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ABSTRACT In this work we propose a method to detect turmeric adulteration using the Cavity Perturbation
Technique (CPT) at 2.4GHz. Two different adulterants are examined (egg-yellow color and starch). We show
that when a single adulterant is added, the resonant frequency and unloaded quality factor values follow
clear trends as a function of added contaminant. Unfortunately, when the turmeric is adulterated with
different concentrations of two adulterants (e.g., a 50% color/50% starch) CPT does not lead to good
results. To address this, we also present an automated machine learning flow that dramatically enhances
the adulteration detection. The proposed flow has the additional uniqueness that it optimizes the predictive
model based on the selected target hardware platform doing technology independent as well as technology
dependent model optimizations. Experimental results show that our predictive model can be optimized based
on the accuracy required for different hardware platforms. In particular we target a microcontroller and a
dedicated hardware implementation.

INDEX TERMS Predictive model, sensor design, tumeric contamination.

I. INTRODUCTION
Turmeric (Curcuma Longa) powder is a well-known spice
used worldwide due to its condiment uses, as well as its
medicinal properties. Turmeric’s main proactive component
is a polyphenol, namely, curcumin (C21 H20 O6) [1]. In the lit-
erature, we find curcuma to have been utilized as an antiviral,
antibacterial, antifungal and anti-inflammatory [2], [3]. This
latest property has led to treatments for cancer, Alzheimer’s
disease and rheumatoid arthritis [4], [5].

Adulteration of turmeric has been well documented in the
literature. It has been shown that fraudsters often use: ground
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grass, sawdust, straw, cereals, starches, red brick dust and
other Turmeric species (C. zedoaria and C malabarica) [6],
[7], [8], [9], [10]. This practice, apart from reducing the food
quality and nutritional value, poses a risk to public health.

Different methods to detect adulteration have been pro-
posed in the literature such as chromatography [11], [12],
DNA analysis [13] and Near Infrared Spectrometry [14].
In [15] a near infrared spectrometer is used to identify
Turmeric’s three most common adulterants (corn starch
powder, Metanil yellow powder, and Sudan dye- IV).
An alternative method that allows adulteration identification
is measuring the dielectric properties (DP) at microwave
frequencies [16]. Microwave characterization of turmeric
has been reported in [17] at various moisture levels using
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a coaxial probe from 0.2 to 20GHz. In addition, in [18]
microwave properties of various Zingiberaceace family
plants are presented at 2.45GHz using a substrate integrated
cavity. Microwave methods are based on the measurement
of the dielectric properties of the sample under test (SUT).
DPs refer to both real and imaginary parts of the permit-
tivity, known as dielectric constant (ϵ’) and dielectric loss
factor (ϵ’’) as follows:

ϵ = ϵ′
− jϵ′′ (1)

Physically, ϵ’ is related to the ability of the material to
store energy, while ϵ’’ is related to the conversion of electro-
magnetic energy into heat, with j being the imaginary term.
Permittivity can be affected by diverse factors associated
with the nature of the material, therefore it is susceptible to
changes if the sample is adulterated.

Measurements of dielectric properties can be divided in
resonant and non-resonant methods; however, resonant meth-
ods offer greater accuracy but they are limited to only a single
frequency [19].

Several papers have addressed the usage of resonant meth-
ods to detect adulteration. In [20], adulteration detection
of liquid silicone is presented using metamaterial inspired
resonators, where the samples are adulterated with different
types of oils. In [21], a high impedance surface electromag-
netic bandgap resonator is used to measure different degrees
of adulteration of fish oil with olive oil. Moreover, in [22]
several food flours are adulterated and measured using a
miniaturized electric LC resonator.

In all the above mentioned works, the adulterant is always
a single component added to the sample under test (SUT),
therefore, clear regression trends are found between adulter-
ant percentage and and resonant frequency.

