machine(s)’’, have
shown promising results. A notable example is the modern
use of quantum annealing as introduced by [14]. Accord-
ing to a recent advancement to quantum annealing, [15]
explains that ‘‘about 200 seconds to sample one instance of
a quantum circuit a million times–our benchmarks currently
indicate that the equivalent task for a state-of-the-art classi-
cal supercomputer would take approximately 10,000 years.’’
Similarly, previous research has also proposed other acces-
sible variations (quantum-inspired Ising machine): CMOS
implemented annealing [16] and GPU implemented momen-
tum annealing [17]. Both types of Ising machines, whether
quantum or quantum-inspired, exhibit far greater computing
capability for optimization beyond the considered baseline in
the field.

Noticing the capabilities of Ising machines, researchers in
the field of power systems have started to experiment with
Ising machines. In this early stage of Ising machine adoption
in the power system field, [19] examined an application in
EV charging station placement and [20] have proposed an
application for combinatorial optimal power flow. Each study
shows promising results that open new possibilities in the
field of power systems.
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FIGURE 1. Conceptual diagram of the Ising model.

However, unlike CPU-based computing, Ising machines
are limited in structure and not applicable to all optimization
problems. Ising machines have the specific task of solving
the Ising problem; thus, they are not suitable for every opti-
mization problem. Hence, this study focused on the following
research questions:

1) What type of optimization problems are Isingmachines
suitable for?

2) What are potential applications of Ising machines in
power system operations?

3) What kind is the expected performance from using
Ising machines?

Answering these three questions would provide guidance
to accelerate the adoption of Ising machines in power sys-
tem operations. Therefore, to answer the three fundamental
research questions, this study makes the following contribu-
tions:

1) The Ising machine applicability table for optimization
problems (Table 2) constructed using known charac-
teristics of Ising machines (Section II) and theoretical
derivation (Section III).

2) The Ising machine suitability table for notable power
system optimization problems (Table 3) related to
power system operations constructed using the Ising
machine applicability table for optimization problems.
(Section IV).

3) Example problem: a phasor measurement unit place-
ment problem, solved on a quantum-inspired Ising
machine (Section V).

4) Usage guideline for Isingmachines in the power system
based on contributions 1) to 3) (Section VI).

II. ISING MACHINE
This section overviews the known characteristics of Ising
machines.

A. ISING MODEL, ISING PROBLEM, AND ISING MACHINE
At the time of writing, ‘‘Ising machine’’ was an unfamiliar
term in the power system field. Hence, it is crucial to define

the terms related to Ising machines. Here we explain the Ising
model, the Ising problem, and the Ising machine.

The Ising model is one of the most fundamental models
for magnets in statistical physics. The variables of this model
are the state of spins, which represent the freedom of elec-
trons inducing magnetization in materials. The Hamiltonian
(energy function) of the Ising model, which is commonly
reproduced in quantum and quantum-inspired computing for
solving binary optimization, is

H =

∑
i̸=j

Ji,jσiσj +
∑
i

hiσi|σ ∈ {−1, 1}, (1)

where σi indicates the ith spin under magnetic field hi and
Ji,j is the interaction strength between ith and jth spin. Fig. 1
presents a conceptual diagram of the Ising model. Further-
more, solving the Ising problem refers to finding a set of σ

values when H becomes minimum (i.e., the lowest energy
state of the Ising model). The Ising machine, as used in
the context of this study, refers to any computing resource
capable of solving the Ising problem. Therefore, modeling
a problem as an Ising problem allows access to an Ising
machine.

The following subsections discuss the properties of the
Ising problem and the Ising machines to lay the foundation
for later sections.

B. PROPERTIES OF THE ISING PROBLEM
The Ising problem has an isomorphic property that allows
for easy conversion to a quadratic binary unconstrained opti-
mization (QUBO) problem. One way to express the QUBO
problem is as follows:

HQUBO
= xTQx|x ∈ {0, 1}. (2)

The objective of the QUBO problem is to determine a set
of x = x1, x2, . . . , xn that minimizes the objective function.
The difference between the Ising problem and the QUBO
problem lies in the optimization variables. Unlike Ising prob-
lems, QUBO problems use x ∈ {0, 1}. Substituting x =

(σ + 1)/2 and removing any offsets (constants) converts the
QUBO problem into an Ising problem (i.e., HQUBO

7→ H ).
This commonly known isomorphic property between Ising
problems and QUBO problems is useful for assessing the
applicability of Ising machines.

