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ABSTRACT It is a challenging and meaningful task to achieve person image synthesis by guiding pose.
However, two problems have existed in past work: inaccurate generated poses and inconsistency with the
target texture. To address these issues, we propose the Stepwise Change and Refine Network (SCRN), a two-
stage network that aims to transfer given person images to the target pose while generating more reasonable
and closer-to-real results. In the first stage, coarse images are generated using a series of modules with
the same structure called Coarse Blocks. This process gradually changes the pose to achieve better shape
consistency with the target image. In the second stage, style features are extracted from the original image
by distributing semantic information. These features are used to optimize the rough image to obtain the
final generated image, resulting in better consistency with the appearance of the target image. Our proposed
method preserves both the pose’s spatial features and the original image’s texture features. Furthermore,
we introduce a new loss function to make the generated image more in line with human perception.
Qualitative and quantitative experiments with state-of-the-art models demonstrate significant improvements
in SSIM, FID, PSNR, and LPIPS, validating the superiority of our model.

INDEX TERMS Deep learning, generative adversarial network, human pose transfer, skeleton based
approach, person image synthesis.

I. INTRODUCTION
Person image synthesis is an important and challenging task
in computer vision, with many practical applications such as
virtual try-on [1] and video generation [2]. This paper pro-
poses the Stepwise Change and Refine Network (SCRN) for
person image synthesis through human pose transfer. As peo-
ple move and engage in physical activities, their postures
change frequently, making it important to synthesize images
that accurately represent the desired pose. Figure 1 provides
a classic example of pose transfer. As shown in Figure 1, our
model takes the source image and different poses as inputs
and generates an image that retains the source image portrait
while incorporating the given pose.
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In pose transfer, it is necessary to analyze and extract
the keypoint information of the source pose. This keypoint
information is then mapped onto the target pose. Although
pose transfer technology has been widely studied and applied
in the field of computer vision, there are still many challenges
and problems. For example, keypoints may be missing or
mismatched during the pose transfer process. Huang et al.
[3] proposes Pose Attentional Transfer Network (PATN) to
guide the pose gradually by using the attention mechanism,
and limit the change of pose in a small range in each transfer
step, which can better preserve the spatial relationship and
simplify the network structure. Although it has shown decent
ability in this area, it lacks the ability to align source style
and target pose. During the gradual transfer process, the
style features of the source image may be gradually lost,
resulting in loss of detail in the generated portrait’s clothing
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FIGURE 1. Different portrait poses generated by our model.

patterns and materials. Therefore, the module dedicated to
extracting reference style features has been introduced into
some subsequent works [4], [5], [6]. Initially, the pose transfer
task involves the use of source image and keypoints of target
pose as input. However, more recent networks have incorpo-
rated the parsing map as part of their network input. In fact,
some networks [7] don’t rely on keypoints at all for similar
person image generation tasks; instead, they utilize parsing
maps to fuse style features extracted from the source image
with the aim of producing a final generated image which
preserves the textures of clothes and is visually closer to
human perception, thereby enhancing the similarity between
the generated image and the real image. Nonetheless, most
of these networks predict the parsing map of the generated
image based on the target pose. This approach may be weak-
ened if different parts of the body are occluded since it affects
their ability to accurately map spatial relationships of poses.

To address the aforementioned challenges, we propose
SCRN as a solution. Our approach aims to maintain con-
sistency between the generated image and reference image
while gradually transferring the original pose to the target
pose using multiple submodules with identical structures that
are driven by an attention mechanism. This helps enhance
shape consistency between the generated and real person
images. Additionally, we incorporate Criss-Cross Attention
[8] in each identical module to capture long dependencies,
which can provide useful contextual information for visual
expression applications. In the first stage of our approach,
we input the keypoints of the pose and the conditional seman-
tic distribution into a series of modified Pose Attentional
Transfer Blocks (PATBs) [3] to obtain a rough generation
result. Afterward, we use pose features and style features to
optimize the rough generated results, ultimately achieving the
final result. It is important to note that for our method to
be effective, it is necessary to calculate losses for both the
preliminary results and the final generated results. The main
contributions of our paper can be summarized as follows:

• We propose SCRN, which combines two ideas of grad-
ually generating transfer results and transferring style
features based on a parsing map. The method can better

generate the spatial relationship of the posture while
retaining the original image’s style characteristics.