In this paper, we propose to characterize turmeric samples
contaminated with two of the most common adulterants:
corn starch and yellow dye [15] using the Cavity Perturba-
tion Technique (CPT) [23]. We employ a cylindrical cavity
excited at one of the Federal Communications Commis-
sion (FCC) allocated frequencies for industrial, scientific,
and medical purposes (2.4GHz) in the TE111 fundamental
mode [24]. The choice of the cavity is related to its intrin-
sically high Q value [25], however, any resonator based on
perturbation theory [26], [27], [28], [29], [30] could have
been utilized as well.

By using the CPT, clear trends in resonant frequency and
Q values vs. adulteration percentage are obtained for a sin-
gle adulterant. However, when two contaminants are added,
conventional CPT analysis cannot predict adulteration. For
this reason we use machine learning techniques based on
hardware-aware predictive model optimization that are able
to detect the adulteration contents for all scenarios with
higher confidence levels.

The availability of large complex data sets combined with
killer applications hasmadeArtificial Intelligence (AI) one of
the most exciting and promising new technologies. Machine
learning itself is a form of artificial intelligence (AI) that

can execute tasks without being explicitly programed [31].
Instead, it learns from a training set so that it can execute the
tasks on any new data. This is particularly useful for appli-
cations in which the data is difficult to model analytically.
Training the predictive model requires learning a set of coef-
ficients (weights) from the training data. When the training
data is labelled, it is referred to as supervised learning, which
is currently the most widely used approach, and what we will
cover in this work. Inference involves performing a given task
using the learned coefficients.

Recent surveys have listed a variety of different machine
learning techniques applied to inspect the quality of fruits
and vegetables [32], [33], [34]. In our work, we investigate
the use of machine learning techniques to detect the type and
amount of turmeric adulterants by analyzing the dielectric
properties, and address several issues that have still not been
addressed when using machine learning for these types of
applications. First, often the predictive model with highest
accuracy is used although this might be the most compu-
tationally intensive that also consumes the most power. For
battery operated embedded systems this approach is not the
most realistic. Second, the predictive model is normally not
further optimized, and especially not considering the under-
lying hardware platform on which it will be executed.

To address these issues, in this work we present a fully
automated flow that generates an optimized predictive model
based on the target hardware platform, e.g., FPGA, ASIC,
GPU or micro-controller. Due to its importance, we apply
this flow to improve the purity measurement of turmeric.
In summary the main contributions of this work are:

1) Microwave characterization of turmeric adulterated
with two of the main adulterants at different ratios
(starch and color) using Cavity Perturbation Technique
(CPT) at 2.4GHz.

2) Propose a fully automated flow that can generate an
optimized predictive model taking into consideration
the target HW platform.

3) Perform extensive results showing that CPT alone can-
not detect the adulteration contents and showing the
effectiveness of our predictive model optimization flow
for different hardware platforms.

II. RELATED MACHINE LEARNING WORK
Many applications from different domains have been shown
to benefit from machine learning. These areas include video
(arguably the biggest source of data) [35], speech recogni-
tion [36], and medical applications [37], [38].

Much work in the area of efficient machine learning deals
with image processing due to its importance [35], [39].
Because of this, extensive effort has been done to automate
the design and optimization of neural networks for image
processing [40].

Machine learning has also been used in the food industry
mainly to inspect the quality of produce. In [32] the authors
survey previous work that has been proposed to examine the
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FIGURE 1. Cavity simulation result.

quality of fruits and vegetables. Zhou et al. discussed in [33]
the use of deep learning for food recognition, and quality
detection of fruits, vegetables, meat and aquatic products.
In [34] the authors review application of machine learning
algorithms that use low frequency properties in quality assur-
ance of black tea.

Closer to our work, recent advances on hardware-aware
modeling and optimization for ML applications have
emerged [41], [42], again mainly in the area of image pro-
cessing through deep neural networks (DNNs).

To the best of our knowledge this is the first work that opti-
mizes predictive models based on different target hardware
platforms and that does technology independent as well as
technology dependent model optimizations. To demonstrate
the robustness of our proposed flow we investigate the use of
machine learning techniques to detect the type and amount
of turmeric adulterants by analyzing the dielectric properties,
showing that only looking at these properties does not lead to
results that are accurate enough.