Because Ising problems are too simple to model explicit
constraints, a common tactic to build a constrained optimiza-
tion problem is to combine two Ising problems such that,

H = Hobj + Hconst , (3)

where Hobj is the Ising problem for the main objective and
Hconst is the Ising problem for constraints. If the user designs
Hconst such that Hconst reaches a minimum when all con-
straints are satisfied, then the solution to H theoretically
minimizes the objective and satisfies the constraints, given
that constraint satisfaction is plausible. Usually, the user must
size the potential penalty of Hconst to be greater than Hobj to
prioritize constraint satisfaction.

68006 VOLUME 11, 2023



K. Kirihara et al.: Exploring Potential Applications of Ising Machines for Power System Operations

Several methods are known for building these constraints.
Ising models for constraints penalizes the objective func-
tion when constraints are not satisfied (such as in barrier
or interior-point methods). The simplest form of constraint
written in QUBO is

HQUBO
= λx, (4)

or in Ising form,

H = λσ. (5)

This formulation implies that for the model to minimize the
total energy, x ̸= 1 or σ ̸= 1. Given an equality constraint
Aeqx = beq, extending the same concept to more complicated
constraints, we can write the equality constraints as,

HQUBO
eq = λ(beq −

N∑
n=0

anxn)2, (6)

where an is a coefficient in Aeq. The model takes a nonzero
value when the constraint is unsatisfactory. A similar tech-
nique is known in the field, where we can express inequality
constraints as follows:

HQUBO
ineq = α + β, (7)

where,

α = λ(1 −

bineq∑
a=1

xa)2,

β = λ(
bineq∑
a=1

axa −

N∑
n=0

xn)2. (8)

This formulation requires the use of ancillary variables/spins
to function. Various optimization problems are compatible
with Ising machines by utilizing variations in the concept.

C. CHARACTERISTICS OF ISING MACHINES
One must first understand the characteristics of Ising
machines to understand the applicable range. Building an
Ising problem ensures that the Ising machine is compatible;
however, if the application does not align with the character-
istics of Ising machines, the application may be unsuitable.

As Ising machines encompass a wide variety of machines,
this study generalizes the common traits of these machines
based on the observations of [15], [16], [17], and [18].

1) COMPUTATION TIME
The computation time of Ising machines, quantum or
quantum-inspired, is faster than that of traditional CPU-based
computing resources, given that the problem is binary or
integer optimization. The improvement in computation time
with quantum-inspired Ising computing resources as reported
in [16] and [17] is up to two orders of magnitude better than
that of conventional computing resources. For quantum, these
are several orders higher [15], [18].

2) REPRODUCIBILITY
The reproducibility of the results depends on the operat-
ing principle of the Ising machine. Usually, Ising machines
cannot guarantee the reproducibility of the results because
solving is usually a heuristic process. However, certain Ising
machines such as the one shown in [17] may be able to
reproduce results (given the Ising machine uses a seed of
random numbers). The quantum variants of Ising machines
cannot guarantee the same.

3) SCALABILITY
The scalability of Ising machines depends on the comput-
ing resources that are used. The quantum-based approach
had limited hardware scalability of a few hundred vari-
ables [15]. However, recent hardware [18] has been improved
to 20,000 for dense problems (Ising problems with many
interactions between variables). For the quantum-inspired
approach, sufficient scalability exists for both binary and
integer optimization problems as reported in [16] and [17].

4) OPTIMALITY
Unlike classical optimization which is within convex
optimization, Ising machines cannot guarantee optimality
because the Ising problem is non-continuous and non-convex.
However, the evolution of the energy function may be suffi-
cient to determine whether the solution is close to optimal.

III. ISING MACHINE APPLICABILITY TABLE FOR
OPTIMIZATION PROBLEMS
According to [21], Ising problems can express Karp’s 21
NP-complete problems. Hence, power system-related prob-
lems that are within these bounds are ‘‘programmable’’
into Ising problems, such as partitioning problems and
binary integer linear programming. However, beyond the
problems described in [21], Ising problems can model
other types of problems. This section explores the mod-
eling capability of the Ising problem using theoretical
derivations.

A. INTEGER LINEAR PROGRAMMING PROBLEM
Take for instance, an integer linear programming problem of
the form,

min cT y (9a)

subject to Ay = b (9b)

y ≤ y ≤ y, (9c)

where cT is the relative weight of variables, y ∈ Z are the
optimization variables, A is a matrix for equality constraints,
b is a vector for equality constraints, and y, y are lower and
upper bounds of variables. As the Ising and QUBO problems
are binary, one may overlook the possibility of converting
the integer linear programming problem into the Ising or
QUBO form. However, using several spins to express yi ∈ y
opens the possibility of converting this form of integer linear
programming problem into an Ising/QUBO problem.
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TABLE 1. Example truth table for the QUBO model in (13).