• We came up with Coarse Block, a variant of PATB
[3]. The conditional semantic distribution and reference
semantic distribution generated by prediction are added
as input parts at the beginning of the network, so as to
restrain the change of posture. Not only that, we also
add the Criss-Cross Attention module after each block
to enhance the learning ability of the module. Dilated
convolution is also introduced to ensure the lightweight
of the network.

• In this work, L1 loss is performed on the face part
alone to produce facial features that better match human
perception. The evaluation indicators have improved in
all evaluation indicators, which proves the effectiveness
of our work.

II. RELATED WORK
A. PERSON IMAGE SYNTHESIS
Person image synthesis refers to the use of computer-generated
images to produce realistic depictions of human subjects.
This technology has a wide range of applications, such as
generating virtual try-on models for clothing and accessories,
creating realistic-looking characters for films and games,
and even producing digital avatars for social media and
virtual reality experiences. Thanks to recent advancements
in deep learning techniques, particularly Generative Adver-
sarial Networks (GANs) [9], [10], person image synthesis
has made tremendous progress in recent years. GANs allow
for the creation of highly realistic images by training a
generator network to create images that are indistinguishable
from real ones, while simultaneously training a discriminator
network to distinguish between real and generated images.
With the availability of large datasets and more sophisticated
algorithms, person image synthesis is poised to continue
advancing at an unprecedented pace.

At the same time, various fashion tasks [11], [12], [13],
[14], [15], [16] based on image generation have emerged.
Cui et al. propose flexible person generation framework
called Dressing in Order (DiOr) [13] which supports 2D
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pose transfer, virtual try-on, and several fashion editing
tasks. Zhou et al. proposed COutfitGAN [14] to synthe-
size photo-realistic images of other, complementary, fashion
items that are compatible with the given ones. Liu et al.
introduced DeepFashion [17], a large-scale multi-task dataset
that contains over 800,000 fashion images and covers multi-
ple tasks such as detection, pose estimation, segmentation,
and re-identification [18]. This dataset provides researchers
with a wide range of application scenarios related to fashion.
Ma et al. [19] proposed a pose guided method for person
image generation in 2017. This method combines pose esti-
mation and image generation techniques, and generates the
corresponding human image by processing the input pose.
This method can generate realistic human images in different
poses.

B. HUMAN POSE TRANSFER
Human pose transfer, which involves transferring the pose
of a person from one image to another, has gained pop-
ularity in recent years. The first proposed method for
this task was introduced in Ma et al.’s work [19]. Since
then, researchers have developed several deep learning-based
approaches to simulate human motion, including Liu et al.’s
method that uses GAN and convolutional neural networks
(CNN) for attitude transfer [20], and Huang et al.’s method
that employs style transfer and Adaptive Instance Normaliza-
tion (AdaIN) technique to achieve high-quality pose transfer
in real-time [21]. These methods have been widely used in
subsequent works such as Men et al. [4], Zhou et al. [5], and
Zhang et al. [6]. The Deformable GANs model proposed by
Siarohin et al [22]. employs a novel Deformable Convolu-
tional neural Network (DCN) module to learn how to make
subtle shape adjustments to specific regions during gener-
ation. This ‘‘deformable G-convolution’’ technique allows
better handling of objects with complex shapes, such as
human body parts, and can make the generated people more
natural and realistic. It is worth mentioning that attention
mechanism [23], [24] is often used to increase the atten-
tion and importance of neural network to input data in pose
transfer, so as to effectively realize person image synthesis.
Specifically, the attention mechanism allows the neural net-
work to focus only on information in the input data that is
relevant to the target task and ignore information that is not
relevant to the task. This approach is especially useful when
dealing with complex images, which often contain a lot of
irrelevant information. In this area, attention mechanisms can
be used to identify features that differ between the source
domain and the target domain, and thus focus attention on
those features. In doing so, the model can better learn the
mapping relationship between the source domain and the
target domain, and thus more accurately perform pose trans-
fer. Unlike the one-step transfer approach, Huang et al. [3]
proposed a pose transfer method that utilizes an attention
mechanism. This method involves multiple submodules with
identical structures to generate more realistic pose transfer