III. DIELECTRIC PROPERTIES ANALYSIS AND SETUP
The dimensions of the cavity are a = 4.9 cm and l = 8.6 cm,
calculated from equation 2.

The cavity is simulated using HFSS and the E-field is
shown in Fig. 1, where it is clear that for the TE111 mode,
the E-field is concentrated at the center of the cavity, where
the sample holder should be placed for highest sensitivity.

The cavity is machined in aluminum. To excite the TE111
mode, an electrical probe-coupling is desired; therefore,
an SMA connector is placed at the center of the cavity and its
center conductor extended experimentally to a length p=35
mm where the maximum coupling is achieved (Fig. 1).
The dielectric measurements were performed using the

Cavity Perturbation Technique (CPT) by connecting a cylin-
drical cavity to a vector network analyzer (VNA) (Agilent
8510) as depicted in figure 2. The VNA is set to measure
from 1900 MHz to 2400 MHz with 401 points. The cavity
is designed to operate at 2.4GHz in the TE111 mode. The
measured cavity unloaded Q is Q0=2550 without sample
holder.

f1 =
c

2π
√

µ′ϵ′

√(
ρ′
pm

a

)
+

(ρπ

l

)2
(2)

FIGURE 2. Measurement setup overview based on Cavity Perturbation
Technique (CPT) connected to vector network analyzer.

where a is the radius, l is the length, c is the speed of light; n,
m, and p are the subscripts of the propagation modes;µ’ is the
magnetic permeability, and ρnm’ is the root of the derivative
of Bessel’s function.

The CPT method is described by equations 3 and 4 as
follows:

f1 − f2
f2

= A
(
ϵ′
r − 1

) Vs
Vc

(3)

1
Q2

−
1
Q1

= Bϵ′′
r
Vs
Vc

(4)

where f1 and f2 are the frequencies before and after pertur-
bation. Vs and Vc are the volumes of the sample and cavity
respectively; and Q2 and Q1 are the quality factors after
and before perturbation. A and B are constants that requires
an initial calibration. For this we use olive oil as suggested
in [43].

Moreover, in order to extract the particle permittivity, the
Landau & Lifshitz, Looyenga (LLL) equation was utilized
shown in equation 5 [44]. In particular:

ϵpart =

[
ϵ
1/3
bulk + vs − 1

vs

]3

(5)

where ϵpart is the particle permittivity, ϵbulk is the permittivity
of the mixture (air-particle) and with vs = ρbulk/ρpart , where
ρbulk is the bulk density and ρpart is the particle density.
In order to calculate the bulk densities, 25ml of the sample

were poured in a graduated beaker (100ml ± 1ml). Then the
sample was weighed with an electronic scale. The particle
density was measured by the water displacement method.

All measured results were analyzed by ANOVA and
Tukey’s pairwise comparisons at a significant level of
r<0.05 using Matlab 17.

IV. PREDICTIVE MODEL GENERATION
This section describes in detail how we use machine learning
to increase the accuracy of the adulteration prediction.
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FIGURE 3. Overview of complete predictive model generation flow
proposed flow composed of two phases. Phase 1: Predictive model
generation. Phase 2: Model selection and optimization.

Training the predictive model requires learning a set of
coefficients (weights) from the training data. When the train-
ing data is labeled, it is referred to as supervised learning,
which is currently the most widely used approach, and what
we use in this work. Inference involves performing a given
task using the learned coefficients. Using this principle,
we use machine learning to improve the dielectric properties
sensing for turmeric adulteration detection.

Fig. 3 shows an overview of our complete automated
flow. The flow takes as input the application that needs the
predictive model. The flow also takes a library of predic-
tive models (libmodels), the minimum requires accuracy of
the model (minacc), the target HW platform (e.g., ASIC,
FPGA, or micro-controller) and any resource constraints,
e.g., number of HWmultipliers available or amount memory.
The output is a compiled (for SW) or synthesized (for HW)
predictive model on the target HW platform.