Consider the ith variable in the integer linear programming
problem denoted by yi. From the definition alone, yi ≤ yi ≤

yi. First, we assume y
i
= 0 and yi ∈ 2N − 1|N ∈ Z. In such

a case, all the values that yi can take, are exactly equal to the
space of the following QUBO model:

HQUBO
int,1 =

N∑
n=0

2nxn|xn ∈ {0, 1}. (10)

In an alternative case, where y
i
̸= 0, but (yi−yi) ∈ 2N−1|N ∈

Z holds true, the QUBO model, with offset, is as follows:

HQUBO
int,2 = yi +

N∑
n=0

2nxn|xn ∈ {0, 1}. (11)

If (yi−y
i
) /∈ 2N −1|N ∈ Z, for example yi−y

i
= 5, the direct

application of the above logic is difficult. To overcome this
issue, a simple mathematical technique is employed. Given
an integer γ /∈ 2N − 1|N ∈ Z, the weighted sum of multiples
of 2 can express any γ . This implies that

{0, 1, . . . ., γ } = n1x1 + n2x2 + . . . + njxj, (12)

holds true given n1, n2, . . . , nj ∈ 2N |N ∈ Z. For instance,
when γ = 5, the QUBO model that satisfies this is

{0, 1, . . . ., γ } = x1,1 + 2x1,2 + x2,1 + x3,1, (13)

which requires 4 separate variables. From the equation alone,
the maximum value that this QUBOmodel can attain is 5 and
the smallest value that this model can attain is 0. Table 1
verifies this using a truth-table-like structure.

Notice that the value of the QUBO will overlap on certain
combinations such as [0,0,1,1] and [1,0,0,1]. However, this
property is acceptable, as the ability of the QUBO to express
these distinct integer values is of concern. In practice, the
coefficients necessary for this integer substitution can be
pre-solved or solved accordingly. Therefore, the following
expression is the QUBO equivalent to the integer linear
programming problem from earlier with lower and upper

bounds:

HQUBO
int,noeq =

I∑
i=1

ciH
QUBO
int,i , (14)

where I is the number of integer optimization variables, and
HQUBO
int,i is the bound-included QUBO model written as

HQUBO
int,i = yi + n1x1 + n2x2 + . . . + njxj. (15)

Utilizing the equality constraint format from earlier, the kth
equality constraint (Akx = bk ) is,

HQUBO
eqconst,k = λ(bk − Ak,i

I∑
i=1

HQUBO
int,i )2, (16)

where the model assumes λ to be sufficiently large. There-
fore, the full QUBO equivalent to the integer linear program-
ming problem is

HQUBO
int =

I∑
i=1

ciH
QUBO
int,i +

EQ∑
k=1

HQUBO
eqconst,k , (17)

where EQ denotes the total number of equality constraints.
Recall that QUBO problems are isomorphic to Ising prob-
lems; thus, they can be converted to the Ising form. Because
integer programming problems can be written in standard
form, most integer programming problems are expressible as
Ising problems. In practice, within the field of engineering,
it is rare to encounter an integer linear programming problem
without the lower and upper bounds of the variables.

B. INTEGER QUADRATIC PROGRAMMING PROBLEM
Further inspection of

∑I
i=1 ciH

QUBO
int,i in (17) reveals that∑I

i=1 ciH
QUBO
int,i ∈ B1, whereas the QUBO and Ising models

are HQUBO,H ∈ B2. Therefore, the QUBO and Ising prob-
lems are also applicable to quadratic integer programming
problems in the following form:

min
1
2
yTQqy+ Rqy (18a)

subject to Ay = b (18b)

y ≤ y ≤ y, (18c)

by utilizing a formulation such that,

HQUBO
Quad =

L∑
l=1

I∑
i=1

1
2
qi,lH

QUBO
int,i HQUBO

int,j

+

I∑
i=1

ciH
QUBO
int,i +

EQ∑
k=1

HQUBO
eqconst,k , (19)

where qi,l is a coefficient from Qq.

C. LINEAR PROGRAMMING PROBLEM AND QUADRATIC
PROGRAMMING PROBLEM
Although Ising machines are suitable for solving NP-hard
problems, scaling (15) also allows us to realize that both

68008 VOLUME 11, 2023



K. Kirihara et al.: Exploring Potential Applications of Ising Machines for Power System Operations

TABLE 2. Ising machine applicability table for optimization problems.

linear and quadratic programming problems can be ‘‘approx-
imated’’ as QUBO/Ising problems. In conventional wisdom,
the approximation of linear programming (LP) and quadratic
programming (QP) problems with integer variants is unin-
tuitive and redundant. However, if the Ising machine is
sufficiently powerful, approximating into the integer form
may prove to be more advantageous than solving directly
on conventional machines using known algorithms such as
simplex and interior-point. Although expressible as an Ising
problem, these may be bound to scalability issues, as physical
hardware may not accommodate extra ancillary variables.