images, through stepwise training, thereby handling complex
pose transfer tasks. However, the portrait image generated by
this method is based on the keypoints of the pose and may
exhibit disconnection between the keypoints in the generated
image. This disconnection can occur when there are signif-
icant changes in the pose. Also using stacked modules to
generate portraits are XingGAN [25] and PoNA [26]. What
is different from traditional GAN in that XingGAN intro-
duces a new discriminator structure called ‘‘average pooling
discriminator’’ to enhance the model’s ability to understand
global and local information. Different from the existing net-
works, here, we threaten the pose transfer task into two parts,
the spatial representation of the pose and the optimization
of the image. Our model can generate a more reason-
able pose structure and display a style close to the human
senses.

III. METHOD
Our goal is to generate images that are more in line with
human perception, based on both the original image and the
target pose. To achieve this, we propose SCRN. As shown
in Figure 2, the network is divided into two stages: a Coarse
Generator and a Refine Generator. The Coarse Generator is
responsible for generating rough images Icrs that match the
original pose Pr . The generated images are then refined using
the Refine Generator, which repairs the rough images and
makes them more similar to the target image It . Additionally,
the inputs to the network include the reference image Ir , the
reference parsingmap Sr , the reference posePr , and the target
pose Pt . By leveraging these inputs, our model is able to
generate high-quality portrait images that closely align with
both the original image and the desired pose.

The dataset includes images of the same person in different
poses with pose representation. Details are as follows. The
pose representation includes 18 human keypoints extracted
by Human Pose Estimator (HPE) [27] and provided by [3].
We store the information of 18 joints in text form, and
when fed into the network, it generates H × W × 18 heat
map, where each channel holds the information of a specific
joint point of the skeleton. so Pt ∈ RH×W×18. The pars-
ing map Sr is extracted by Part Grouping Network (PGN)
[28] and provided by [6], which saves eight categories (hair,
upper clothes, dress, pants, face, upper skin, leg, and back-
ground) and processes them into H × W × 8 heat map
Sr when input to the network. Each category is stored in
a separate channel, so Sr ∈ RH×W×8. In order to generate
better facial features, we also use FaceBoxes [29] to extract
the bounding box coordinates of the faces in the dataset
and save them. We will describe the two stages in detail
as follows.

A. COARSE GENERATOR
1) PARSING BLOCK
Accurately generating the pose position is one of the fun-
damental challenges in human image synthesis. In order
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FIGURE 2. Overview of our model.

to tackle this, we utilize a parsing map to constrain pose
changes. To generate the parsing map Sg of the target pose,
we employ a Parsing Block. First, we embed the source pose
Pr , the target pose Pt , and the source parsing Sr into a latent
space using an encoder. These inputs are then downsampled
through four convolutional layers before residual blocks are
applied. This process helps to refine and extract higher-level
features from the input data.

2) CRISS-CROSS ATTENTION
The Criss-Cross Attention module is a special attention
mechanism for image segmentation tasks in computer vision.
This module can help convolutional neural networks better
capture the relationship between different spatial locations,
thus improving accuracy.

The Criss-Cross Attention module consists of two main
steps: First, it extracts the feature vector of the pixel loca-
tion by using two different convolution kernels at each
pixel location. It then converts these two eigenvectors into a
two-dimensional matrix to better describe their relationship.
We’ve replaced sigmoid normalization with softmax normal-
ization in this two-dimensional matrix to obtain a matrix of
the same size, which indicates the correlation between all
pixel locations. Finally, the feature vectors of each pixel posi-
tion are weighted and averaged using the correlation matrix
to generate the final representation.

3) COARSE BLOCK
Based on the work of PATN [3], we introduce a new module
called the Coarse Block (CB). Each CB has an identical

independent structure. However, when using only pose key-
points as input for the pose feature in the network, the
resulting limb disconnects. To overcome this issue, we con-
catenate Sr , Pr , Pt , and the parsing map Sg generated
by the prediction. After applying convolution processing,
it becomes the feature F0

p which is used as first CB input,
meaning F0

p contains more information about the pose. Fur-
thermore, we also add Criss-Cross Attention to the module,
which better captures the spatial information without bring-
ing a significant increase in computation.