The flow itself is composed of two phases. Phase 1 gen-
erates different predictive models. The models that meet the
required minimum accuracy is then passed to phase 2 where
the models are optimized based on the HW platform and the
most efficient model selected. The next subsection describes
these three phases in detail.
Phase 1: Predictive Model Generation: This first phase

takes as input the training data obtained from simulation,
a minimum required accuracy (minacc) and trains different
predictive models given from a library of predictive models
(libpred ). For this we use scikit-learn [45]. The idea is to gen-
erate a variety of different predictive model with the required
minimum accuracy such that the next phase can then optimize
the models and find the most optimal for the given HW
platform. Some of the predictive models used include liner
regression (LR), regression trees (LT), multi-level perceptron
(MLP) and support vector machine (SVM) models.

FIGURE 4. Phase 2: Overview of the predictive model generation and
optimization phase composed of 3 steps. Step 1: Model encapsulation.
Step 2: Model pruning. Step 3: Model exploration.

It should be noted that the quality of the predictive model
depends on the training data. To investigate the effectiveness
of our predictive model we first rely on the simulation data,
while later make use of the measurement data. A 10-fold
cross validation is used to measure the accuracy of the model,
where the training data is split into 10 regions and 9 are used
for training and 1 for testing consecutively.
Phase 2: Model Selection and Optimization: This sec-

ond phase takes as input the predictive models generated
in phase 2 and optimizes them in order to find the fastest,
smallest (area or code size) and/or lowest power depending on
the target HWplatform. This phase can be further sub-divided
into three steps as shown in Fig. 4.

Step 1 takes as input the different predictive models and
converts them into ANSI-C. The main reason for this is that
ANSI-C can easily be re-targeted to the different HW plat-
forms supported by our flow. Compiling ANSI-C with any
cross-compiler enables running the predictive model on any
processor, while using High-Level Synthesis (HLS) enables
a path to synthesize the ANSI-C code into RTL (Verilog or
VHDL) so that the model can be instantiated as a dedicated
HW module in an ASIC or FPGA.

Step 2 takes the predictive models as input and applies
different optimization on them in order to simplify each
model as much as possible within Minacc. As shown in
Fig. 4, different predictive model optimizations are used
given in an optimization library. These include, floating point
to fixed point data conversion and predictive model terms
pruning. These optimizations are greedily applied starting
by the floating point to fixed point conversion, followed by
the term pruning optimization. This eliminates any terms in
the model that have small coefficients, e.g., in the MLP case
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the neurons with smallest weights. After each pruning, the
predictive model is re-simulated and the accuracy measured.
This process is repeated until the minimum allowable accu-
racy (Minacc) is reached.

Step 3 takes as input the optimized predictive models and
performs a technology dependent design space exploration
in order to obtain the most efficient implementation for each
predictive model. In the case of targeting an ASIC of FPGA,
HLS has the ability of generating a variety of different HW
implementations mainly by specifying synthesis directives
in the form of pragmas into the C code. These directives
control how to synthesize arrays (e.g., RAM or registers),
loops (fully unroll, partially unroll, not unroll or pipeline)
and functions (e.g., inline or not). As shown in Fig. 4, dif-
ferent combinations of these pragmas lead to designs with
unique trade-offs. In this case, area, and performance and
accuracies. Out of all the combinations the most important
ones are the ones that lead to the Pareto-optimal designs,
highlighted as black circles in the trade-off curve). HLS
DSE is a typical multi-objective optimization problem [46].
In traditional HLS DSE the main goal is to find all the
Pareto-optimal designs quickly. In this particular work, our
goal is simply to find the smallest design, with the mini-
mum required accuracy, that does not exceed the maximum
resource constraint given by the user (Rconst ), if any. One
approach would be to exhaustively enumerate all possible
pragma combinations and invoke the HLS process for each
combination and then return the design implementation that
leads to the best results based on the constraints set. This
has the advantages of leading to the optimal solution as all
possible combinations are tried, but the obvious drawback
of potentially requiring a long time as the search space
grows supra-linearly with the number of explorable opera-
tions (arrays, loops and functions). Thus, faster methods are
required.