D. MIXED INTEGER LINEAR PROGRAMMING PROBLEM
AND MIXED INTEGER QUADRATIC PROGRAMMING
PROBLEM
Because integer linear programming problem with bounds
and linear programming problems with bounds are both
expressible in the QUBO/Ising form, a mixed integer linear
programming (MILP) problemswith bounds are also express-
ible. The same can be deduced for mixed integer quadratic
programming (MIQP) problems. Although not as drastic as
linear programming problems and quadratic programming
problems, they may run the risk of hardware limitations.

E. OTHER CONTINUOUS NON-LINEAR PROBLEMS
Beyond the common forms of optimization problems, other
continuous non-linear programs may also be expressible.
As of this study, these are not completely understood. The
sine and cosine terms commonly found in AC power flow
analysis of a power systemmay not be completely expressible
in the QUBO/Ising problem.

F. SCALABILITY OF EACH PROBLEM
Scalability, as used here, is not related to computational scal-
ability, but rather to the scalability of the problem size with
respect to hardware. As linear and quadratic programming
problems require many variables (spins in the Ising problem)
per optimization variable of the original problem, the prob-
lem may have scalability issues unless there is an unlimited
number of variables in the Ising machine. Mixed integer
linear programming problems may have similar issues but
may have limited effects if there are more integer variables
than continuous variables.

G. SUMMARY OF SECTION
Based on the observations in the earlier subsection, Table 2
summarizes the general applicability of the Ising problem.
The next section uses this reference table to analyze its appli-
cability in the power system.

IV. SUITABILITY OF THE ISING MACHINE TO PROBLEMS
IN THE POWER SYSTEM
This section examines the suitability of Ising machines for
various optimization problems in power system operations.
We used Table 2 to formulate the Ising machine suitability
table for notable power system optimization problems.

A. AC POWER FLOW AND VARIANTS
Although the full AC power flow calculation is the most
widely used ‘‘optimization problem’’ in the field, the network
equations, namely the sine and cosine components, classify
AC power flow problems as non-linear optimization. This
makes programming into the Ising problem difficult. Hence,
the evolution of the problem, such as optimal power flow
using AC network equations, is unlikely. Thus, we conclude
that the AC power flow and its variants are unsuitable for
Ising machines.

B. DC POWER FLOW AND VARIANTS
The DC power flow problem is a well-used alternative (or
approximation) to the AC power flow problem used in
the industry which neglects the resistance of the network,
assumes a constant voltage, and approximates the sine terms
of the network equations with the angle. The objective of the
DC power flow is simple, where given networks injections P
at each bus, determine the phase angles at each bus θ by using

θ = B−1P, (20)

where B denotes the susceptance matrix. One variant of this
is a QP problem, but simple observation also tells us that this
alone does not require an Ising problem, especially because
the susceptance matrix is sparse and has myriad methods,
such as L-U decomposition, to efficiently solve. However,
the application of DC power flows, such as DC OPF, can
potentially benefit from the use of Ising machines. As indi-
cated in [22], a simple DC OPF is a semi-definite quadratic

VOLUME 11, 2023 68009



K. Kirihara et al.: Exploring Potential Applications of Ising Machines for Power System Operations

TABLE 3. Ising machine suitability table for notable power system optimization problems.

programming problem in the following form:

min
1
2
PTQdcP + kdcP (21a)

subject to AP = b (21b)

P ≤ P ≤ P, (21c)

where P is a vector of active power and P and P are the
bounds. Reference [20] shows the variation in this DC opti-
mal power flow as a combinatorial optimization problem.

Hence, according to Table 2, a simple DC OPF is pro-
grammable (applicable) as an Ising problem. The addition
of ramping constraints, which is also a linear inequality con-
straint, for multi-period optimization may also be possible.
Given that there are integer or binary variables, such as
switching of network components or generation/load, addi-
tional complexity may make Ising machines suitable for this
application.

C. STATE ESTIMATION
State estimation covers the lack of full coverage of measure-
ments in the power system–usually solved via weighted least
squares regression or least absolute value (LAV) optimiza-
tion. Owing to the recent introduction of phasor measurement
units (PMUs), state estimation has regained popularity as
shown in [23], [24], and [25]. Similar to power flow, state esti-
mation via weighted least squares regression usually involves
an iterative process that requires calculation of the power flow
Jacobian at each step. In such a case, formulating an Ising
problem may be possible, but may not be beneficial.