FIGURE 3. Detail of t-th coarse block.

Consider the t-th block, whose inputs are F t−1
p which rep-

resents the pose code and F t−1
i , which represents the image

code. Ir goes through the convolutional layer and becomes
feature F0

i . As shown in Figure 3, the previous block’s output
serves as the input for the current block, which is divided into
two pathways: the pose pathway and the image pathway. Each
of these pathways has a convolutional module with the same
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structure but different weights. We denote them as Convp and
Convcrs. Note that we use dilated convolution [30] instead
of the standard convolution layer to make the calculation
cheaper and have a larger receptive field.

4) POSE PATHWAY AND IMAGE PATHWAY
The basic idea is to hint Fi where to put target patches by
pose code Fp. Taking the t-th CB as an example, the output
F t−1
p of the (t-1)-th CB is first taken as the input. After

convolution processing, the Criss-Cross Attention operation
is performed. Finally the sigmoid function is used to obtain
the attention matrix M. The pose attention mechanism is
introduced to control the details of the generated poses and
body parts. This mechanism adjusts the allocation of attention
for different stages of generation based on the current pose
information, which helps to better align with the desired pose.
To summarize, the process can be described as follows:

M = σ
(
CCA

(
Convp

(
F t−1
p

)))
(1)

where CCA stands for Criss-Cross Attention function. After
computing M, we can update F t−1

i and F t−1
p as follows:

F ti = M ⊙ Convcrs
(
F t−1
i

)
+ F t−1

i (2)

where ⊙ means element-wise multiply. F tp is obtained by
concatenating F t−1

p and F ti in the channel dimension so that
the number of channels of F tp is the same as the input to the
next block. Several CBs (6 in our case) are stacked in this
stage. For the output Fi and Fp of the last CB module, Fp
was discarded and Fi was retained as the output Fcrs of the
first stage. With Coarse Block, we can better fit the generated
pose structure. The Fcrs will be used as the input of the
Refine Generator, while the decoder decodes the Fcrs to get
the preliminary generated image Icrs. We will also calculate
the loss for Icrs.

FIGURE 4. Fusion operation of the RefineArea block.

B. REFINE GENERATOR
1) REFINEAREA BLOCK
To make the result more consistent with the ground truth
image, we will optimize the output of the Coarse Generator,
Fcrs, with style information. However, and the roughness

generated image may differ from the ground truth image in
terms of shape, so how to parse Icrs with Sr is the main
problem to be solved.

RefineArea Block can be regarded as two parts: the first
part is encoding Pt and Sg to obtain Fsp, and the second part
is fusing Fcrs and Fsp to obtain F ′

crs. The fusion process is
shown in Figure 4. Here, gated convolution, a commonly used
operation in convolutional neural networks, is introduced, and
a gate mechanism regulates the flow of information. In the
traditional convolutional neural network, the parameters of
each convolution kernel are fixed and cannot be dynamically
adjusted according to the input data. However, in gated con-
volution, each convolution kernel is divided into two parts: a
control gate and an activation gate. Control gates are used to
decide the importance of input features, while activation gates
are used to produce output features. Gated convolution can
solve the shape error problem of Icrs well. Through the opti-
mization of Pt and Sg, it selectively retains and increases the
area that needs to inject style features. F ′

crs can be expressed
as follows:

F ′
crs = σ (Fus(Fcrs +⃝Fsp)) ⊙ Fcrs (3)

The Fus here represents the fusion operation in the Refin-
eArea Block and, +⃝ represents the concatenation.

2) INJECT STYLE BLOCK
The Inject Style Block plays a crucial role in injecting the
texture pattern of the source image into the target pose feature.
This is achieved by first extracting the style features Fs from
the source image using the style encoder. Incorporating style
information can greatly enhance the realism and fidelity of
images, as it helps to preserve details and intricacies that
would be lost if the texture of the original image was dis-
carded. Without preserving texture, the generated image may
appear smooth, blurry, or lacking in detail, failing to capture
the essence of the original image.