In this case, for predictive models with large search spaces,
we use a genetic algorithm (GA) where each explorable
operation is equivalent to a chromosome Cr . This Cr is then
combined and mutated based on pre-defined crossover and
mutation probabilities (pc and pm) to produce an offspring.
Thus, the explorer starts by generating two parents with
random Cr and synthesizing these in order to obtain their
area and performance. The cost of each parent can in turn be
computed from this. Given the mutation and crossover rate,
an offspring with a unique set of attributes is generated, and
the explorer synthesizes it. The explorer then continues by
comparing the result of the child vs. its parents and substi-
tuting one of them in case that any of the child has a lower
cost. This process is repeated until no child can improve
the cost function for N iterations, where N is a GA specific
hyper-parameter which in our case is set to 10 as suggested
by [47].

In the case that the target HW platform is a microprocessor
or micro-controller, instead of synthesis directives, our flow
explores different compiler options (e.g., -01, -02, -03). In this
case an exhaustive enumeration of all compiler options is

TABLE 1. Nutritional value comparison between Turmeric and Corn
starch.

enough as the search space is much smaller than for the HLS
case.

After all the explorations of all the valid and optimized
predictive models, our flow selects the smallest model that
meets the given constraints. The output of this phase is the
the ANSI-C description of the most optimized model and
the compiler or HLS synthesis option that will generate the
optimized model for the target HW platform.

Finally, the predictive model based on the selected hard-
ware platform is deployed. In the case that the model must
run on a microprocessor or micro-controller then it will be
compiled, while in the case of having to build a dedicated
hardware module (e.g., ASIC and FPGA), then the predictive
model is synthesized using HLS into RTL (Verilog or VHDL)
and this in turn synthesized (logic synthesis) into a gate
netlist.

V. EXPERIMENTAL EVALUATION
This section measures the effectiveness of our proposed
method. Initially the experimental setup is described in detail,
followed by the experimental results and their discussion.

A. EXPERIMENTAL SETUP
Organic turmeric and corn starch were purchased at a local
supermarket, the nutritional information as per the manufac-
turer is shown in table 1. Egg yellow edible color in powder
consisting of Sodium chloride, tartrazine (E102) and orange
color A1 (E110) was also acquired at a local supermarket and
used as contaminant.

Before connecting the cavity to the VNA, a standard
open-short-load calibration is performed to remove the cable
effects. A sample holder is added to the cavity and an epoxy
ring of about 1 cm radius was glued at the bottom. The
measured unloaded Q value with an empty sample holder
is Q1 = 923 at a resonant frequency of f1 = 2244MHz.
To obtain A and B, a volume (Vs=10ml) of olive oil is added
to the sample holder. The recorded values are: Resonant
frequency f2=2156 and Q2=85. By taking the permittivity
values as ϵ′

=3 and ϵ′′
=0.035 for olive oil [43]. and solving

equations 3 and 4, we get A=0.76 and B=0.05.
Turmeric samples were adulterated with egg yellow color

at different concentrations as shown in table 2. Table 3 shows

66460 VOLUME 11, 2023



T. Kaur et al.: Identification of Turmeric Adulteration Using the CavIty PerturbatioN Technique

TABLE 2. Adulteration of Turmeric with Color (r<0.05).

TABLE 3. Adulteration of Turmeric with Starch (r<0.05).

how the Turmeric sample was adulterated with different
starch concentrations. Themixture was homogenized by hand
stirring and 11g were added to the the sample holder. All
measurements were taken by triplicate.

To test our complete flow, we apply the proposed predictive
model approach to detect impurities in turmeric as presented
in the introduction. For this, the data obtained from the sen-
sor’s measurements are used to build the initial predictive
model that detects the contamination amount using a library
of predictive models using scikit-learn [45].

To show the effectiveness of our proposed approach,
we target two different platforms. The first is a low-cost
microcontroller. In particular, TI’s MSP430, which contains
a 16-bit CPU [48]. Code composer studio 9.3.0 is used as the
compiler [49]. The second case is a 45nm ASIC (Nangate
Open cell) using HLS with target a synthesis frequency of
200MHz. The HLS tool used for this purpose is NEC Cyber-
WorkBench [50]. This should allow us to fully characterize
our proposed method in terms of instruction reductions in the
software case and area reduction in the hardware case.