With the advancement of linear programming solvers,
the recent implementation of state estimation has also been
experimented with using least absolute value optimiza-
tion [25]. Such formulations are known to be more robust
than the weighted least squares method. Again, according
to Table 2, because linear programming problem is part of
the applicable problems, the LAV-based state estimation is
expressible (with discretization) as an Ising problem. The
ability of the Ising problem to consider binary variables may
also render the problem applicable for topology estimation.

Similar to the former, whether Ising machines are suit-
able for this application depends on the type of vari-

ables considered. If the state estimation problem requires
non-linear weighted least squares regression, then the prob-
lem type becomes a non-linear optimization problem inex-
pressible in Ising form. The state estimation problem formu-
lated as an LP problem using LAV is applicable according to
Table 2 but is unlikely to scale and gain benefits. However,
if one considers the state estimation problem as an MILP
problem using LAV with switching of topologies, then the
problem is applicable and beneficial according to Table 2 but
is unlikely to scale and gain benefits.

D. ECONOMIC DISPATCH
Economic dispatch is an elementary form of optimal power
flow without the need for network constraints and is usually
given in the following form,

min
∑
t∈T

∑
g∈G

f (Ptg) (22a)

subject to s.t.
∑
g∈G

Ptg = Ptd |∀t ∈ T (22b)

|Pt+1
g − Ptg| ≤ Rr |∀t ∈ T , (22c)

Pg ≤ Ptg ≤ Pg|∀t ∈ T , (22d)

Assuming that the objective function is linear or quadratic,
an economic dispatch is either a linear programming problem
or a quadratic programming problem. Therefore, it is safe to
assume that one can formulate the economic dispatch prob-
lem as an Ising problem; however, the benefit of formulating
this as an Ising problemmay be small as convex optimizations
are well studied.

E. UNIT COMMITMENT
The unit commitment problem is an extended form of the
economic dispatch problem or optimal power flow, which
minimizes the cost over a selected interval. Owing to unit
commitment problems that are capable of implementing a
variety of regulations and considerations, they have many
variations. Unlike in previous examples, the unit commitment
problem is known to be difficult to solve. Based on Table 2,
one can convert a simple unit commitment problem in amixed
integer linear programming problem form found in [26] into

68010 VOLUME 11, 2023



K. Kirihara et al.: Exploring Potential Applications of Ising Machines for Power System Operations

FIGURE 2. PMU visibility.

an Ising problem and is likely to benefit. See the Appendix
for an example formulation.

F. OPTIMAL LOAD SHEDDING
One niche application of optimization in the power field is
the optimal load shedding problem. Under frequency load
shedding relays (UFLS), or under frequency relays (UFRs),
shed the load by directly disconnecting the feeders. Although
optimal load shedding is a well-researched topic as shown
in [27], [28], and [29], the direct disconnection with the
UFR is binary (either connected or disconnected), select-
ing the optimal combination of loads is difficult to solve.
A straightforward way of expressing this problem is through
the knapsack problem of the following form:

min
∑
i∈L

Pshed,ixshedi (23a)

subject to
∑
i∈L

Pshed,ixshedi ≥ Pshed . (23b)

From the problem alone, it is evident that the problem is a
combinatorial optimization problem, where the objective is to
minimize the shedding amount. However, the consideration
of network constraints is only possible with a DC-based
approach.

G. OPTIMAL PMU PLACEMENT PROBLEM
Another crucial problem in power is the optimal PMU
placement problem as researched in [30], [31], [32], [33],
[34], [35], [36], and [37]. Optimal PMU placement problems
cover a large variety of problems that seek to optimize the
placement of PMUs for a given network. In the most general
form, as introduced in [30], the optimization problem can be
formulated as follows:

min f (x) =

∑
i∈Z: i=[1,N ]

cix
place
i , (24a)

subject to Axplace ≥ 1, (24b)

where ci indicates the cost of installing the ith PMU,
xplacei indicates the placement of the ith PMU (x ∈ {0, 1}),
N indicates the number of buses, A indicates a matrix of size

L × N that indicates the lines observable from a PMU at a
bus, and L indicates the number of lines. Similar to x, each
element of A, indicated by Ai,j specifies whether a line is
observable from the bus (Ai,j = 1) or not (Ai,j = 0). The
above formulation limits the constraint of measuring at least
one voltage phasor of at least one end of each line, as outlined
in the earlier sections of [31].

This formulation assumes that the PMU at a bus measures
the voltage and current phasors of all connected lines. Given
the network model, voltage phasor, and current phasor, the
voltage phasor on the other side of the line is observable or
solvable. This ensures the full observability of the system
while being able to detect any faults that occur in the system.
Fig. 2 provides a visual example of the effect of placing a
PMU at a location. We can also observe this is a vertex cover
problem.