We use Ir and Sr as the input of the style encoder. The
mask generated by Sr enables the encoder to extract the style
features of each region accurately.We use five downsampling
layers and two residual modules to extract style features. The
style information of each region is separately mapped into
a 1 × 256 vector, resulting in Fs. The F ′

crs, the output by
RefineArea Block, is taken as the input of Inject Style Block,
and then optimize the F ′

crs according to the style matched by
each channel of each Fs.

C. DISCRIMINATOR
The discriminator is designed to receive two types of input
data: real images and fake images generated by the generator.
Its primary function is to classify these images and label
the real ones as ‘‘true’’ and the generated ones as ‘‘false’’.
By doing this, it trains the generator to produce more realistic
images by minimizing the difference between the real and
fake images, which helps improve its overall accuracy. The
discriminator we use consists of nine subsampling layers. Icrs,
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Ig, and Ir are simultaneously fed into the discriminator for
each training round.

D. TRAINING
The full loss used to optimize the network consists of the
following parts:

L = λcorLcor + λl1Ll1 + λadvLadv + λperLper
+ λparLpar + λfaceLface (4)

where λcor , λl1, λadv, λper , λpar , and λface represent the
weights of the loss values of each part, and these parameters
are used to balance the loss values of each part, so that the
network converges faster.

Same as the previous method, we introduce the correspon-
dence loss which is used to constrain the generated feature Fg
with target image. The formula is as follows:

Lcor =
∥∥Fg − φi (It)

∥∥
2 (5)

where φi represents the pre-trained VGG19 [31] model, and
we use part of the layers of VGG19 to calculate the loss. The
i here represents the number of layers used.

In order to make Ig more like It , we need to measure
their similarity at the pixel level. So we use L1 losses. It is
important to note that not only do we calculate losses between
Ig and It , but we also calculate losses between Icrs and It .
In this way, we can make the Coarse Generator generate Ig
better. The L1 loss in this paper is calculated as follows:

Ll1 =
∥∥Ig − It

∥∥
1 + ∥Icrs − It∥1 (6)

The adversarial loss is calculated by the discriminator D.
It punishes the distribution differences between the generated
(fake) image Ig and the rough image Icrs, respectively, and the
expected (real) target image.

Ladv = E
[
log

(
1 − D

(
Ig

))]
+ E

[
log (1 − D (Icrs))

]
+ E

[
logD (It)

]
(7)

The function for perceptual loss [32] gauges the variance
between feature representations of the target and generated
images at intermediate layers, promoting their similarity. This
approach results in visually appealing outcomes that uphold
the original image’s global structure and semantic content,
rather than simply matching pixel values. It can be expressed
by the formula:

Lper =
∥∥2

(
Ig

)
− 2 (It)

∥∥
1 (8)

where 2 denotes the pre-trained AlexNet [33].
Parsing map loss is calculated by L1 loss, which can be

written as:

Lpar =
∥∥Sg − St

∥∥
1 (9)

During training, we find it harder to generate reasonable
images of faces, so we compute the loss specifically for faces.
The bounding box coordinates of the face are generated and
saved by FaceBoxes [29]. The loss is calculated by cropping

the faces of Ig and It according to bounding boxes. The
formula is as follows:

Lface =
∥∥C (

Ig
)
− C (It)

∥∥
1 (10)

where C represents the function to crop the face.

IV. EXPERIMENT
A. EXPERIMENT SETUP
1) DATASET
Our model is trained using the In-shop Clothes Retrieval
Benchmark, part of the DeepFashion [17] dataset. This
particular dataset comprises 52,712 high-resolution images
featuring fashion models. In order to ensure effective training
and testing, images depicting the same individual in identical
attire have been paired together. We use the dataset splits
provided by [3]. There are 101, 966 pairs in the training set
and 8, 570 pairs in the testing set.