B. EXPERIMENTAL RESULTS
First, we will present the results of how our microwave
measuring setup is able to generate the data that we will then
feed to our predictive model estimation flow. The results also
motivate the need to use a predictive model.

1) RESULTS FOR COLOR CONTAMINATION
Figure 5 shows the averaged reflection coefficient (S11) at
different adulteration levels (r<0.05). Figure 6a shows the
resonant frequency fo vs. the percentage of turmeric in the
mixture. In order to describe the relationship between fo and
turmeric amount, a regression model was calculated using
MATLAB [51].

As it can be seen, the resonant frequency decreases linearly
as a function of added color as shown by the regression

FIGURE 5. Averaged S11 response for different color adulteration levels.

FIGURE 6. Frequency response for color adulteration. (a) Resonant
frequency vs. turmeric+color mixture. (b) Dielectric constant and loss vs.
turmeric+color mixtures.

equation 6 with a correlation coefficient R2=0.9616. The
maximum resonant frequency is obtained for 100% Curcuma
(fo=2171MHz). And the minimum for 100% color (2,131
MHz).

fo(%turmeric) = 37.8(%turmeric) + 2131 (6)

For the unloaded quality factor, the trend line follows the
polynomial given by equation 7 (R2=0.9953), where a min-
imum value of Qo is obtained at 77% turmeric (Qo=74.3),
for higher turmeric concentrations the Qo value increases
slightly to 85.8 for 100% turmeric. For lower than 77%
turmeric concentration, Qo increases, reaching a maximum
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of 440.7 when we have 100% color.

Qo(%turmeric) = 0.0637(%turmeric)2

− 9.79(%turmeric) + 438 (7)

Figure 6b shows the bulk permittivity value extracted with
the CPT, equations 3 and 4. It is observed that ϵbulk ’ decreases
linearly as turmeric concentration increases (equation 8)
(R2=0.9630), from about 3.3 for 0% turmeric to about 2.5 for
0% turmeric. The imaginary part (ϵ′′

bulk ) shows an inverted U
behavior (equation 9) (R2=0.9955), having a maximum for
77% turmeric (0.036). For 0% turmeric we reach a minimum
of 0.0035 and for 100% turmeric we have 0.031.

ϵ′
bulk (%turmeric) = −0.0082(%turmeric) + 3.37 (8)

ϵ′′
bulk (%turmeric) = −7.48 × 10−8(%turmeric)3

+ 6.5 × 10−6(%turmeric)2 + 0.00036

× (%turmeric) + 0.003 (9)

In order to calculate the particle permittivity equation 5
was utilized. The bulk and particle densities were extracted
as explained in the previous section, obtaining the following
values: bulk density of turmeric ρbulk=0.53 g/ml; particle
density of turmeric ρpart=0.96 g/ml; color bulk density
ρbulk=1.3 g/ml; and color particle densityρpart=2 g/ml.

Figure 6b shows the real part of the permittivity (ϵpart ′),
where a linear correlation exists (equation 10) (R2=0.8519).
The maximum is for 0% turmeric (5.4) and the minimum
for 100% turmeric (4.4). For the imaginary part (ϵpart ′′), the
inverted U trend continues (equation 11) (R2=0.995), with a
maximum for 77% turmeric of 0.09 and a minimum for 0%
turmeric of 0.006. For 100% turmeric we have 0.08.

ϵ′
part (%turmeric) = −0.009(%turmeric) + 4.9 (10)

ϵ′′
part (%turmeric) = −2.1 × 10−7(%turmeric)3

+ 2.1 × 10−5(%turmeric)2 + 0.00064

× (%turmeric) + 0.006 (11)

2) RESULTS FOR STARCH CONTAMINATION
The same experiments where repeated using starch at dif-
ferent concentrations (Table 3). Figure 7 presents the S11
response (r<0.05) where it is seen that the resonant frequency
(Figure 8a) has a linear relationship to adulterant content
(12)(R2=0.984). The largest fo (2190MHz) is achieved for
0% turmeric and the lowest fo (2170) for 100% turmeric.
For the unloaded Q (Qo) more starch implies higher Qo.