As the formulation is an integer linear programming prob-
lem or a vertex cover problem, it is both applicable and
beneficial when using Ising machines.

H. SUMMARY OF APPLICATIONS
Table 3 summarizes the suitability of each application.
Suitable, as presented here, refers to meeting both the appli-
cability and benefits. As discussed throughout this section,
the use of the Ising machine is promising. However, the table
is non-exhaustive and there may be additional applications.

V. AN EXAMPLE OF USING ISING MACHINE ON A
PHASOR MEASUREMENT UNIT PLACEMENT PROBLEM
This section provides an example of using an Ising machine
for a PMU placement problem to understand the actual
performance of the problem on a quantum-inspired Ising
machine. We selected the PMU placement problem because
it is both applicable and likely to bring about benefits. First,
we provide the formulation, followed by a numerical exam-
ple.

A. FORMULATION
As presented earlier, to use an Ising machine, the formulation
requires a QUBO or Ising form of (24a) and (24b), respec-
tively.

As outlined earlier, the Ising and QUBO problems are
isomorphic. Because the objective function of the original
optimal PMU placement problem is both integer and linear,
the objective function as a QUBO problem is,

HQUBO
obj (x) = xTQcx| x ∈ {0, 1}, (25)

where Qc is a diagonal matrix such that Qc =

diag{c1, . . . , cN }. Using the isomorphic property between
QUBO and the Ising problem, Hobj is,

Hobj(σ ) =

∑
i∈N

ciσi
2

. (26)
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TABLE 4. Models used [38] and [39].

The observability of a line requires a PMU placement on
either side of the line. In QUBO form, this is,

HQUBO
line, l (x) = λ(1 − xs,l)(1 − xr,l), (27)

that penalizes if no PMUs are placed on either side. λ is a
penalty factor.

From observations, (27) reaches a minimum value in the
following cases: [xs,l xr,l] = [1, 1], [xs,l xr,l] = [1, 0],
and [xs,l xr,l] = [0, 1]. In contrast, when [xs,l xr,l] =

[0, 0],Hline, l = λ. Therefore, a solved QUBO problem
avoids [xs,l xr,l] = [0, 0]. Extending the concept to all lines,
the QUBO formulation for the constraint part is as follows:

HQUBO
const (x) =

∑
l∈[1,L]

HQUBO
line, l (x)

=

∑
l∈[1,L]

λ(1 − xs,l)(1 − xr,l). (28)

where L the number of lines. Again, using the isomorphism
between the QUBO and Ising problems, we express the Ising
problem without constants as follows:

Hconst (σ ) =
λ

4

∑
l∈[1,L]

(σs,lσr,l − σs,l − σr,l). (29)

In summary, using (26) and (29), the full Ising problem
formulation for this PMU placement problem is as follows:

H (σ ) = Hobj(σ ) + Hconst (σ ). (30)

Note that other formulations based on an integer linear
programming problem equivalent are possible; however, for
ease of understanding, we utilized the formulation presented.

TABLE 5. Parameters for numerical evaluation.

B. EVALUATION SETUP
To (a) evaluate the validity of the Ising formulation, (b) under-
stand the potential performance increase that can result from
a dedicated Ising machine, and (c) understand the limitation
of the approach, we solve the Ising problem to the optimal
PMU placement on an Ising machine outlined in [17].

We compared the results of the Ising machine by solving
an integer linear program (ILP) using GLPK with a wall time
of 30 minutes. We selected ILP with GLPK for comparison
because modeling in ILP is commonly known in the study
of PMU placement (as in [30]) whereas GLPK is an easily
accessible solver for ILP. The wall time was set to allow
a comparison between the two methods, as large problems
may be unsolvable because of the exponential increase in the
complexity of the problem.

To conduct the evaluation, we used networkmodels of vari-
ous sizes. The networkmodels are all fromMATPOWER [38]
and some added by [39]. Table 4 lists the models used.

Table 5 overviews the parameters relating to this method.
We used the parameters automatically generated via the Ising
machine of [17]. The actual parameters, except for λ, are near
the values used to evaluate the computational performance
in [17].

The cost of installing a PMU is set to 1 (ci = 1|i ∈ [1,N ]),
which implies that there are no differences in installing a
PMU between the locations. Furthermore, for the Ising prob-
lem, the penalty factor is set to λ = 100 for all cases.
Although not optimal, we did not observe significant per-
formance changes with this parameter; hence, we show the
results with λ = 100.

C. DISCUSSION OF RESULTS
Table 6 (solutions values) and Fig. 3 (solution quality and
computational times) summarize the results of the PMU
placement problem. As shown, the results yielded different
observations based on the problem size.