2) METRICS
To assess the performance of our model, we rely on various
evaluation metrics such as Structure Similarity Index Mea-
sure (SSIM), Peak Signal to Noise Ratio (PSNR), Fréchet
Inception Distance (FID), and Learned Perceptual Image
Patch Similarity (LPIPS). These metrics are used to measure
the difference between the generated image and the target
image. SSIM is a widely used evaluation metric to compare
the structural similarity of two images. It considers not only
the brightness and contrast of the image, but also the struc-
tural information, which was firstly used in [19]. However,
SSIM can be insensitive to certain image transformations.
Another important metric we use is PSNR, where a higher
value indicates a smaller difference between the generated
and real images. FID is another useful metric that measures
the difference between the generated and real images by
calculating the distance between their feature representations
in the feature space.Finally, we use LPIPS, a neural network-
based metric that learns feature representations to evaluate
image similarity from the human perspective. LPIPS is more
closely aligned with human perception and can provide a
more accurate reflection of the differences between images
compared to traditional evaluation metrics.

3) IMPLEMENTATION DETAILS
Ourmethod is implemented in PyTorch, and the graphics card
used is an Nvidia 3090. We set the batch size to 6 and took
120k iterations to get the final result. The Adam optimizer
[34] has β1 = 0.9 and β2 = 0.999. The learning rate is
initially set to 0.001 and decays to 0 after 120k iterations.
The weights for each part of the loss values are: λcor = 300,
λl1 = 5, λadv = 2, λper = 3, λpar = 1 and λface = 1.

B. COMPARRISONS WITH STATE-OF-THE-ART MODELS
1) QUANTITATIVE COMPARISON
We compare our model with several state-of-the-art models,
including PATN [3], ADGAN [4], PINet [35], PoNA [26],
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FIGURE 5. Qualitative comparisons with state-of-the-art methods. From left to right are the results of PATN,
ADGAN, PINet, PoNA, DiOr, PISE and ours, respectively.

FIGURE 6. Face comparisons with state-of-the-art methods. From left to right are the results of PATN, ADGAN,
PINet, PoNA, DiOr, PISE and ours, respectively.

DiOr [13] and PISE [6]. The generated images used to test
the evaluation metrics are provided by the corresponding
authors, and the width and height of the images are uniformly

256 × 176. Therefore, the generated image of some models
with width and height of 256 × 256 will be cropped. The
networks we used for comparison use the same dataset split,
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FIGURE 7. Qualitative comparisons in ablation study.

TABLE 1. Quantitative comparisons with state-of-the-art methods.

so these evaluation metrics are measured on the full test
set. Since PATN [3] does not provide results for running
on the test set, we directly use the source code and trained
model released by the author of PATN [3] to test metrics. The
quantitative comparison result is shown in Table 1. Among
them, DiOr [13] has shown excellent performance, but in
LPIPS its performance is poor. It can be seen from the table
that our model has a slight improvement in SSIM, indicating
that it has made a more accurate prediction for the details,
texture, structure and other aspects of the image. Our model
obtains the best results on PSNR and LPIPS, second in FID,
proving that the generated images more aline with human
visual perception.

2) QUALITATIVE COMPARISON
We provide the generated results of comparison with state-
of-the-art network in Figure 5, The images used for display
are all released by their respective authors. It is obvious
that the ability of PATN [3] and ADGAN [4] to preserve

TABLE 2. Quantitative comparisons in ablation study.

the texture of the source image is weak. In the example
of the last row in Figure 5, PATN [3] and ADGAN [4] do
not capture the information about the hat, so the generated
portrait does not wear a hat. We believe that the attention
mechanism used in the PATN [3] model has some limitations,
because the attention mechanism only focuses on a part of
the area in the image, so it may not capture all the informa-
tion in the image in some cases. Some images generated by
PISE [6] do not generate the boundary of clothes and skin
accurately, and we guess that this is because the ‘‘Per-rigion
Normalization’’ module used by PISE [6] may mistakenly
confuse the clothing texture with the skin texture in some
cases.

However, the result shows that our model generates images
with accurate structure while preserving texture features well.
It is worthmentioning that when generating full-body images,
the face area is small compared to the image, and the face
of other models will become blurred or deformed. Due to
the introduction of Lface, our model can still generate rea-
sonable facial features even in this case. See Figure 6 for a
specific example. By the way, looking through all the images
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generated with the test set, it can be seen that the quality of
the images we generate is more stable.

C. ABLATION STUDY
In this section, we trained several ablation networks, which
are variants of our network, to verify the effectiveness of our
improvements.