The trend exhibits a linear behavior (equation 13) (R2=0.418)
where the largest value is Qo=102.9 for 0% turmeric, and
100% turmeric it reduces to 87.2.

fo(%turmeric) = −20(%turmeric) + 2179 (12)

Qo(%turmeric) = −12.36(%turmeric) + 100.2 (13)

Regarding the bulk dielectric constant (Figure 8(b))
we have a linear trend (equation 14) (R2=0.984) and
(equation 15) (R2=0.366), with a slightly decreasing value

FIGURE 7. Averaged S11 response for different starch adulteration levels.

FIGURE 8. Frequency response for starch adulteration. (a) Resonant
frequency vs. turmeric+starch mixture. (b) Dielectric constant and loss vs.
tumeric+starch mixtures.

for larger starch content (for both, ϵbulk ′ and ϵbulk
′′). For the

real part, a maximum of ϵbulk ′
=2.52 is recorded for 0% starch

and a minimum of 2.1 for 100% starch. For the dielectric
loss we have 0.030 for 0% starch, with a decreasing trend
to 0.025 for 100% starch as shown in Figure 8(b).

ϵ′
bulk (%turmeric) = 0.004(%turmeric) + 2.32 (14)

ϵ′′
bulk (%turmeric) = 0.00004(%turmeric) + 0.026 (15)

By calculating the particle dielectric constant we obtain a
polynomial trend (equation 16) (R2=0.998), where the maxi-
mum of the real part is achieved for 100% starch (equation 8)
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FIGURE 9. Averaged S11 response for different color+starch adulteration
levels.

and a minimum for 0% starch (4.4). Similarly, for the loss we
also have a polynomial trend (equation 17) (R2=0.993). ϵbulk
is 0.21 for 100% starch and a minimum ϵbulk

′
=0.08 for 0%

starch.

ϵ′
part (%turmeric) = 0.00034(%turmeric)2

+ 0.08(%turmeric) + 9.7 (16)

ϵ′′
part (%turmeric) = −1.26 × 10−5(%turmeric)2

+ 0.0027(%turmeric) + 0.23 (17)

In both previous cases (turmeric with color and starch) it
is clear that we can find behavioral trends using regression
models in both fo and Qo, making it possible to predict
adulteration. However, when we try a mix of 50% color / 50%
starch the regression analysis does not show a clear trend as
shown in Figure 9 and Figure 10 (r<0.05). For the fo, the
overall change in resonant frequency varies only 4MHz for
the whole range (from 0 turmeric to 100 turmeric), compared
to 40MHz in the color case and 20MHz in the starch case.
Moreover, the trend shows an undulatory behavior, similarly
for the Qo, making a regression analysis difficult. For this
reason, in order to predict adulteration, we will employ a
machine learningmethod, where the S11 data from starch and
color adulteration will be used for the training algorithm.

3) PREDICTIVE MODEL RESULTS
To test our proposed flow, we apply the proposed machine
learning approach to detect impurities in turmeric as pre-
sented in the introduction.

The data obtained from the sensor’s measurements is used
to build the initial predictive model that detects the contam-
ination amount using a library of predictive models using
scikit-learn [45].

To show the effectiveness of our proposed approach,
we target two different platforms. The first is a low-cost

FIGURE 10. Q and fo for different color+starch adulteration levels.

microcontroller. In particular, TI’s MSP430, which contains
a 16-bit CPU [48]. Code composer studio 9.3.0 is used as the
compiler [49]. The second case is a 45nm ASIC (Nangate
Open cell) using HLS with target a synthesis frequency of
200MHz. The HLS tool used for this purpose is NEC Cyber-
WorkBench [50]. This should allow us to fully characterize
our proposed method in terms of instruction reductions in the
software case and area reduction in the hardware case..

In both cases the Support Vector Machine (SVM) model
was found to be the most accurate predictive model from the
library of predictive models investigated. SVM could achieve
a prediction accuracy of 99%. Unfortunately, SVM is also
the most computationally intensive model. Thus, we also
investigated if relaxing the precision accuracy could lead
to other, less computationally intensive models, to become
viable.Table 4 shows the results, which depicts the predictive
model with lowest computationally complexity for different
precision accuracy.