As shown in Fig. 3(a), the solution quality of the Ising
machine is comparable to that of a conventional solver.
For cases that were unsolvable within the wall time, the
suboptimal solution of the ILP was used for comparison.
However, this starts to deviate when a larger problem size

68012 VOLUME 11, 2023



K. Kirihara et al.: Exploring Potential Applications of Ising Machines for Power System Operations

FIGURE 3. Summary of example results.

is encountered. The difference arises from the Ising machine
being a heuristic approach; there is no process that guarantees
optimality. For the PMU placement problem, this has no
major disadvantage, as additional PMUs will not hurt the
observability of the system.

However, based on Fig. 3 (b), the Ising machine-based
approach is far superior in terms of computing time.
The quantum-inspired Ising machine exhibited consider-
able improvements in computation time. The computational
improvement of the Ising machine becomes more significant
as the problem size increases. For the considered problem
type, baseline computing resources, and Ising machine type
used, the change occurred around 3000 buses, amedium num-
ber of buses when considering actual network sizes. In the
considered problem, the number of buses is the same as the
number of optimization variables. Therefore, in a more gen-
eral case, if there are more than 3000 optimization variables,
there may be a good case for using the Ising machine over

the traditional means of computing. The critical point where
a particular Ising machine is advantageous may vary among
Ising machines.

A more valuable result may be in larger network sizes,
where the ILP-based approach fails to complete the computa-
tion. The termination of the ILP solver yielded a sub-optimal
solution at the wall time, whereas the Ising machine-based
approach was able to yielded an approximate solution in
the order of seconds. The solution quality is better with the
ILP-based approach; however, waiting for these suboptimal
solutions may not always be necessary in most applications.
Utilizing the suboptimal solution from the Ising machine
as a starting point for a conventional solver (i.e., a hybrid
approach) may yield more desirable results with a lower
overhead. Expanding on this approach, solving parts of the
problem with the Ising machine and another part with a
conventional solver may be a comprehensive form of the
hybrid approach.
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FIGURE 4. Ising machine usage guideline for power system operations.

TABLE 6. Summary of results.

VI. SUMMARY, CONCLUSION, AND FURTHER WORK
This study explored the use of Ising machines in power sys-
tem operations by first identifying the known characteristics

of Ising machines (Section II), identifying the applicabil-
ity of Ising machines for general optimization problems
(Section III), identifying suitable potential applications of
Ising machines in power system operations (Section IV),
and providing a numerical evaluation of one specific prob-
lem (Section V). Generally traversing backward through this
study allows us to compile a guideline for Ising machine
usage to summarize this study.

Section V revealed that in practice, Ising machines exhibit
superior performance relative to a conventional solver if the
problem is sufficiently large. Conversely, if the problem is
insufficient to cause computational concerns, the use of Ising
machines is not beneficial. Hence, the first question to ask is
about the scalability need of the application. If this is not an
issue, then the Ising machine may be unsuitable.

If the computation time is of concern, it is necessary
to check whether the application is theoretically suitable,
as shown in Table 3 from Section V. As Table 3 in Section V
is non-exhaustive, the optimization problem may still be
expressible and scalable, as shown in Table 2. If either of
these is true, the user must determine if the suboptimality of
the solution, which was theorized in Section II and verified
in Section V, is acceptable. If the application satisfies this
criterion, the Ising machine may be ‘‘practically’’ suitable.
This depends on the user’s decision-making process. If the
suboptimality is unacceptable, the application may consider
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a hybrid approach to correct the suboptimality (based on the
discussion in Section V). A hybrid approach may also be
possible if part of the application is Ising machine suitable.

Fig. 4 summarizes the Ising machine usage guideline for
power system operations based on the above points. Future
research may benefit from following the guideline. To con-
clude, we would like to suggest to those with access to Ising
computing, both in quantum and non-quantum variations,
to explore various possibilities of the model, not limited by
the theoretical applications presented in this study.

APPENDIX
A. NOMENCLATURE FOR APPENDIX
T Time periods considered.
G Total number of generators.
Cu,g Start-up cost.
Cd,g Shut-down cost.
ptg Power of generator g at time t .
u, g Unit status.
ytg,z

t
g Variables for unit start-up and shutdown.

Dt Demand at t .
URg Upward ramp rate of generator g.
DRg Downward ramp rate of generator g.
ag, bg, cg Cost coefficients for generator g.
HQUBO
ptg

Integer approximated QUBOmodel for power
of generator g at time t .

HQUBO
s−d QUBO model for supply-demand balance.

HQUBO
ramp QUBO model for ramp rate.