3-Coarse Blocks(3-CBs). Coarse Blocks are used to
change a person’s posture progressively. Its structure is sim-
ple and it relies on attention mechanisms to drive it. This
article used six Coarse Blocks. In this section, we will also
test the model with 3 Coarse Blocks.

Without RefineArea Block(w/o RB). A RefineArea
Block is used to selectively retain and add style features to
areas where they need to be injected. The target pose and gen-
erated parsing map are encoded in this module. The crudely
generated image is fusion manipulated with the encoded
result.

Without Lface(w/o Lface). In the full model, the face part
of the ground truth image and the face part of the generated
image was clipped with the same corresponding bounding
box frame and the loss Lface was calculated so that a more rea-
sonable face could be generated by introducing Lface. In this
section, The model does not adopt the Lface loss defined in
Equation (10).

Full Model. We trained our model with all components we
proposed.

We trained all our ablation models using the same
setting. The quantitative comparison and qualitative com-
parison can be seen in Table 2 and Figure 7, respec-
tively. It can be found that the model with all components
achieved the best performance overall on the evaluation
metrics.

The model utilizes only 3 CBs that result in poor LPIPS
performance, indicating that the model lacks efficient space
transformation ability due to CB reduction. Each CB mod-
ule restricts attitude change within a small range to avoid
losing features and prevent excessive image alteration in
one step. It is worth noting that theoretically, better results
can be achieved by increasing the number of CBs. The
original PATN [3] uses nine similar modules, and six
CBs are used in this model considering the amount of
computation.

The model without RefineArea Block is significantly
lower than the full model in all metrics. The poor SSIM
and LPIPS indicate that the structure between the gener-
ated image and the original image is not similar enough,
and the poor FID indicates that the generated result is not
realistic enough. According to the qualitative comparison
result, we can also find that since there is no RefineArea
Block, the shape of the resulting image Ig will largely
depend on Icrs. Since we inject the style feature at element-
wise multiply, it is necessary to add the shape information
with RefineArea Block to not restrict the Ig shape to
the Icrs.

FIGURE 8. Failure cases caused by rare poses, rare clothes, and male to
female ratio.

Although the model without Lface performs similarly to
the full model in terms of evaluation metrics and even
outperforms the full model in LPIPS, the face generated
by the full model is superior to that of the model with-
out Lface. We speculate that the small size of the face area
compared to the entire image contributes to the marginal
difference in the evaluation metrics. Hence, it does not
have a significant impact on calculating the evaluation
metrics.

D. FAILURE CASES
Although ourmodel achieves good results inmost cases, there
are still some limitations. As shown in Figure 8. We classify
limitations into the following three categories:

Rare poses. These poses are rare even in the training
set. For example, it is difficult to find the sitting posi-
tion in the entire dataset, so when generating the sitting
position, the generated result is extremely biased towards
the composition of the training set, resulting in the wrong
postures.

Rare clothes. Some clothes are not very common in life,
even in the DeepFashion dataset. This will result in clothing
that is very different from the source image.

Generated males. There were 101, 966 pairs of images
in the training set, including 90, 152 pairs of female
images and 11, 814 pairs of male images. The male-to-
female ratio in the dataset is nearly 9:1, a severe data
imbalance that sometimes results in male faces resembling
women.

In fact, all of the above three limitations can be attributed
to insufficient datasets or data imbalance. We believe
that expanding the data set can effectively alleviate these
problems.
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V. CONCLUSION
In this paper, we present a novel approach for human pose
transfer that involves the generation of rough images followed
by refinement while preserving the spatial structure and
style features of the human body. Our approach consists
of two stages: first, a sketch is generated by incrementally
changing the pose through several modules with identical
structures. In the second stage, the previously generated
image is fused with keypoints and semantic distribution
information, and style features are injected to generate
the final image. Additionally, we incorporate a facial loss
calculation to produce more realistic facial features. Our
experiments demonstrate that our approach produces images
that are more consistent with human perception and closely
resemble real images. Furthermore, our ablation study con-
firms the effectiveness of our approach. Later we will try
to use this method for subject transfer which consists of
transferring not only the pose but also the appearance and
background.
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