For the ASIC case our proposed exploration framework
is executed using an exhaustive enumeration of all synthesis
directives and using the proposed genetic algorithm (GA).
For the micro-controller case an exhaustive enumeration of
all the compiler options was enough as the search space is
much smaller.

TABLE 4. Overview of smallest predictive models used for different
accuracies and hardware platforms.

Fig. 11, Fig. 12 and table 4 summarize the results in terms
of area and code reduction for the ASIC and micro-controller
cases respectively when the minimum required accuracy of
the model is relaxed from 99% to 85%, and taking the orig-
inal predictive model obtained after phase 1 as reference
(100% area and code size). From the results we can make
the following observations:
Observation 1: From table 4 we can see that when the

prediction accuracy is relaxed different simpler predictive
models are now better. The table also shows that the best
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FIGURE 11. Area reduction of proposed flow targeting an ASIC.
Exhaustive technology dependent search vs. genetic algorithm.

FIGURE 12. Code reduction of proposed flow targeting TI MSP430
micro-controller.

predictive model is not the same for different hardware plat-
forms, and hence, it further strengthens our view of the need
of having technology dependent model selection and opti-
mization.
Observation 2: In both cases, our proposed method was

able to further optimize the predictive model for this case
study. In particular, on average, the area was reduced by 10%
and up to 16% for the ASIC case and on average 14% and up
to 24% for the micro-controller case.
Observation 3: Larger savings are obtained when the min-

imum allowable accuracy is relaxed. There are two reasons
for this. First, our optimization phase can more aggressively
optimize the predictive model. Second, a smaller and more
efficient predictive model can now be used. As shown in
table 4, in both cases (ASIC and micro-controller), a differ-
ent predictive model is used when the accuracy is relaxed
to 90%. In the ASIC case from SVM to MLP and in the
micro-controller case from SVM to REPtree.
Observation 4:When capturing real data and re-analyzing

it, we noticed that the accuracy of the predictive models on
average was reduced by 5%. Adding the new training data
and re-calibrating the predictive models allowed our flow to
bring back the accuracy to the desired minimum accuracy.

Observation 5: The proposed genetic algorithm (GA)
based search leads to similar results (on average 3% worse)
than the exhaustive search while being on average 22× faster.
In summary, based on these results we can conclude that

our proposed fully automated results is very effective at find-
ing and optimizing predictive model for different hardware
platforms.

VI. SUMMARY AND CONCLUSION
This paper successfully presents a method to detect turmeric
adulteration using the Cavity Perturbation Technique (CPT)
at 2.4GHz. Two different adulterants are examined (egg-
yellow color and starch).

It is shown that as color is added, the resonant frequency
decreases linearly as a function of added color. For the
unloaded quality factor, a polynomial trend is found, where
a minimum value of Qo is obtained at 77% turmeric, and
maximum is seen for 100% color. Moreover, ϵ’ has a lin-
ear relationship to color, whereas ϵ’’ exhibits an inverted
U behavior. When turmeric is adulterated with starch it is
seen that the resonant frequency has a linear relationship to
adulterant content. For Qo, more starch results in higher Qo
in a linear trend. ϵ’ exhibits a polynomial tendency with a
maximum for 0% turmeric and ϵ’’ presents a linear behavior.

We have also shown that when turmeric was adulterated
with different concentrations of the two adulterants (e.g., a
50% color/50% starch), no clear trend was observed by ana-
lyzing fo andQo,making it unfeasible to identify adulteration.
However, by applying Machine Learning and training it with
raw S11 data, contamination identification was possible with
high accuracy. In particular we show that the accuracy of our
predictive model depends on the complexity of the model and
hence impacting the code size or silicon area of the model
depending on where the predictive model is implemented.
We have also shown the smallest predictive model is also
platform dependent and that it also depends on the minimum
required accuracy. Based on this we have proposed an auto-
mated hardware dependent predictive model explorer.
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