HQUBO
URg,DRg Supplementary QUBO model for ramp rate.

HQUBO
unit1 QUBO model for unit start-up variables.

HQUBO
unit2 QUBO model for start-up and shutdown.

HQUBO
minup QUBO model for minimum up times.

HQUBO
mindown QUBO model for minimum down times.

HQUBO
output QUBO model to constraint decomitted gener-

ators.

B. UNIT COMMITMENT FORMULATION
Although the main text exemplifies the use of Ising machines
for the optimal PMU placement problem, other problems
can be tested as indicated in the applicability table. Another
example is the unit commitment problem, which is for-
mulated as a mixed integer linear programming problem.
An example of the unit commitment (UC) problem in [26]
is loosely adapted as follows:

min
T∑
t=1

G∑
g=1

fg(ptg)u
t
g + Cu,gytg + Cd,gztg

s.t.
G∑
g=1

ptg = Dt , ∀t ∈ 1 . . . T

(pt+1
g − ptg) ≤ URg, ∀t ∈ 1 . . . T , g ∈ 1 . . .G

(pt+1
g − ptg) ≤ DRg, ∀t ∈ 1 . . . T , g ∈ 1 . . .G

utg − ut−1
g = ytg − ztg, ∀t ∈ 2 . . . T , g ∈ 1 . . .G

ytg +

t+Ut g−1∑
t=1

ztg ≤ 1, ∀t ∈ 2 . . . T , g ∈ 1 . . .G

ztg +

t+Dt g−1∑
t=1

ytg ≤ 1, ∀t ∈ 2 . . . T , g ∈ 1 . . .G, (31)

which is a mixed integer linear programming problem.
Hence, an example formulation is as follows.

1) OBJECTIVE FUNCTION
Minimize the total fuel cost, start up cost, and shut down cost.

HQUBO
obj =

T∑
t=1

G∑
g=1

agH
QUBO
ptg

2

+

T∑
t=1

G∑
g=1

bgH
QUBO
ptg

+

T∑
t=1

G∑
g=1

cg +

T∑
t=1

G∑
g=1

Cu,gxytg

+

T∑
t=1

G∑
g=1

Cd,gxztg , (32)

Note that HQUBO
ptg

is an integer variable approximated with a
one-dimensional QUBO model that takes values between pg
and pg such that,

HQUBO
ptg

:= pg +

N∑
n=1

n1xn +

N2∑
n2=1

n2xn2,2 . . .

+

Nj∑
nj=1

njxnj,j. (33)

2) CONSTRAINTS
(a) The total power of the generators is always equal to
demand.

HQUBO
s−d = λ

T∑
t=1

(Dt −

G∑
g=1

(HQUBO
ptg

))2 (34)

(b) Generators must operate within their minimum and max-
imum values(pre-included in the objective).

(c) Sufficient ramping rate in both directions.

HQUBO
ramp = λ

G∑
g=1

T∑
t=1

(HQUBO
pt+1
g

− HQUBO
ptg

− HQUBO
URg,DRg )

2.

(35)

Note, HQUBO
URg,DRg are integer variables approximated with a

one-dimensional QUBO model that takes values between
−DRg and URg. Note,

HQUBO
UR,DR = −DRg +

N∑
n=1

n1xn +

N2∑
n2=1

n2xn2,2 . . .
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+

Nj∑
nj=1

njxnj,j. (36)

(d) Unit start up variables

HQUBO
unit1 =

G∑
g=1

T∑
t=1

λ(xutg − xut−1
g

− xytg + xztg )
2. (37)

(e) Units must not start up and shut down simultaneously

HQUBO
unit2 =

G∑
g=1

T∑
t=1

λxytgxztg . (38)

(f) Minimum up and down times.

HQUBO
minup =

G∑
g=1

T∑
t=2

λ(1 − xytg −

t+Ut i−1∑
t=1

xztg )
2. (39)

HQUBO
mindown =

G∑
g=1

T∑
t=2

λ(1 − xztg −

t+Ut i−1∑
t=1

xytg )
2. (40)

(g) Constraint to the main objective: (generators cannot have
output when decommitted)

HQUBO
output =

G∑
g=1

T∑
t=1

λ(1 − xutg )H
QUBO
ptg

. (41)

3) FINAL FORMULATION
Adding all the constraints together yields the full QUBO
formulation to UC,

HQUBO
= HQUBO

obj + HQUBO
s−d + HQUBO

ramp

+ HQUBO
unit1 + HQUBO

unit2 + HQUBO
minup

+ HQUBO
mindown + HQUBO

output , (42)

where the QUBO problem is converted to the Ising problem
using the isomorphic property from earlier. Future research
should conduct tests similar to those described in the main
text.
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